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Abstract10

Correlation coefficients play a pivotal role in quantifying linear relationships between ran-11

dom variables. Yet, their application to time series data is very challenging due to temporal12

dependencies. This paper introduces a novel approach to estimate the statistical significance13

of correlation coefficients in time series data, addressing the limitations of traditional methods14

based on the concept of effective degrees of freedom (or effective sample size, ESS). These effec-15

tive degrees of freedom represent the independent sample size that would yield comparable test16

statistics under the assumption of no temporal correlation. We propose to assume a parametric17

Gaussian form for the autocorrelation function. We show that this assumption, motivated by a18

Laplace approximation, enables a simple estimator of the ESS that depends only on the tempo-19

ral derivatives of the time series. Through numerical experiments, we show that the proposed20

approach yields accurate statistics while significantly reducing computational overhead. In ad-21

dition, we evaluate the adequacy of our approach on real physiological signals, for assessing the22

connectivity measures in electrophysiology and detecting correlated arm movements in motion23
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capture data. Our methodology provides a simple tool for researchers working with time series1

data, enabling robust hypothesis testing in the presence of temporal dependencies.2

1 Introduction3

Correlation coefficients, such as Pearson’s or Spearman’s, are fundamental tools for assessing4

linear relationships between random variables. Although originally not designed for dependent5

samples, these coefficients are widely used with time series in diverse fields. Notable examples6

can be found in neuroimaging, where Pearson’s correlation coefficient is used to construct func-7

tional brain networks from functional Magnetic Resonance Imaging (fMRI) data (Fox et al.,8

2005; Van Dijk et al., 2010), electrophysiology data (Zhang et al., 2021; Naira et al., 2019; Ji9

et al., 2019; Zhong et al., 2022) or to relate brain signals to other behavioral parameters, such10

as movement data (Lu et al., 2021). In this paper, we address the estimation of the statistical11

significance of correlation coefficients for time series.12

Fisher’s variance-stabilizing transformation is useful to obtain simple bounds and significance13

of a correlation coefficient r. Under the null hypothesis that two sets of n independent data14

points are uncorrelated, the null distribution of the Fisher-transformed variable z = arctanh(r)15

is approximately normally distributed with mean 0 and standard deviation 1/
√
n− 3. In other16

words, we have17

√
n− 3 arctanh(r) ∼ N (0, 1) (1)

In real time-series data, the assumption of pairwise independence underlying traditional18

correlation coefficient tests often falters due to dependencies between consecutive observations.19

When data exhibit temporal dependencies, Eq. (1) is overconfident and fails to account for the20

loss of degrees of freedom due to temporal correlations. A pivotal solution, pioneered by Bartlett21

in 1935 (Bartlett, 1935), adjusts for this change of degrees of freedom by introducing a number22

of “effective degrees of freedom”, or “effective sample size” (ESS), representing the independent23

sample size producing comparable test statistics. Under the null hypothesis that two sets of n24

dependent data points, with ESS ν (ν ≤ n), are uncorrelated, we can simply rewrite Eq. (1) to25
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obtain the approximate distribution as:1

√
ν − 3 arctanh(r) ∼ N (0, 1) (2)

This enables hypothesis testing even when actual samples show temporal dependencies.2

The approach pioneered by Bartlett, that had various extensions, e.g., (Bartlett, 1946; Bayley3

and Hammersley, 1946; Quenouille, 1947; Pyper and Peterman, 1998; Afyouni et al., 2019), relies4

on estimating the ESS from the sum of the product of the autocorrelation functions (ACFs) of5

the time series. Let ρk and γk be the autocorrelation at lag k of two time series, resp. x and y,6

of n samples each. The ESS of the correlation coefficient between x and y is (Quenouille, 1947):7

ν = n

(
ρ0γ0 + 2

n−1∑
k=1

(n− k)

n
ρkγk

)−1

(3)

While this estimator of the ESS has been widely adopted, it requires computing the sample8

ACF which can be computationally demanding and can also yield inaccurate estimates of the9

ESS due to accumulating noise (in the sum of Eq. (3)).10

In this work, we assume a parametric form for the ACF to simplify the computation and11

estimation of the ESS. In particular, we show that the sum in Eq. (3) converges to an integral12

which can be analytically solved under a Gaussian (Laplace) approximation. The resulting13

expression relates the ESS to the average second spectral moment, also called roughness, of the14

pair of time series to correlate. Importantly, the roughness of a series can be estimated from15

the variance of its temporal derivatives. This scaffolds the central result of this work: for two16

processes x and y of length n with temporal derivatives ẋ and ẏ, the number of effective degrees17

of freedoms ν is approximately:18

ν = n

√
var(ẋ) + var(ẏ)

2π
(4)

We show that this formula yields accurate estimation of the ESS and effectively provides a19

computationally effective method to evaluate the significance of correlation coefficients.20

This article is organized as follows. First, we present the key contributions of our work, which21

encompass the derivation of the asymptotic expression for ESS, a straightforward approximation22

for Gaussian autocorrelation, and the introduction of an estimator based on the variance of23

the temporal derivatives of the processes. Then, we validate our approach through numerical24
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experiments, demonstrating its effectiveness and its computational efficacy. Finally, we apply our1

methodology to real data to (i) highlight the significance of power-based connectivity measures2

in electrophysiology, and (ii) distinguish correlated and uncorrelated arm captured motion data.3

2 A parametric estimator of the effective sample size4

Our work builds on estimating the ESS using a Gaussian approximation to the ACF. In this5

section we show that the ESS converges to an integral; then that a Laplace approximation of this6

integral relates the ESS to the signals roughness; and finally, that common roughness estimators7

can be used to build an estimator of the ESS.8

This work focuses on estimating the ESS for the correlation of smooth, wide-sense stationary9

(WSS) stochastic processes. A smooth WSS stochastic process x is defined by convolving white10

noise w with a smooth (C∞), square-integrable function K : R → R+, in other word:11

x(t) =

∫
K(t− s)w(s)ds (5)

For clarity and brevity, we reuse the same notation throughout this paper. By default x12

and y are two smooth WSS stochastic processes with zero mean, variances resp. σx and σy,13

and autocorrelations functions ρ and γ. For simplicity, we restrict our result section to the case14

where both x and y have the same autocorrelation, i.e., ρ = γ. This restriction is moreover15

motivated in Section 2.2.16

2.1 Asymptotic expression for the ESS17

This section introduces an asymptotic form for the ESS. We consider Eq. (3) for the ESS in18

the case of infinitely large n and infinitely small sampling interval of the ACF. Under these19

conditions, the sum in Eq. (3) converges to20

lim
n→+∞

n

ν
=

∫ +∞

−∞
ρ(τ)γ(τ)dτ (6)

This yields a new asymptotic ESS expression, ν∞:21

ν∞ = n

(∫ +∞

−∞
ρ(τ)γ(τ)dτ

)−1

(7)
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The resulting integral formulation is pivotal in deriving analytical expressions for the ESS1

of stochastic processes with known ACF. As for processes with known autocorrelation function,2

we can directly evaluate Eq. (7). In the next section, we develop a generic approximation based3

on a Laplace approximation of the integral.4

2.2 Closed-form expression under a Laplace approximation5

A general approach to approximate the integral in the asymptotic ESS expression is to use6

Laplace’s method. In this section, we derive a general approximation to asymptotic ESS7

(Eq. (7)), based on a Laplace approximation of the integral (Eq. (6)). In brief, Laplace’s method8

is used to approximate the integral of a arbitrary function with a unique global maximum using9

a simpler, Gaussian function around its peak (Penny et al., 2011). Typically in physiological10

signals, ACFs have a mode at lag 0 and decrease to 0 for large lags, although they might exhibit11

long-range correlations. Thus, the area under the curve of the product of two such ACFs is ex-12

pected to be contained around 0, with an attenuation of long-range correlations. This justifies13

using Laplace’s method to approximate the asymptotic ESS expression.14

To derive the expression under Laplace approximation, note that the second-order expansion15

of the ACFs ρ and γ around their mode at τ = 0 is similar to processes with Gaussian ACFs16

ρ̂(τ) = exp(−1

2
|ρ′′(0)|τ2) γ̂(τ) = exp(−1

2
|γ′′(0)|τ2) (8)

where ρ′′(0) and γ′′(0) are the second spectral moment of the processes, i.e., the second-order17

derivatives of the ACFs at 0. The second spectral moment is a universal measure of “roughness”18

in the literature of stochastic processes (Friston et al., 2008; Cox and Miller, 2017). From this19

Gaussian form, we can explicitly evaluate the integral in Eq. (7):20

∫ ∞

−∞
ρ̂(τ)γ̂(τ)dτ =

√
2π

|ρ′′(0)|+ |γ′′(0)|
(9)

By substituting Eq. (9) in Eq. (7), the ESS under a Laplace approximation is21

ν∞ = n

√
|ρ′′(0)|+ |γ′′(0)|

2π
(10)

To summarise, we can use a Laplace (Gaussian) approximation to approximate the ESS. This is22
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equivalent to fitting the ACF using a one-parameter family of Gaussian functions parameterised1

by their second spectral moment, or roughness. This allows to derive a simple expression for2

the ESS that only involves the second spectral moment of each process.3

Remark 1. When ρ′′(0) = γ′′(0), Eq. (10) reduces to n
√
|ρ′′(0)|/π. When ρ′′(0) ̸= γ′′(0), the4

ESS of the pair of signals given by Eq. (10) is similar to that of a fictive pair of signals with equal5

roughness (|ρ′′(0)| + |γ′′(0)|)/2. Thus, there is no need to consider furthermore the case with6

heterogeneous roughness, as it can be mathematically reduced to the case with a (homogeneous)7

roughness given by the arithmetic mean of the original roughnesses.8

2.3 Estimating the second spectral moment9

A well-established result from stochastic process theory is that the roughness can be conveniently10

estimated from the variance of the first-order temporal derivatives of the process (Cox and11

Miller, 2017; Adler, 2010; Worsley, 1996). In this section, we leverage this result to construct12

an estimator of the asymptotic ESS.13

Let x and y be two processes with autocorrelation functions ρ and γ and temporal derivatives14

ẋ and ẏ. The second spectral moments |ρ′′(0)| and |γ′′(0)| can be estimated from the variance15

of the temporal derivatives of the process, i.e., |ρ′′(0)| = var(ẋ) and |γ′′(0)| = var(ẏ). Pluging16

in Eq. (10), we obtain an estimator of the ESS:17

ν∞ = n

√
var(ẋ) + var(ẏ)

2π
(11)

By construction, this new parametric estimator for the ESS depends only on the variance of18

the temporal derivatives of the time series. As such, its consistency and unbiasedness derive19

directly from those of the variance estimators (from direct application of the continuous mapping20

theorem).21

Remark 2. The second spectral moment is also related to the expected number of zero-crossings22

of a process by Rice’s formula (Rice, 1944). For didactic purposes, we show an alternative ESS23

estimator based on Rice’s formula in Appendix A.24
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3 Numerical validation1

We conduct numerical experiments on Gaussian processes with Gaussian autocorrelation func-2

tions (GPGA) to assess the validity and limitations of our approach. The numerical results are3

organised in four parts. First, we evaluate the quality of fitting the squared autocorrelations4

from the process roughness. Second, we compare the quality of the estimates of the ESS, cor-5

responding to the integral of the squared ACFs, with existing methods. Then, we compare the6

statistics yielded by our method with existing ones. Finally, we investigate the computational7

performance of our approach.8

3.1 Assessment of parametric autocorrelation function estimates9

The method we present leverages the analytical evaluation of the ESS of a pair of stochastic10

processes from their roughness, estimated from the variance of the temporal derivatives. Here,11

we verify whether this method can accurately estimate the ACF of the process, when the ACF12

is known to be Gaussian.13

We generate 2000 sample paths from GPGA with different roughness levels. We then retrieve14

the squared autocorrelation using the variance of the derivatives. To sample a sample path from15

a GPGA with roughness r, we convolve a unit white Gaussian noise sample with a Gaussian16

kernel of variance 2/r as per (Friston et al., 2008). We then apply Eq. (4) to determine its17

second spectral moment from the variance of the process temporal derivatives.18

Figure 1 illustrates that low roughness results in significant biases in squared sample auto-19

correlation functions, leading to ESS underestimation. This bias becomes clear in Figure 1(f),20

where the grey curves diverge significantly from their expected near-zero values. This figure21

underscores the merit of predetermining the functional form of the ACF, thereby filtering out22

spurious long-term correlations. Furthermore, our method consistently aligns more closely with23

the theoretical ACF relatively to the direct sample squared ACF.24

In conclusion, explicitly formulating the functional form of the ACF filters out errant long-25

term correlations otherwise amplified by traditional ESS estimators based on sample autocor-26

relations. This leads to more accurate and consistent ACF estimates across varying roughness27

scales. However, we note that the variance of the squared ACF appears to be inversely propor-28

tional to roughness. This issue is further investigated in subsequent sections.29
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(e) Squared ACF, ρ′′(0) = 10−2
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(f) Squared ACF, ρ′′(0) = 10−4

Figure 1: Sample paths and squared autocorrelation functions for roughness values ρ′′(0). Rows
one and two display, respectively, samples of Gaussian processes for different roughness values and
their squared autocorrelation functions. Notably, the squared ACF plays a crucial role in ESS
estimation. The plots showcase various ACF estimations: theoretical (plain yellow), sample (plain
grey), average of sample (dotted black), Gaussian fit based on estimated roughness (plain red),
and Gaussian fit based on average roughness (dashed blue). The bias in sample ACFs, evident in
the grey curves, increases as roughness decreases due to increasing random long-range correlations.
On the other hand, the Gaussian fits (plain red) remain unbiased at large lags, ensuring the ACF
retains its Gaussian form.

3.2 Assessment of parametric ESS estimates1

This section deals with the influence of the roughness estimator’s variance on the variance of2

the estimated sum of squared autocorrelation and that of the ESS. We also examine how these3

relate to the length of series.4

We sampled 1000 sample paths from GPGA, adjusting roughness between 10−6 and 1. Each5

sample path’s roughness is then estimated. Using this roughness estimate, we compute the6

ESS using Eq. (11). Furthermore, we determine the ACF of the process using the inverse7

Fourier transform of the sample path’s power spectral density (PSD). The latter is estimated8

either through the FFT or the Welch periodogram with a 256-point window having 128-point9

overlap (Welch, 1967). The ESS is then obtained from the ACF using Eq. (3). We replicate this10

procedure for series lengths of 500, 1000, and 2000 points. For comparison, the ESS is normalized11

by series length, yielding an ESS factor. Figure 2 contrasts estimated and theoretical roughness,12

as well as the ESS factors from various methods against those from theoretical roughness.13
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Figure 2: a) Estimated roughness as a function of the process roughness, for series of 500 points
(dark blue), 1000 points (light blue), and 2000 points (yellow). b-d) Estimated ESS factor as a
function of the process true ESS, computed from Eq. (10), for series of 500 points (dark blue), 1000
points (light blue), and 2000 points (yellow) for the FFT-based (b), Welch-based (c), and proposed
approaches (d). Shaded areas correspond to the 95% confidence intervals.

From Figure 2(a), it is clear that roughness estimates share a similar trend. For minuscule1

roughness values, bias emerges. Extended series better approximate low roughness, hinting that2

biases result from series that are too short relative to their roughness. As expected from their3

relationship (Eq. (7)), ESS factors derived from roughness mirror this trend.4

Interestingly, ESS factors from both FFT and Welch-based squared ACF methods also ex-5

hibit similar biases. The Welch periodogram’s bias appears even at elevated ESS factors due6

to its fixed window size. From a statistical standpoint, biases and high variances are expected7

when approaching a near-zero sample size.8

Conclusively, our method offers a closer ESS estimate to true values than traditional methods,9

especially for low ESS factors corresponding to low roughness. This confirms the ability of our10

method to derive the ESS from process temporal derivative variances, showing at superior11

correlation coefficient statistic accuracy, which we confirm in the subsequent section.12

3.3 Statistics under the null hypothesis13

We have previously demonstrated the efficiency of the proposed method in fitting the squared14

autocorrelation function of a process and its superior accuracy in ESS estimation across varied15

roughness scales. Now, we assess how this improved ESS estimation influences the computa-16

tion of probabilities under the null hypothesis, i.e., the p-value, especially under two distinct17

roughness scales.18

We set our method against those reliant on the sum of squared autocorrelation, where ACF19

is computed via FFT or the Welch periodogram. We generated 5000 pairs of 2000-points-long20
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(b) Welch-based, ρ′′(0) = 10−2
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(c) Proposed, ρ′′(0) = 10−2
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(d) FFT-based, ρ′′(0) = 10−4
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(e) Welch-based, ρ′′(0) = 10−4
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(f) Proposed, ρ′′(0) = 10−4

Figure 3: Estimated probability against empirical probability for the different approaches. The
first row illustrates a roughness of 10−2, while the second showcases 10−4. Each column represents
different estimation methods: FFT-based (green), Welch-based (red), and our method (blue).

sample paths from processes with specified roughness and determined their correlation coeffi-1

cient. Being inherently uncorrelated, these sample paths effectively sample the null distribution2

of GPGA at that roughness. Consequently, the empirical probability of each sample correlation3

coefficient converges to its probability under the null hypothesis. Each sample’s empirical prob-4

ability can be compared with the probability yielded by any of the methods. These results are5

represented as probability-probability plots in Figure 3 for roughness values of 10−2 and 10−4.6

At a roughness of 10−2, the methods show comparable statistical outputs. The FFT-based7

p-values display more dispersion than both proposed and Welch-based methods, which are8

markedly analogous. Reducing roughness to 10−4 modifies the statistics for each method. Both9

our method and the FFT-based exhibit increased p-value variability. In contrast, the Welch10

method displays pronounced bias with minimal variability.11
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The trends in Figure 3 are more comprehensible when compared with the ESS estimates1

presented in Figure 2. The transition from a roughness of 10−2 to 10−4 equates to a shift from2

an ESS factor of roughly 10−1 to 10−2. Such changes mirror the variances and biases seen in our3

ESS estimates, which directly affect p-value computation. Given that our method consistently4

provides superior ESS estimations across roughness values, it is hence inferred to offer enhanced5

statistics.6

In summary, our numerical analyses confirm the paramountcy of a parametric autocorrelation7

function, where the unique parameter is estimated via the process’s second spectral moment.8

This method circumvents biases introduced by random long-range dependencies, resulting in9

more accurate sample p-values for correlation coefficients. In subsequent sections, we advocate10

for GPGA’s aptness in real-world applications, such as neuroimaging data connectivity analysis11

and movement trajectory correlations.12

3.4 Comparison of computational performance13

In this section, we evaluate the performance gain of our approach. The main difference with14

existing methods is that we avoid explicit evaluation of the ACF by using a parametric ACF,15

which only requires to estimate the average series roughness.16

To evaluate the impact of series length on the computation time and speedup, we generate17

pairs of sample paths from a GPGA process with roughness 10−3 having varying length, from18

100 to 107 points with 10 fold increments. For each pairs of paths, we compute the ESS using19

FFT-based and Welch-based computation of the ACFs, and with our approach. The FFT-based20

ACF is obtained using numpy’s fft and ifft functions (Harris et al., 2020). The Welch-based21

ACF is computed using scipy’s welch function from the signal package with a window length22

of 256 points (100 points for the 100 points series) and numpy’s ifft (Virtanen et al., 2020).23

Our approach uses numpy’s diff and var to compute the variance of the temporal derivatives24

of the process. The results are obtained on a laptop equipped with an 12-core Intel Xeon W-25

10855M CPU and 32Gb of RAM running Ubuntu 22.04 and Python 3.8. For each approach,26

we computed the timings from 100 loops and present the mean and standard deviation across 727

different runs.28

We report the results on Figure 4. The average computation times obtained by the proposed29

approach are significantly below that of FFT-based and Welch-based methods. This result is30

consistent across all different number of points. Looking at the speedup confirms the compu-31
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Figure 4: a) Comparison of the computation time for varying number of points from 100 to 107. b)
Speedup of our approach, obtain as the average computation time of each method divided by the
average computation time of the proposed method. For instance, a speedup of 5 means that our
approach divides by 5 the average computation time.

tational advantage of the proposed approach. In average across different number of points, the1

proposed approach is 7.4 times faster than an FFT-based approach. This speedup is negligible2

for short time series (resp. 1.3 and 1.6 for 100 and 1000 points) but significant for long time se-3

ries (10.2 to 13.4 for 105 to 107). The speedup from Welch-based approach is relatively constant4

across time series length due to the fixed window length, with an average speedup of 5.1.5

To sum-up, our proposed approach, based on the temporal derivatives of the time series,6

gives a significant speedup as compared to other approaches based on the computation of the7

ACF. This computational argument motivates using a parametric Gaussian form of the ACF in8

applications where timing is critical or where large amounts of data have to be processed; for9

instance, when evaluating correlations of brain activity between a large number of brain regions.10

4 Application to physiological signals11

4.1 Use-case 1: Evaluating power-based connectivity from electro-12

physiology data13

4.1.1 Context and motivation14

Electroencephalography (EEG) captures the electric potentials on the scalp. Its low-cost and15

high-temporal-resolution make EEG a particularly appealing neuroimaging technique to eval-16
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Figure 5: Procedure to assess the connectivity of two EEG channels at a particular frequency of
interest (FOI).

uate the functional connectivity between brain regions. A standard approach, power-based1

connectivity analysis, measures functional connectivity by evaluating the correlation between2

the time-frequency power of the signal at two different locations (Cohen, 2014). Several methods3

exist to perform power-based connectivity analysis, but the correlation between wavelet-based4

time-frequency representations is particularly interesting within the scope of this work.5

The time course of power can be obtained using a continuous wavelet transform with a Morlet6

wavelet. A Morlet wavelet combines a Gaussian kernel with a complex sinusoid at a specified7

frequency. Therefore, a continuous wavelet transform with a Morlet wavelet introduces a form of8

temporal smoothing with a Gaussian kernel. Intuitively, if the width of the Gaussian smoothing9

kernel is large enough relative to the autocorrelation of the signal, the resulting time series will10

have roughly a Gaussian autocorrelation. In this case, one can consider testing the strength11

of the correlation between two power time series under the null hypothesis that the signals12

are two uncorrelated GPGA. The overall procedure is illustrated in Figure 5. This approach13

allows a more efficient analysis of connectivity significance without relying on computationally14

demanding methods.15

This section aims at gaining some insight on whether the null hypothesis of uncorrelated16

GPGA processes might yield appropriate statistics. In contrast to the numerical experiments17

section, we cannot sample from the null distribution of correlation coefficient between band-18

power time series. Thus, we can only investigate a few characteristics of the data to assess the19

13



validity of our approach. Indeed, this section echoes the first step of statistical analysis in real1

world application, where statisticians have no access to the data generative distribution and2

shall assess the suitability of their model.3

4.1.2 Data presentation and preprocessing4

We analyse a dataset containing EEG recordings of a subject listening to continuous, naturalistic5

speech (Di Liberto et al., 2015; Crosse et al., 2016). The subject listened to a classic work read6

by an English speaker. EEG signals were recorded from a single participant with a Biosemi7

system having 128 channels and a sampling rate of 512 Hz. Prior to analysis, the data has been8

filtered between 1 and 15 Hz and downsampled to 128Hz. We then computed the time-frequency9

representation of the EEG signals using a continuous wavelet transform. We used Morlet wavelet10

with 7 cycles to produce time-frequency representation with a sufficient temporal smoothness11

to fall under our Gaussian assumptions. Finally, we take the fourth root of the power to make12

the data marginally Gaussian (Hawkins and Wixley, 1986).13

Remark 3. Note that selecting the number of cycles in the wavelet effectively selects the degree14

of smoothness of the signal. This shows that the number of cycles is related to the ESS. In15

Appendix B, we give a formula giving the ESS as a function of the number of cycles.16

4.1.3 Adequacy of GPGA assumptions for wavelet-based EEG power17

Here, we show that our approach yieds appropriate statistics for power-based connectivity anal-18

ysis. We first look at whether the signals have an approximately Gaussian autocorrelation and19

whether our approach provides a good fit of the squared autocorrelation function. We compare20

results given by FFT-based and Welch-based approaches with our approach, and analyse the21

results in the light of our numerical results. Finally, we compare the ESS and 97.5% quantile22

given by all three approaches with real data and sample GPGA sample paths with matching23

roughness.24

Figure 6 summarizes the properties of the data. In particular, we show a time-frequency plot25

(Fig. 6 (a) and (b)) and some samples power time series at different frequencies. Intuitively,26

the time course of power at lower frequencies is smoother than for higher frequencies. This is27

confirmed by looking at the roughness of the signals across channels, whose mean increase with28

frequency (Fig. 6 (d)). In addition, we display (Fig. 6 (c)) the marginal distribution of the signals29

14
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Figure 6: (a) Time-frequency plot of the fourth root of power for channel A9. (b) Sample fourth-
root of power time series at different frequencies. (c) Marginal distribution of fourth-root of power
time series across channels. (d) Roughness across channels at different frequency. (e-g) Squared
ACF at 4 Hz, 10 Hz, and 14 Hz. Gray lines indicate different channels, the black line indicates the
mean squared ACF across channels, the dotted blue line indicates the mean fit using the proposed
approach, and the filled blue area shows the area that is integrated in the denominator of the ESS
expression.

across channels to inspect its normality – a key element in mandating using Pearson’s correlation1

coefficient instead of Spearman’s rank correlation. Finally, we inspect (Fig. 6 (e), (f), and (g))2

the squared ACF at 4 Hz, 10 Hz, and 14 Hz, and compare it against the Gaussian fit obtained3

from the signals roughness. We observe that the squared ACF is roughly Gaussian, despite a4

slower decrease (lower kurtosis) which might come from autocorrelations inherent to the nature5

of the signal. Overall, these results suggest that GPGA might provide a good approximation6

for the data and that our approach gives appropriate statistics.7
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4.1.4 Assessment of ESS and quantiles for wavelet-based EEG power1

To confirm these results, we evaluate the ESS factor for all possible between-channel pairs2

connectivity at each given frequency. In addition, for each signal we generate a random GPGA3

sample path with matching length and roughness, and compute the ESS factor for all pairs of4

random sample paths. This gives us a hint on how the ESS factor would behave if the sample5

paths where effectively sampled from the null hypothesis, i.e., GPGA with matching length6

and roughness. We complement this analysis by looking at the 97.5% quantile of both real7

and simulated data, under the null hypothesis. Any correlation coefficient greater than the8

97.5% quantile – or lower than its opposite – would be effectively considered as significant with9

p < 0.05. The 97.5% quantile is computed by the inverse Fisher transform of the 97.5% quantile10

of the Gaussian distribution:11

Q97.5% = tanh(1.96/
√
ν∞) (12)

The ESS factor and 97.5% quantile for both real and simulated data are presented on Figure 7.12

We observe that the ESS factor for real EEG signal increases with frequency. This is expected13

as the roughness of power time series increases with the frequency, as shown in Figure 6. This14

increased ESS factor results in a decreased 97.5% quantile. Indeed, as the effective sample15

size increases and statistical power increases, we can arbitrate on the rejection of the null16

hypothesis at lower values of correlation coefficient. This is conform to the role played by the17

ESS in Eq. (12).18

Interestingly, we see that both FFT-based and Welch-based approaches give lower values of19

ESS, and higher 97.5% quantile value, than our proposed approach. This effect is the strongest at20

10 Hz and 12 Hz. Comparing each figure with its analogous generated under GPGA assumptions,21

we see that under GPGA assumptions all three methods yield approximately the same values22

of ESS factor and 97.5% quantile. Because these differences are stronger at 10 Hz and 12 Hz,23

i.e., in the well-identified alpha band, we hypothesis that task-related modulations of the power24

task cause variations in the autocorrelation of the power; which induce variability and shift in25

the ESS factor and related quantiles. Note that the size of this effect on the 97.5% quantile is26

relatively small (less than 0.02). We argue that this is negligible in most cases, especially given27

the variability of the sample estimates of the roughness or ACFs.28
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Figure 7: (a) Distribution of the ESS factor evaluated with the FFT-based (green), the Welch-based
(red), and our approach (blue) for pair of power time series at a given frequency. (b) Similar to (a)
for random GPGA sample paths with roughness matching that of every pair of signals at a given
frequency. (c) Distribution of the 97.5% quantile obtained from the ESS of each pair of real time
series. (d) Similar to (c) for random GPGA sample paths with matching roughness.

4.2 Use-case 2: Detecting correlation between random movement tra-1

jectories2

This section investigates the suitability of our approach for biological signals. We analyse the3

statistics of movement trajectories as recorded by a motion capture system. The signals analysed4

in the present section are in nature complementary to the time course of EEG power analysed in5

the previous section. This is because they possess a very low roughness and are not marginally6

Gaussian. Thus, we aim at evaluating our proposed approach on less ‘well-behaved’ biological7

signals.8

17



The motion capture data analysed in this section comes from a single subject performing1

self-paced unilateral elbow flexion/extension. The data was acquired during a study on the2

EEG correlates of arm movements. The experimental procedure conformed the Declaration of3

Helsinki and was approved by the local ethics committee. The subject was instructed to move4

continuously in a self-paced pseudo-random manner for 40 runs (one per side) of 23.5 seconds.5

The position of body segments was recorded using an XSens Awinda suit at a 60 Hz rate and6

the elbow flexion angle was obtained as the angle between the upper arm and forearm.7

We computed the marginal distribution, squared ACF, and roughness of each trial. In8

addition, we computed the ESS factors and the 97.5% quantile for the correlation coefficient9

between every possible pair of trials. Similarly to the previous section, we generated for each10

trial a random GPGA sample path with matching roughness, and computed the same quantities11

as for the real data. Results are presented in Figure 8.12

Looking first at the statistics of the joint trajectories, we see that the joint angle distribution13

is not Gaussian, nor even unimodal. In practice, this would motivate to use Spearman’s corre-14

lation coefficient instead of Pearson’s. Additionally, we observe that the squared ACFs display15

correlations for lags around 200 points, that are not matching the Gaussian profile. On the16

other hand, the main peak of the squared ACF seem well approximated by the Gaussian fit.17

We also observe that the signal roughness is quite low, with an average roughness of 3.7× 10−3.18

Interestingly, the ESS factors and 97.5% quantiles computed for both the real joint trajecto-19

ries and random GPGA processes are relatively similar, with differences being much smaller than20

the spread of the values. This result highlight that overall, the ESS of pairs of joint trajectories21

from this dataset are quite similar to that of GPGA with matching roughness. Consequently,22

quantiles are also relatively similar. This comparative results shows that, despite being not23

marginally Gaussian and having long-range autocorrelations not fitting to the Gaussian profile,24

the significance of the correlation between joint trajectories from this dataset could be accurately25

computed under GPGA assumptions.26

5 Conclusion and future directions27

In this work, we considered the problem of testing for significant correlation between autocor-28

related time series. Several works have proposed to use an ESS to correct the test distribution.29

The ESS correspond to the size of a sample of independent observations that would produce the30
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Figure 8: (a) Sample joint trajectories. (b) Squared ACFs computed from the FFT of the trials
(gray), their average (black), and the Gaussian fit obtained from the average sample roughness
(dashed red). The area under the curve (red) corresponds to the inverse of the mean ESS factor
for the proposed approach. (c) ESS factors computed from joint trajectories and random GPGA
sample paths with matching roughness, for all possible pairs of trials. (d) Marginal distribution
of the joint angle for all trials. (e) Kernel density plot of the distribution of the roughness over
trials. (f) 97.5% quantile computed from joint trajectories and random GPGA sample paths with
matching roughness, for all possible pairs of trials.

same statistics. These approaches require to estimate the autocorrelation function, which can1

be problematic when testing correlation between two unique and smooth series.2

Here, we derive the asymptotic expression of the ESS. This asymptotic expression can be used3

with parametric forms of ACF to analytically derive the ESS of a given process. In particular,4

we show that the expression for the ESS takes a simple form when considering a Gaussian5

approximation of the ACF. This simple expression depends on the second-order derivatives of6

the autocorrelation function at its mode, which is a measure of the roughness of the process7

and relates to several of its statistical properties. Roughness can be easily estimated from the8

variance of the first-order temporal derivatives of the process.9

We conducted numerical experiments to validate the proposed method. We observe that our10

19



approach retrieves the statistics of correlation coefficients under the null hypothesis that signals1

are GPGA. For this particular type of process, our approach outperforms classical approaches,2

yielding robust estimate of the statistics under a large range of roughness. In addition, our3

approach shows relatively higher computational performances compared to alternative methods.4

In a second part, we show that some data issued from biological signals satisfy GPGA5

assumptions. Our approach seem adequate to test for significant correlations between brain6

regions, when used with power-based connectivity analysis of electrophysiological data. Our7

method also applies well to random joint trajectories, as measured from a motion capture8

system.9

Overall, obtained results suggest that our approach yields accurate and robust statistics10

under assumptions that can be found in real biological signal. More generally, we claim that11

using a parametric form of autocorrelation can yield more accurate statistics, without being12

overly restrictive on the form of the process. In particular, we think that more advanced methods13

for parameter estimation could allow better estimation of the autocorrelation function. However,14

as often with parametric approaches, there is no one-size-fits-all form of the autocorrelation15

function, and the statistician holds the responsibility to evaluate the adequacy of the model for16

the data under study.17

In addition to correlation coefficients, our approach can be straightforwardly extended to18

linear regression. A pivotal assumption of linear regression is the independence of residuals.19

An assumption often violated in time series data due to inherent temporal dependencies. The20

parametric ESS estimators derived here can be seamlessly adapted to assess the significance21

of regression coefficients in linear regression models applied to time series data. Thus, our22

approach not only fortifies the foundation of correlation analysis in time series but also extends23

its robustness to the broader landscape of linear regression.24
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A Link with Rice’s formula1

The second spectral moment is related to the average number of zero-crossings N0 of the process2

by Rice’s formula (Rice, 1944) (for derivation, see (Cox and Miller, 2017, Ch. 7.4, Example 7.9)):3

N0 = n
√
|ρ′′(0)|/π (13)

This expression can be used to express the ESS in terms of expected number of zero-crossings.4

We observe that5

ν∞ =
√
πN0 (14)

This gives a simple way to estimate the ESS of empirical time series from the mean number of6

zero-crossings.7

B Analytical ESS for Wavelet-based correlations8

This section concerns testing correlations in band-limited power using time-frequency representa-9

tions, particularly with Morlet wavelets, which align well with the ESS theory for quasi-Gaussian10

autocorrelation processes.11

Morlet wavelets, defined as the product of a complex sinusoid with a Gaussian, provide a12

time-frequency representation of a time series through the wavelet transform. Specifically, a13

wavelet w is given by (Cohen, 2019):14

w = exp(−j2πft− t2/(2σ2)) (15)

where t is time, f is frequency, and σ is tied to the number of cycles Nc as σ = Nc/2πf .15

For signals with a rapidly decaying autocorrelation compared to the Gaussian kernel width16

in the wavelet, the time-frequency representation remains relatively smooth. Considering a time17

series derived from the log-power (or other normalisation function) of a wavelet transform at a18

given frequency, the autocorrelation ρ is approximately Gaussian with second-spectral moment19

|ρ′′(0)| ≈ π2f2

N2
c

(16)
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To determine the significance of the correlation between band-limited power, the number1

of cycles in Morlet wavelets can be adjusted, providing a direct assessment of the ESS for the2

correlations. If two series, derived from the same number of cycles but different frequencies f13

and f2, are correlated, their ESS is:4

ν∞ =
n

Nc

√
π

2

√
f2
1 + f2

2 (17)

For f1 = f2 = f , the ESS is simply ν∞ =
√
πnf/Nc. Importantly, the chosen number of cycles5

determines the ESS of power correlations.6
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