
HAL Id: hal-04373771
https://hal.science/hal-04373771v1

Submitted on 5 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secured-by-design systems-on-chip: a MBSE Approach
Raphaële Milan, Loïc Lagadec, Théotime Bollengier, Lilian Bossuet, Ciprian

Teodorov

To cite this version:
Raphaële Milan, Loïc Lagadec, Théotime Bollengier, Lilian Bossuet, Ciprian Teodorov. Secured-
by-design systems-on-chip: a MBSE Approach. Rapid System Prototyping, Sep 2023, Hambourg,
Germany. �10.1145/3625223.3649277�. �hal-04373771�

https://hal.science/hal-04373771v1
https://hal.archives-ouvertes.fr

Secured-by-design systems-on-chip : a MBSE
approach

1st Raphaële Milan
Université Jean Monnet

Saint Etienne, France
0009-0006-3166-9235

2nd Loı̈c Lagadec
Lab-STICC, ENSTA-Bretagne

Brest, France
0000-0003-3778-3144

3rd Théotime Bollengier
Lab-STICC, ENSTA-Bretagne

Brest, France
0009-0006-7315-2736

4th Lilian Bossuet
Université Jean Monnet

Saint Etienne, France
0000-0001-7964-3137

5th Ciprian Teodorov
Lab-STICC, ENSTA-Bretagne

Brest, France
0000-0002-0722-5857

Abstract—Security by Design (SbD) has gained increasing
interest over the past decade. While iterative processes and legacy
preservation aim to reduce costs and mitigate risks through
continuity, SbD encourages a break in the way we do things
with a simple idea: dealing with new threats, leading to new
risks, requires a complete rethink of our design processes.

In embedded systems, security has been more or less left aside
for a long time, with performance being the main objective. When
security concerns emerged, the response was to adapt existing
solutions with security patches. This is neither sustainable (to
change from simple embedded systems to complex systems-on-
chip) nor simply effective. It is necessary to change the mindset,
which will lead to new practices. But the central question is:
”How can we put security at the heart of the design process?” The
aim of this paper is to contribute to this reflection by providing a
rapid prototyping environment (modeling and simulation-based
systems engineering) for the hardware mechanisms responsible
for the deployment of rights management services.

Index Terms—Security, CAD Tool, Model-Based Engineering,
Hardware, Systems-on-Chip

I. INTRODUCTION

Security matters. But sometimes time-to-market constraints
outweigh security, and reuse is the way to reduce design time.
When writing software, reusing pieces of code opens security
gaps. There are two main reasons for this. The first is the
misuse or misunderstanding of the existing code. A zero-
day attack may have been reported and corrected, without
the solution being incorporated into the reused code. Context-
related problems (e.g., overflows) are also likely to occur. The
second problem is that reuse is sometimes based on unsourced
code. In this case, incorporating code from a library is easy, but
security control becomes impossible. Threats can obviously
come from malicious suppliers, but also simply from poor-
quality code (e.g. the C system() function calls binary files,
which can be silently replaced by malicious files). A corrupted
process that has access to shared storage or communication
devices can compromise the entire system.

One solution is to use hypervisors. These hypervisors pro-
vide an interface layer between the software and the execution

This work has been funded by French AID.

platform. Hypervisors check requests against legitimacy rules
to grant or deny access to devices. Incorporating hypervisors,
at first, promotes a secure by design approach.

While security as a whole has become a major issue,
Systems-on-Chip (SoC) security in particular is a hot topic,
because such systems are everywhere: computers, cell phones,
IoT devices, and Supervisory Control and Data Acquisition
(SCADA) systems, making them critical infrastructures.

When moving from software to system-on-a-chip, the anal-
ysis of security gaps remains. But with added complexity. On
the positive side, there are some useful mechanisms. Vendors
offer hardware solutions to ensure minimal rights management
at a low level. For example, ARM’s TrustZone [1] divides the
system into two worlds based on the NR bit value. The rich
world, dedicated to common execution, is separated from the
secure world, which has additional rights. Processes in the rich
world have no access to resources in the secure world. These
architectures enforce strict security measures right from the
powering on of the system to prevent misuse and compromise.
However, on the other hand, such security measures have
been found to be vulnerable where security design practices
are not considered or are poorly implemented, particularly at
software and hardware stack boundaries. Additionally, there is
a wide range of devices, resulting in heterogeneity and there-
fore increased complexity. Peripherals are generally reused
from previous designs or come from unreliable third parties.
Particularly when considering reconfigurable implementation,
for which the synthesis and optimization phase is costly, it is
tempting to use off-the-shelf versions from hardware libraries.

This paper proposes an approach for Systems-on-Chip pro-
totyping ensuring key qualities like trustworthiness and safety
while maintaining performances. We show that it is possible
to deploy in SoCs a hypervisor-based solution that would
mediate between software and hardware but also between
hardware devices, including synthesized tasks. This additional
layer provides a secure by-design infrastructure. It conforms to
a set of requirements expressed as rules. In such architectures,
each architecture element (processor, FPGA, memory, etc.) has
a wrapper that controls its security, based on a distributed

set of rights (authorization) dictionaries that specify who can
perform what operation on what address range in what trust
mode (secure, rich, etc.) on that element. Permissions can
be specified statically at synthesis time, or dynamically, i.e.,
they can be modified between two runs of the platform.
On the contrary, by exploiting these requirements through
model-to-model (M2M) transformations, test cases can be
generated, which challenge the infrastructure, in search of
counterexamples for validation purposes. The M2M approach
also leads to additional benefits, which are summarized in the
perspective section.

This paper also proposes a fast prototyping solution which
conforms to modeling and simulation-based systems engineer-
ing (MBSE). A conceptual model describes the architecture
(architecture elements, element wrappers, tasks, task allocation
to elements, etc.). This model supports instance creation, size
change, and reshaping. It offers a useful exploration feature for
those who want to design an SoC, as it comes with a discrete
element-based simulation framework to score metrics. This
framework can be used to simulate various architecture and
rights management scenarios at the model level before they
are implemented at the lower level.

The remainder of this paper is organized as follows. Section
II introduces the systems on the chip domain, and then the
related security issues. Section III presents our two contribu-
tions: security through rights management and SoC model-
ing, respectively. Section IV discusses SoC prototyping using
FPGA board, with an emphasis on M2M transformations to
alleviate manual, repetitive, and error-prone process.

II. BACKGROUND & RELATED WORK

SoCs are complex electronic devices. They integrate hetero-
geneous resources (processors, memories, devices, hardware
accelerators, etc.) interconnected by a shared bus (e.g. AXI
for Advanced eXtensible Interface).

Designing and exploiting such devices require specific tool-
ing, referred to as Computer-Aided Design (CAD) tools, that
aid in the creation, modification, analysis, or optimization of
a design. CAD processes and software have a long history
and are of the highest quality. They form a solid basis for
SoC implementation. However, they suffer from rigidity. This
problem has been identified since the early 2000s and efforts
have been made to remedy the situation. MBSE (Model-Based
System Engineering) offers a range of possibilities: Madeo [2]
provides a model along with a DSL to support exploration of
the SoC domain space. The MARTE standard [3] (Modeling
and Analysis of Real-Time and Embedded Systems) offers
a methodology for SoC co-design [4], with GASPARD [5]
as the SoC co-design environment to move from high-level
MARTE specifications to an executable platform. Teodorov
[6] has demonstrated regression-free inheritance refactoring
while offering additional debugging facilities, These works
bring new functionalities (exploration, debugging, automatic
generation), while preserving legacy compatibility. This ap-
proach is suitable when targeting SoC security-by-design for
two reasons. First, existing tools can be used to generate parts

of the SoC that are secure (known IPs such as network-on-chip
or custom IPs). Second, even if the complete SoC incorporates
untrusted third-party IPs, new tools can address specific needs,
including the addition of security mechanisms.

Although security requires a holistic approach, targeted
contributions are based on certain assumptions. For example,
Behani [7] demonstrated malicious tampering with AXI sig-
nals, and Gross [8] broke the TustZone mechanism, which had
a devastating impact on the SoC as a whole. However, when it
comes to focusing on incorporating untrusted third-party IPs
into the SoC, not all of these IP cores have passed extensive
integrity tests [9], so no security assumption can be made.
Still, both mechanisms (Bus, TrustZone) should be considered
correctly implemented.

Mal-Sarkar [10] and Jacob [11] demonstrated that third-
party IPs can allow attacks such as hardware Trojans and
malware that can be launched within any device using the
compromised IP. A use case is to compromise a SoC running
a secure update. Siddiqui [12] proposes an additional layer of
hardware security when a vulnerability is found and exploited,
which focuses on mitigating hardware trojans.

III. CONTRIBUTIONS

The SoC must be immune to single failure points and must
then contain an active response or mitigations for circum-
stances where a compromise occurs. The threat model consists
of one or more IPs that are malicious or misprogrammed
and attempt to perform transactions that violate the SoC
access control policy. Our solution is based on wrappers as
introduced by Siddiqui [12]. Unlike IPs, wrappers appear
as relatively simple white boxes, hence are supposed to be
immune to external non-physical attacks. Wrappers grant/deny
access to remote address ranges depending on the requester,
its world, and the requested operation (R/W). Compared to
[12], wrappers are not bounded to filtering-out malicious IPs
that alter the NS bit, but also cover broader use cases, as any
device, including hard or soft IPs (implemented on FPGAs), is
free to emit requests of his own. Such requests expose ID, trust
mode, R/W mode, and target address; destination wrappers are
responsible for reducing and ensuring system assets on the
hardware, based on predefined rules.

Wrappers also have to initiate procedures if malicious
activity is discovered, then in order to cope with new threats,
they should be easily extendable to incorporate new func-
tionalities. The deployment of new features (e.g. redundancy,
reallocation, etc.) or policies (e.g. performing collaborative
checks, preventing denial of service attacks) is beyond the
scope of this article.

A. System-on-Chip executable models

Capturing SoCs as executable models allows fast prototyp-
ing of both architectures and protection mechanisms thanks to
rich expressiveness and simulation. Such models are dual: on
the one hand, they offer an abstraction with pure concepts,
such as those expressed in UML (Figure 1), on the other

hand, they provide an executable platform for efficient exe-
cution, verification, scenario elicitation, and change tracking
for nonregression during refactoring. The automatic generation
of code from the executable model and the deployment of this
code directly as requirement conformance (within wrappers)
and compatibility tests (test-driven development), make the
process fast and reliable.

Fig. 1. Capturing the Security-oriented SoC domain as executable model

Embedded systems, including SoCs, exhibit both software
and hardware parts. The model takes both into account. The

right side of Figure 1 shows tasks composed of a sequence
of functions. Tasks communicate with each other through
local/remote read/write operations, with the potential for non-
determinism. The left side shows the hardware part, with an
architecture owning a bus plus several architectural elements
(Processors, IPs, Memories, . . .). These elements and the bus
are connected through wrappers. The wrappers know the rights
associated with their monitored devices (i.e., who can perform
what operation on what address range in what trust mode).

Supporting a gradation of abstraction levels arbitrates be-
tween simulation accuracy and computation time (e.g. the
different burst types as shown in Figure 2). The simplifica-
tion of the bus protocol (direct addressing of nodes, MMU-
based memory shifting, etc.) supports debugging of the node
implementation (mixed behavioral level validation). On the
contrary, serialized bursts totally reflect the binary information
that transits over the bus.

Finally, the scenario captures both dimensions of the model
and operates by invoking a simulator on the tasks. The scenario
also supports the exploration of the domain space using a para-
metric architecture and a pseudorandom distribution of tasks.
One given architecture is specified as an instance of the model.
Listing 1 illustrates a piece of an action language (Smalltalk
Pharo dialect [13]) code, which defines a simple architecture,
made up of a processor and a memory, interconnected via a
bus. During the architecture setup phase, the elements connect
to the bus. This results in creating a wrapper that will be
further in charge of rights management. The wrapper is the
only interface between the nodes and the bus that they both
reference. A wrapper has no ID but delegates all its incoming
requests to its node.

A task requesting remote access delegates it to its wrapper.
The wrapper generates a burst to be transmitted to the bus,
then over the bus. The bus dispatches the burst to the proper
destination wrapper. This wrapper is responsible for checking
the rights (see Section III-B) before serving the request.

Figure 2 represents as an activity diagram the sequence of
operations when receiving a burst. Three abstraction levels,
ranging from high-level to serialized bursts, are considered.
High-level bursts consist of a receiver, data and a relative
address at the receiver, as well as a mode (R/W) and a trust
mode (rich, secure, extended 1. . . n). In other words, these
bursts contain the elements of the model (arbitrary complex
data, real counterpart node, relative address instead of absolute
address). This makes it possible to avoid numerous decoding
operations, to easily visualize the content of the transmissions,
and to be able to quickly verify the correct operation of the
implemented mechanisms (rights, but also actual operations
at the receiver). Deserializing a binary stream goes through
slicing it into words based on the packet’s size, and then using
the first word to reconstruct a control packet. This packet
carries all the structural information to rebuild a low-level
burst. Then the following words are deserialized to rebuild
the data fragments.

architectureExample: grants

| architecture proc ip1 ip2 bus memory
read processedData |
architecture := TSArchitecture new.

bus := TSAXIBus name: 'AXI'
architecture: architecture.
proc := TSProcessor name:'Processor'
architecture: architecture addressSpace: 3000.
ip1 := TSIP name:'IP1'
architecture: architecture addressSpace: 256.
ip2 := TSIP name:'IP2'
architecture: architecture addressSpace: 256.
mem := TSMemory name:'RAM'
architecture: architecture addressSpace: 10000.

"Wrapper generation"
proc plugTo: bus mode:#master.
ip1 plugTo:bus mode:#master.
ip2 plugTo: bus.
memory plugTo:bus.

memory wrapper applyGrant: grants

ˆ architecture

Listing 1: Architecture representation as model instance cre-
ation

Fig. 2. Receiving high level, low level and serialized bursts

B. Security mechanism relying on rights management

When receiving the burst, the wrapper evaluates the security
policy and delegates the operation to its node - be the operation
legitimate. Figure 3 represents the sequence of operations
when a write request is initiated: delegation of the platform
on which the task is executed to the wrapper, invocation
of the bus by the wrapper, which transmits the data to the
appropriate destination wrapper. Then, two possibilities must
be considered: either the operation is granted, in which case
the target wrapper delegates to its device the execution of the
operation, or it filters the request. In both cases, a return burst
is emitted.

Rights are described as a dictionary whose associations
link a tuple consisting of (requestor ID, mode, trust mode)
to an address range. Authorization is granted if and only
if the address range allows the task running in the mode
(rich, secured, or an extended version of modes based on a
set of security flags) to perform the operation (read/write).
The absence of an entry in the dictionary means that there

Fig. 3. Write operation sequence

Algorithm 1: Rights management

∀(task,mode, trustMode,
−→
@)

∃!(task,mode, trustmode
−→
@) =⇒ REJECT

∪{
−−−−−−−−−−→
@right≥requested}∩

−−−−−−→
@requested =

−−−−−−→
@requested =⇒ OK

is no authorization. When it receives a request, a wrapper
compares it with the registered authorizations and either serves
the request or returns a missing-authorization warning.

The algorithm 1 summarizes how the decision is made.
Address ranges, denoted as

−→
@ support set operators ∪, ∩,

and ⊂.

Algorithm 2: Expressing the SR MEMORY2 rule:
Secure and non-secure application memory pages are
physically isolated from each other

∀(task,mode, trustmode), (task,mode, trustmode′){
∃(task,mode, trustmode,

−→
@A)

∃(task,mode, trustmode′,
−→
@B)

}
=⇒

−→
@A∩

−→
@B = ∅

Conforming to the security rules goes through deploying
authorizations accordingly, as illustrated in Algorithm 2 for
memory segregation. These rules are formulated as OCL [14]
code, the default language for expressing all types of (meta)
model query, manipulation, and specification requirements.
Listing 2 encodes the property of Algorithm 2.

Context Right Inv SR Memory2
Select (i | i key.task = self.key.task and
r.key.trustMode <> self.key.trustMode and
r.value = self.value) − > isEmpty

Listing 2: Encoding the SR MEMORY2 rule as OCL code

C. Simulation

Executable models can be easily simulated using a discrete-
event engine, which represents the operation of a system as a
list of events ordered by date [15]. Each event occurs at a given
time t and marks a state change in the system. Between two
consecutive events, no change occurs in the system; therefore,
the simulation time can jump directly to the timestamp of the
next event and then resume.

The tasks and respective duration δ are known; a task
is triggered as soon as all its predecessor tasks have been
completed. In the context of this work, events are model
activation: task start/stop, plus internal events (burst, dispatch,
permission checks, etc.). Starting a task generates its end as
a future event at t + δ, and triggers its associated action,
modeled as a closure that takes the platform on which the task
is running, as a parameter. Figure 3 provides an illustration in
which the values δ are reflected by rectangles of respective
height. The simulation loop ends when there are no more
pending tasks. The task graph can be reshaped at will, on the
fly, to add/remove dependencies (for example, adding ”virtual”
dependencies can be used to force sequential execution), mod-
ify task duration (including interactive change), define triggers
to stop execution on specific events such as rights violation,
and the simulation supports past snapshot restoration, to test
multiple execution paths.

Rules implement rights policies in wrappers, but also serve
as a basis for automatic test generation [16] via scenar-
ios, as illustrated by Listing 3. Tests are used to validate
compliance with the policy. As an example, Listing 4 illus-
trates the compliance check of the OCL code of Listing 2,
with isConsistent an atomic test ensuring non-overlapping
memory addresses. Compliance-oriented scenarios are pseudo-
generated and aim to find a counterexample that would identify
the violation of a rule. Scenario parameters are generated
randomly: topology, tasks, tasks’ implementation (IP, process),
events distribution (read/write), etc.Once generated, the sce-
nario is saved to be replayed again.

Determinism-oriented scenarios are based on a new ran-
domization step. They are derived from scenarios that do
not violate any property. A random mix of abstraction levels
(thanks to the M2M transformation) is used to run the same

scenarioExample: param
| arch proc ip1 ip2 bus mem data read pData |
"param is (@W1, @W2, @W3, grants)"
arch := TSArchitecture architectureExample:

param last.

data := (Array new:2000 withAll:1).

"arbitrary addressing"
ip1 write:(1 to:250) at: (param at:1).
ip1 write:(1000 to:1250) at: (param at:2).

read := proc read:
(TSAddressRange from: param at:1) +50 to:

(param at:2) + 200).

"Simple example here"
pData := (read collect:[:a| a *2]).
"arbitrary addressing"
proc write: pData at: (param at:3).
ˆarch

Listing 3: Parametric scenario definition

scenario repeatedly. Examples of distinct abstraction levels are
high-/low-level burst transactions, mock computation (XOR
vs. AES), etc. In addition, data are moved into new address
ranges, and all relative addresses are modified accordingly.

Faulty behavior means getting different results for variants
of the scenario. Such behaviors are detected through known
result assertion violation, as illustrated in Listing 5.

behavioralCompliance: param
| arch |
arch := TSArchitecture architectureExample:

param last.
self assert: (arch allDevices
reject:[:a| a wrapper rights

isConsistent not]) isEmpty.

Listing 4: Scenario compliance check

behavioralCompliance: grantedParameters
| arch |
arch := TSArchitecture scenarioExample:

grantedParameters.
self assert: (mem contents from: (param at:3)

to: (param at:3)+150=(2 to: 300 by:2).
self assert: (mem contents from: (param at:3)

+51...

Listing 5: Scenario behavioral check

IV. HARDWARE DESIGN

A. Wrappers

Wrappers serve as a firewall, filtering requests to IPs based
on a permissions table, as shown in Figure 4. The experiments
were conducted on a ZYBO (ZYnq BOard) platform [17], an
entry-level digital circuit and embedded software development
platform built around Xilinx Z-7010 [18]. Vivado Design

Fig. 4. Permissions table within a wrapper

Suite [19], from Xilinx, addresses productivity bottlenecks
in system-level integration and implementation. It provides
synthesis and analysis facilities of hardware description lan-
guage (HDL) designs, with features for system-on-a-chip
development and high-level synthesis.

Fig. 5. Low level of architecture (3 IPs + Bus)

Considering a commercial platform for prototyping pur-
poses brings additional complexityas some practical concerns
must be addressed. As an example, Figure 5 illustrates that
the AXI bus connecting the various IPs is separate from the
one associated with the processor. In the ZYBO platform the
processor is hardwired and connected to an AXI-3 bus. IPs
are synthesized on the FPGA, as is their bus, with an AXI-
4 version. Therefore, an AXI-3 to AXI-4 converter must be
inserted into the design. Adding this module has no meaning
from a conceptual point of view, but relates to low-level
platform-specific constraints.

B. Design

A first proof-of-concept has been implemented. Wrappers
have been added to the SoC nodes at design time, as shown
in Figure 5. Experiments have shown an average increase of
0.34% in terms of LUTs, and 0.1% in terms of registers, with-
out impact on frequency, over a set of five representative IPs.
The design has been specified using the Vivado graphical user
interface. In addition to being nonintuitive for nonspecialists
(e.g. computer scientists), a significant part of our target audi-
ence, such interfaces degrade productivity, still reflect users’
traditional way of doing things. Experiments demonstrated that
the wrappers adequately mitigated unauthorized access.

Hardware validation goes through three steps. First, we
need to make sure that the unprotected hardware is working
properly and that the processor is accessing the devices. This
validation is essential, as communication must pass through
the AXI-3 to AXI-4 converter in both directions. This check
is carried out by executing a C code that writes and then reads
back values (i.e., a simplified Listing 5-like mechanism). The
second step then consists of reproducing the same approach,
at a lower level of abstraction, by using a TCL code, as
illustrated in Listing 6 which describes a test comparing the
values written and read according to a burst. Last, if security-
based filtering is added, the burst operation can be allowed or
denied, as shown in Figure 5. For the sake of conciseness, the
corresponding test code is not provided in this article.

The experiments showed a strict equivalence between the
high-level executable model and the hardware implementa-
tion. However, adapting the hardware design demonstrated to
be time-consuming, and hence preserves from design space
exploration.

Test: S00_AXI
Create a burst write transaction at
s00_axi_addr address
create_hw_axi_txn w_s00_axi_addr [get_hw_axis
$jtag_axi_master] -type write -address
$s00_axi_addr -len 4 -data $wdata_2
-burst INCR

Create a burst read transaction at
s00_axi_addr address
create_hw_axi_txn r_s00_axi_addr [get_hw_axis
$jtag_axi_master] -type read -address
$s00_axi_addr -len 4 -burst INCR
Initiate transactions
run_hw_axi r_s00_axi_addr
run_hw_axi w_s00_axi_addr
run_hw_axi r_s00_axi_addr
set rdata_tmp [get_property

DATA [get_hw_axi_txn
r_s00_axi_addr]]
Compare read data
if { $rdata_tmp == $wdata_2 } {
puts "Data comparison test pass for - S00_AXI"
} else {
puts "Data comparison test fail for - S00_AXI,
expected-$wdata_2 actual-$rdata_tmp"
inc ec
}

Check error flag
if { $ec == 0 } {

puts "PTGEN_TEST: PASSED!"
} else {

puts "PTGEN_TEST: FAILED!"
}

Listing 6: Tcl Code for burst test

V. CONCLUSION

Effective hardware design requires specific skills and often
focuses on low-level implementation considerations. This can
be mitigated by providing a broader view of the whole process.

Fortunately, model-based engineering (MBE) helps capture the
expertise of hardware design while promoting a higher level of
abstraction. Two key points strengthen this need: first, rapidly
evolving security issues lead to short refactoring cycles, and
second, the high modularity of chip systems requires point-to-
point solutions combined with global composition. This work
emphasizes the need to master several levels of abstraction.
First, in modeling, we facilitate a detailed understanding of
the interactions between the elements while preserving agility
through transparent interoperability between these levels. MBE
is part of the solution, and targeted development, debugging,
and testing can take advantage of. When it comes to the
application of rights policies, this leads to real productiv-
ity gains. Designing complex rights policies requires ease
of specification, simulation facilities, and automatic property
validation prior to moving to implementation.

In this work, the Vivado tool was used for demonstration
purposes. It was used to design SoC nodes and wrappers.Then
to incorporate parts of HDL code from libraries and inter-
connect them. Among these codes, we obviously find the
wrapper code, which is secure by design. This hardware
demonstrator has been proven to fully conform to the high-
level model and to detect and prevent unauthorized access to
devices. The execution of models allowed us to expand the
testing by quickly exploring hardware topologies along with
the distribution of variable rights. This demonstrated that the
combined approach is valuable and viable.

This work opens up many perspectives. Modern commercial
EDA tools usually provide end-users with a framework for
application-specific customization. This aims at easy inter-
facing between general-purpose programming languages and
underlying circuit object models. Vivado takes advantage of
TCL, which offers an M2M transformation back-end process
to accelerate the synthesis of parametric SoC and allow defin-
ing scenarios. This work perspective also includes the interface
between LiteX from Enjoy-digital [20], a SoC builder/IP
library, and utilities to create SoCs and complete FPGA
designs. In addition to being open source and BSD-approved,
its unique feature is that all IP components are described using
Migen Python’s internal DSL, which simplifies its design in
depth. These two perspectives claim for code generation as an
enabler to either prototype or implement the model as HDL.
The application on the processor requires a C code, which [3]
will help generate. The work presented in this paper allows to
quickly prototype mitigation hardware mechanisms, but also
will, through M2M, support Vivado TCL, LiteX, and Marte
as backends to port global design to many technologies.

The agile methodology encourages consideringsimple cases,
before tackling realistic and complex cases. Accordingly, we
will validate the refinement of high-level abstractions against
hardware description language code, as well as the accuracy
of functional analyses. Once done, relevant measurements will
be available and flexible processes will be used to examine
increasingly complex and realistic cases. The objective of
measurement is productivity, i.e. the time difference between
designing a complex system by hand and modeling the same

system in our environment. Also is the ability to interrupt a
simulation, or even to go back in time and modify a parameter
to measure its impact. This refers both to the hardware
aspect (number of cores, heterogeneity, rights, reconfiguration,
cryptography facilities, etc.) and to attack scenarios; taking
these into account ensures that our protection mechanisms are
effective enough to prevent known threats across the platform
as a whole, as well as to prevent future threats, due to their
malleability and scalability. The changes we make require very
little hardware development time (e.g. rewriting wrappers).

REFERENCES

[1] arm.com, “Arm security technology : Building a secure system us-
ing trustzone® technology.” https://developer.arm.com/documentation/
PRD29-GENC-009492/. PRD29-GENC-009492C.

[2] L. Lagadec and B. Pottier, “Object-oriented meta tools for reconfigurable
architectures,” in Reconfigurable Technology: FPGAs for Computing and
Applications II, vol. 4212, pp. 69–79, 10 2000.

[3] omg.org, “About the uml profile for marte specification, version 1.2.”
https://www.omg.org/spec/MARTE/.

[4] I. Quadri, A. Gamatie, S. Meftali, j.-l. Dekeyser, H. Yu, and E. Rutten,
“Targeting reconfigurable fpga based socs using the marte uml profile:
from high abstraction levels to code generation,” International Journal
of Embedded Systems, vol. 4, 09 2010.

[5] R. Atitallah, P. Marquet, E. Piel, S. Meftali, S. Niar, A. Etien, j.-l.
Dekeyser, and P. Boulet, “Gaspard2: from marte to systemc simulation,”
Proceeedings of the DATE’08 workshop on Modeling and Analyzis of
Real-Time and Embedded Systems with the MARTE UML profile, 2008.

[6] C. Teodorov and L. Lagadec, “Model-driven physical-design automation
for fpgas: fast prototyping and legacy reuse,” Software: Practice and
Experience, vol. 44, 04 2014.

[7] E. M. Benhani, L. Bossuet, and A. Aubert, “The security of arm
trustzone in a fpga-based soc,” IEEE Transactions on computers, vol. 68,
no. 8, p. 1238–1248, 2019.

[8] M. Gross, N. Jacob, A. Zankl, and G. Sigl, “Breaking trustzone memory
isolation and secure boot through malicious hardware on a modern fpga-
soc,” Journal of Cryptographic Engineering, vol. 12, pp. 1–16, 06 2022.

[9] M. Banga and M. S. Hsiao, “Trusted rtl: Trojan detection methodology
in pre-silicon designs,” in 2010 IEEE international symposium on
hardware-oriented security and trust (HOST), pp. 56–59, IEEE, 2010.

[10] S. Mal-Sarkar, A. Krishna, A. Ghosh, and S. Bhunia, “Hardware trojan
attacks in fpga devices: threat analysis and effective counter measures,”
in Proceedings of the 24th Edition of the Great Lakes Symposium on
VLSI, pp. 287–292, 2014.

[11] N. Jacob, C. Rolfes, A. Zankl, J. Heyszl, and G. Sigl, “Compromising
fpga socs using malicious hardware blocks,” in Design, Automation &
Test in Europe Conference & Exhibition, pp. 1122–1127, IEEE, 2017.

[12] F. M. Siddiqui, M. Hagan, and S. Sezer, “Pro-active policing and policy
enforcement architecture for securing mpsocs,” 31st IEEE International
System-on-Chip Conference (SOCC), pp. 140–145, 2018.

[13] pharo consortium, “Pharo: The immersive programming experience.”
https://pharo.org.

[14] J. Cabot and M. Gogolla, Object Constraint Language (OCL): A
Definitive Guide, pp. 58–90. Springer Berlin Heidelberg, 2012.

[15] A. Goldberg and DavidRobson, Smalltalk-80: The Language and its
Implementation. Addison Wesley, 1983.

[16] B. Verhaeghe, N. Anquetil, S. Ducasse, and V. Blondeau, “Usage of tests
in an open-source community: A case study with pharo developers,”
Proceedings of the 12th edition of the International Workshop on
Smalltalk Technologies, 2017.

[17] Digilent, “Zybo Zynq-7000 ARM/FPGA SoC Trainer Board.” https://
digilent.com/reference/programmable-logic/zybo/start.

[18] Xilinx, “Zynq-7000 SoC Data Sheet: Overview.” https://docs.xilinx.com/
v/u/en-US/ds190-Zynq-7000-Overview.

[19] Xilinx, “Vivado.” https://www.xilinx.com/support/university/vivado.
html.

[20] F. Kermarrec, S. Bourdeauducq, H. Badier, and J.-C. Le Lann, “LiteX:
an open-source SoC builder and library based on Migen Python DSL,”
in OSDA 2019, colocated with Design Automation and Test in Europe,
(Florence, Italy), Mar. 2019.

