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ABSTRACT
Background: Microbial communities associated with macroorganisms might affect
host physiology and homeostasis. Bacteria are well studied in this context, but the
diversity of microeukaryotes, as well as covariations with bacterial communities,
remains almost unknown.
Methods: To study microeukaryotic communities associated with Planorbidae snails,
we developed a blocking primer to reduce amplification of host DNA during
metabarcoding analyses. Analyses of alpha and beta diversities were computed to
describe microeukaryotes and bacteria using metabarcoding of 18S and 16S rRNA
genes, respectively.
Results:Only three phyla (Amoebozoa, Opisthokonta and Alveolata) were dominant
for microeukaryotes. Bacteria were more diverse with five dominant phyla
(Proteobacteria, Bacteroidetes, Tenericutes, Planctomycetes and Actinobacteria).
The composition of microeukaryotes and bacteria were correlated for the
Biomphalaria glabrata species, but not for Planorbarius metidjensis. Network
analysis highlighted clusters of covarying taxa. Among them, several links might
reflect top-down control of bacterial populations by microeukaryotes, but also
possible competition between microeukaryotes having opposite distributions
(Lobosa and Ichthyosporea). The role of these taxa remains unknown, but we believe
that the blocking primer developed herein offers new possibilities to study the hidden
diversity of microeukaryotes within snail microbiota, and to shed light on their
underestimated interactions with bacteria and hosts.

Subjects Biodiversity, Microbiology
Keywords Holobiont, Microbiota, Metabarcoding, Blocking primer, Heterobranchia

INTRODUCTION
Interactions between micro- and macroorganisms are ubiquitous on Earth.
The composition of these microbial communities (hereafter named microbiota), although
dependent on environmental microbes, are mostly specific and distinct from the
environment even in aquatic organisms living in a highly connected and microbe-rich
environment (Dittami et al., 2021). Microbiota composition might thus be influenced
by environmental microbes, host genotype (Rohwer et al., 2002; Fraune & Bosch, 2007;

How to cite this article Clerissi C, Huot C, Portet A, Gourbal B, Toulza E. 2023. Covariation between microeukaryotes and bacteria
associated with Planorbidae snails. PeerJ 11:e16639 DOI 10.7717/peerj.16639

Submitted 3 August 2023
Accepted 19 November 2023
Published 19 December 2023

Corresponding author
Camille Clerissi,
camille.clerissi@ephe.sorbonne.fr

Academic editor
Michael LaMontagne

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj.16639

Copyright
2023 Clerissi et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.16639
mailto:camille.clerissi@�ephe.sorbonne.fr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.16639
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


Roterman et al., 2015; Brooks et al., 2016), but also by host metabolic state and diet
(Sommer & Bäckhed, 2013; Wang et al., 2014; Carmody et al., 2015).

Studies of hosts and their microbiota (associations called holobionts) mostly concerned
bacteria, but very few focused on microeukaryotes. Consequently, it is unclear whether
microeukaryotic communities also have specific associations with hosts, and whether
interactions exist between microeukaryotic and bacterial assemblages. Indeed, members of
both assemblages interact within biogeochemical cycles (Azam et al., 1983; Thingstad et al.,
2008), or might be linked through top-down control or competition (Raven, Finkel &
Irwin, 2005). Methodological issues mainly explain this lack of knowledge (Vestheim &
Jarman, 2008; Leray et al., 2013). Indeed, although the 16S rRNA gene is well suited to
metabarcoding surveys of bacterial communities, 18S rRNA primers mostly amplify the
abundant host DNA rather than microeukaryotic communities.

A set of non-metazoan primer set (UNonMet) was first developed to study parasite
diversity within metazoan samples (Bower et al., 2004). A recent in silico analysis revealed
that this primer set performed well to amplify most non-metazoan sequences (with less
effectiveness on Excavata and Archaeplastida) and exclude most metazoan sequences
(except for Cnidaria, Demospongiae, Hexactinellida, and Homoscleromporpha) (Clerissi
et al., 2020). However, the expected amplicon size (~600 bp) is not suitable for Illumina
MiSeq sequencing (2 × 300 bp maximum, requiring overlap between read pairs). The use
of nested PCR (i.e., two-step PCR that consists of amplifying a shorter amplicon after a first
PCR using the UNonMet primers) was thus proposed to tackle the amplicon size issue (del
Campo et al., 2019). An alternative strategy is to use a universal primer set targeting all
eukaryotes in combination with a blocking primer that specifically prevents amplification
of a single taxonomic group (the host). Blocking primers are modified with a Spacer C3
CPG (3 hydrocarbons) at the 3′-end, thus the elongation is prevented during PCR and the
targeted sequences are not amplified. Such an approach has the advantage of being very
specific (excluding only sequences similar to the blocking primer), and has proven to be
effective in the study of fish and krill gut contents (Vestheim & Jarman, 2008; Leray et al.,
2013), coral and oyster-associated microeukaryotes (Clerissi et al., 2018, 2020), and in the
removal of metazoa sequences from seawater community samples (Tan & Liu, 2018).

Hence, we developed a blocking primer to study microeukaryotes associated with
subtropical aquatic snails (Planorbidae), and to compare microeukaryotic and bacterial
assemblages. In particular, several Planorbidae are intermediate hosts of schistosomes,
parasitic trematodes infecting animals (including humans), and microbiota might play a
role in host-parasite interactions (Le Clec’h et al., 2022). Indeed, the presence of
microorganisms in the hemolymph of snails may impair or stimulate schistosome parasite
development. Planorbidae host very diverse bacterial communities (Ducklow, Clausen &
Mitchell, 1981; Van Horn et al., 2012; Silva et al., 2013; Portet et al., 2021), and host genetics
influence the structure of this microbiota (Allan et al., 2018; Huot et al., 2020). Several
bacterial pathogens were identified in Planorbidae, namely within Paenibacillus (Duval
et al., 2015) and Vibrio genera (Ducklow, Tarraza & Mitchell, 1980). The snail microbiota
appears involved in polysaccharide digestion and nitrate detox (Du et al., 2022).
In contrast, microeukaryotes associated with snails are not well studied. For example,
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Biomphalaria glabrata snails were found to harbor a eukaryotic symbiont belonging to
Filasterea, Capsaspora owczarzaki (Hertel, Loker & Bayne, 2002; Hertel et al., 2004;
Shalchian-Tabrizi et al., 2008), and it was demonstrated that snail eggs from the B. glabrata
species had antimicrobial activities against Oomycete infections (Baron et al., 2013).
However, the diversity of microeukaryotes associated with snails remained unknown
particularly at the community scale.

As a consequence, in this study we (i) describe microeukaryote diversity within
planorbid snails, and (ii) analyze covariations between microeukaryotes and bacterial
assemblages. Such analyses might help to identify important microbial partners of snails
and ecological interplays between microeukaryotes and bacteria within the Planorbidae
microbiota.

MATERIALS AND METHODS
Biological material
Five established laboratory populations of Planorbidae snails were used in this study
(Fig. 1): three populations of B. glabrata, two from Brazil (BgBAR and BgBRE) and one
experimentally selected for reduced compatibility to different S. mansoni parasite strains
(BgBS90) (Ittiprasert & Knight, 2012; Theron et al., 2014), a population of another
Planorbinae genus (Planorbarius metidjensis) (Kincaid-Smith et al., 2021), and a
population of a non-Planorbinae species (Bulinus truncatus) (Martínez-Ortí, Bargues &
Mas-Coma, 2015). All populations were reared in the same conditions and maintained
within water tanks of 8L at constant temperature of 26 �C. Snails were fed every 2 days with
lettuce and 50% of the water was renewed every week. Parts of the Materials and Methods
were previously published as part of Camille Huot’s PhD thesis (https://theses.hal.science/
tel-03506228/document).

Design of blocking primers for snails
Blocking primers were designed to block the host DNA amplification using 18SV4 primer
set (Table 1). Only sequences in the non-redundant (99%) Silva SSU database (release 128)
(Quast et al., 2013; Yilmaz et al., 2013) that matched with the 18SV4 primer set (one
mismatch was allowed because known sequences of some snails differed from one position
with this primer set) were used for subsequent analyses. Metazoa were removed from the
microeukaryote dataset, and a host database was also created keeping all sequences of
Heterobranchia species (mollusc sub-class that includes Planorbidae). The last 40
nucleotides of Heterobranchia, corresponding to the 3′-region of host amplicon including
the reverse primer, were aligned with the metazoan-free database using Muscle v3.8.31
(Edgar, 2004). Blocking primers were designed to overlap with this region. Entropy
decomposition (R package {otu2ot}, CalcEntropy seq) (Ramette & Buttigieg, 2014) was
used to check the alignment of nucleotides between both Heterobranchia and
microeukaryote databases. The diversity of Heterobranchia was particularly high at the 3′
region of host amplicons (Fig. S1), thus the Biomphalaria genus was targeted to design
blocking primer (28 bp) with a 10 bp overlap with the reverse primer, and a Tm similar to
the targeted primer set. The blocking primer was synthesized using a Spacer C3 CPG
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(3 hydrocarbons) at the 3′-end, to prevent the PCR elongation as previously described
(Vestheim & Jarman, 2008; Leray et al., 2013). For bacterial community analysis, we
targeted V3V4 region of the 16S rRNA gene using the 341F and 805R primer set (Table 1)
(Klindworth et al., 2013).

DNA extraction, PCR and sequencing
After collection of snail individuals, shells were cleaned with cotton buds soaked in bleach
(to avoid transfers of contaminants on snail body). Molluscs were then removed from the
shell by dissection and flash-frozen individually in liquid nitrogen before being stored at
−80 �C until DNA extraction.

DNA extraction was performed using the according to the manufacturer’s protocol
(“NucleoSpin tissue” kit, Macherey-Nagel, Allentown, PA, USA). To improve DNA
extractions, we performed an additional 30 s mechanical lysis using zirconium beads
(BioSpec, Bartlesville, OK, USA) and MagNA Lyser Instrument (Roche, Indianapolis, IN,
USA), before the 90 min enzymatic lysis in the presence of proteinase K. DNA
concentration and quality were checked with Epoch microplate spectrophotometer
(BioTek Instruments, Inc., Winooski, VT, US).

Then, the rRNA genes were amplified and sequenced using the 16S V3V4 region for
bacterial communities (Klindworth et al., 2013), and the 18S V4 region for eukaryotic
communities (Table 1) (Stoeck et al., 2010). The standard Illumina two-step protocol with
Fluidigm-indexed primers was used. Locus-specific PCR reactions were carried out on 1
mL of DNA extracts in a 25 µl volume with final concentrations of 0.4 µM of each PCR
primers, 0.02 U of the Qiagen HotStarTaq DNA Polymerase, 0.2 mM of the dNTP mix
and 1xTaq buffer. To reduce amplification of snail amplicons for 18SV4, tests to find the
best ratio of blocking primers were performed as previously described (Vestheim &
Jarman, 2008). We determined that 1.5:1 was the optimal ratio. Blocking primers were

Figure 1 Microbiota samples from three snail species. Full-size DOI: 10.7717/peerj.16639/fig-1
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added to the PCR mix at a final concentration of 1.2 µM. PCR cycling included an initial
incubation of 15 min at 96 �C followed by 35 cycles of 96 �C for 30 s, 52 �C for 30 s and
72 �C for 1 min, with a final 10 min incubation at 72 �C. After bead clean-up, the second
indexing PCR with Illumina Fluidigm primers was performed with 1 mL of a dilution of 1/
25 of the first PCR products and following manufacturer’s instructions. Library
construction and paired-end sequencing (250 bp read length) were performed at the
McGill University (Genome Quebec Innovation Centre, Montréal, Canada). Sequencing
was performed on the MiSeq system (Illumina, San Diego, CA, USA) using the v2
chemistry according to the manufacturer’s protocol. Raw sequence data are available in the
SRA database (accession number PRJNA554540 and PRJNA579897 for the 16S and 18S
datasets, respectively).

Sequence analyses
We used the FROGS pipeline (Find Rapidly OTU with Galaxy Solution) implemented into
a galaxy instance (https://vm-galaxy-prod.toulouse.inrae.fr/Galaxy_menu/galaxy-sigenae.
html) for sequence analysis (Escudié et al., 2017). Briefly, paired reads were merged using
FLASH (Magoč & Salzberg, 2011). After denoising and primer/adapter removal with
cutadapt (Martin, 2011), de novo clustering was done using SWARM with denoising and
aggregation distance d = 3 (Rognes et al., 2015). The SWARM algorithm uses iterative
single-linkage with a local clustering threshold (d). Chimera were removed using
VSEARCH (Rognes et al., 2016). We filtered the dataset for singletons and we annotated
Operational Taxonomic Units (OTU) using Blast+ against the Protist Ribosomal
Reference database (PR2) (Guillou et al., 2013) for microeukaryote sequences, and the Silva
database (release 123) for bacterial sequences.

Subsequent analyses were done using R v3.3.1 (R Development Core Team, 2008).
Rarefaction curves of species richness for microeukaryotes and bacteria were produced
using the {phyloseq} R package (McMurdie & Holmes, 2013) and the rarecurve function.
To compare samples for alpha and beta diversity, we only kept samples having at least
5,000 reads and we subsampled the dataset to this minimal value for all markers using the
rarefy_even_depth function. The alpha diversity metrics (Chao1 and Shannon) were
estimated at the OTU level with the estimate_richness function. Moreover, Pielou’s
measure of species evenness was computed using the diversity function in {vegan} (Dixon,
2003). We also used phyloseq to obtain abundances at different taxonomic ranks (from
genus to phylum) (tax_glom function).

Table 1 Primers used in this study.

Marker
region

Target Forward (5′->3′) Reverse (5′->3′) Blocking primer
(5′->3′)

Reference

18SV4 Eukaryota CCAGCASCYGC
GGTAATTCC

ACTTTCGTTCTT
GATYRA

TCTTGACTAATGAAA
ACATTCTTGACAA

Stoeck et al. (2010) and this study for the blocking
primer

16SV3V4 Bacteria CCTACGGGNGG
CWGCAG

GACTACHVGGG
TATCTAATCC

– Klindworth et al. (2013)
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Statistical analyses
Clustering methods were used to describe composition of microbial communities between
samples. Hierarchical clusterings (average linkages (hclust {stats})) of microbial
communities were computed using Bray-Curtis dissimilarities (vegdist {vegan}).
Clusterings of 18SV4 and 16SV3V4 were plotted face-to-face using the tanglegram
function {dentextend} (Galili, 2015) and the “sort = TRUE” option. Abundances of
microbial families associated with each sample were plotted against the clustering using the
heatmap.2 function and the {gplots} package.

We performed Student’s t-test (t.test {stats}) or non-parametric Wilcoxon test (wilcox.
test {stats}) (when normality was rejected with the Shapiro-Wilk test, (shapiro.test {stats}))
to compare alpha diversity metrics (Chao1, Pielou’s evenness and Shannon) between
18SV4 and 16SV3V4. Moreover, we tested the correlation between 18SV4 and 16SV3V4
for alpha diversity metrics using Spearman’s rho statistic (cor.test {stats}). The correlation
between microeukaryote and bacterial assemblages was tested (based on Bray-Curtis
dissimilarities) using the Mantel test (mantel {vegan}). Lastly, network analysis was
computed using the netConstruct and netAnalyze functions from the NetCoMi package
(Peschel et al., 2021), and the 25 more abundant OTUs from 18SV4 and 16SV3V4 datasets
with the following parameters: association measure, Spearman; normalization method,
CLR; threshold for sparsification, 0.3; clustering method, fast greedy modularity
optimization. Script and input files are available at https://osf.io/evu6x/.

Phylogenetic analyses
We computed BLASTn (Altschul et al., 1990) searches using microeukaryotic and bacterial
OTUs against the non-redundant nucleotide collection of NCBI. For each OTU, we kept
the first 100 hits and among them only sequences having host information in their
annotation. In addition to the OTUs of this study, one outgroup was added to each
alignment (16V3V4 and 18SV4BP). Sequences were aligned using MAFFT (default
parameters) (Katoh et al., 2002), and trimmed at each extremity. Poorly aligned and highly
variable regions of the alignment were automatically removed using Trimal (“automated1”
option) (Capella-Gutiérrez, Silla-Martínez & Gabaldón, 2009). Maximum likelihood (ML)
trees were computed with IQ-TREE v1.3.8 using the best model (selected with the Bayesian
information criterion) (HKY+G4 for microeukaryotes and TN+I+G4 for bacteria)
(Nguyen et al., 2014), and validated via an ultrafast bootstrap procedure with 1,000
replicates (Quang et al., 2013).

RESULTS
Design of a blocking primer to study microeukaryotes
A preliminary sequencing test was performed to describe microeukaryote communities
associated with a B. glabrata sample using the 18S rDNA V4 region (Table 1). However,
because this primer set was designed to amplify all eukaryotes (Stoeck et al., 2010),
B. glabrata amplicons were dominant (i.e., 81.4% of 2,445 sequences). To increase the
proportion of microeukaryote sequences, a blocking primer targeting the 18S V4 region
(hereafter named 18SV4BP) of the Biomphalaria genus was designed. To estimate the
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specificity of this blocking primer, we identified sequences of the Silva SSU database that
matched with both the primer set and the blocking primer (see Methods for more details).
About 75% of Biomphalaria amplicons were predicted to be removed using the blocking
primer (Table S1). Moreover, a very low proportion (<1%) of microeukaryote amplicons
might be targeted by this blocking primer (all were holozoans).

Using this blocking primer, we then amplified ribosomal gene fragments from three
Planorbidae species (B. glabrata (three different populations), P. metidjensis and
B. truncatus) (Fig. 1). On average, each sample had 20,668 (±12,577) host sequences, and
7,290 (±6,445) microeukaryote sequences (Table S2). Snails corresponded to 53% (±23%)
of the whole sequences, microeukaryotes represented 21% (±17%), and Embryophyceae
22% (±20%) (Fig. 2 and Table S2). The presence of Embryophyceae might be due to lettuce
feeding of snails.

Dominant microbiota associated with Planorbidae snails
We then compared microeukaryotes and bacterial assemblages using 18SV4BP (Table S3)
and 16SV3V4 (Table S4) datasets. Altogether, 13 samples were used for comparisons of
both datasets (Table S2). Indeed, in order to compute rigorous analyses, samples with less
than 5,000 microeukaryote sequences were removed from the dataset. Rarefaction curves

Figure 2 Proportion of sequences for 18SV4BP and 16SV3V4. (A) Sequences of Planorbidae, Embryophyceae, microeukaryotes and other
taxonomic groups are indicated for 18SV4BP. (B and C) Dominant phyla of snail-associated microbial communities using rarefied samples of
18SV4BP and 16SV3V4. Full-size DOI: 10.7717/peerj.16639/fig-2
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suggested that most tended to level-off, but also that rare microeukaryotes were not
captured using such a sequencing depth (Fig. S2).

In order to identify dominant taxa, we first studied microeukaryotes and bacteria at the
phylum level. Microeukaryotes were mainly represented by Amoebozoa, Opisthokonta
and Alveolata (Fig. 2B). Proteobacteria and Bacteroidetes were the most abundant bacteria
phyla with also high proportions of Tenericutes, Planctomycetes and Actinobacteria
(Fig. 2C). Secondly, we described the distribution of dominant taxa at the class level
(Fig. 3). This level was selected because the dominant microeukaryote had no precise
affiliation below this taxonomic rank. We found that Lobosa-G1 (Amoebozoa) and
Ichthyosporea (Opisthokonta) were the main microeukaryotes within snails, and that they
had opposite distributions. Indeed, while Ichthyosporea had high abundances in all BgBRE
individuals (except BgBRE-2), Lobosa-G1 showed high abundances in the other
samples. In contrast, Alphaproteobacteria, Betaproteobacteria, Flavobacteriia and
Gammaproteobacteria were common bacterial class within snail microbiota. Lastly, we
studied snail microbiota at the OTU level. In particular, we described the global structure
of microbial communities and the identity of dominant OTUs. OTUs for the bacterial
16SV3V4marker showed a more even structure than 18SV4BP (Fig. S3; values of evenness:
0.63 for 16SV3V4 and 0.23 for 18SV4BP, respectively), highlighting that the number of
dominant OTUs in bacterial microbiota were relatively higher than in microeukaryotes.
Accordingly, dominant OTUs (B_4, phylum: Tenericutes, class: Mollicutes) corresponded
to 12% of bacterial microbiota (Table S4). In contrast, dominant eukaryotic OTUs (M_7,
phylum: Amoebozoa, class: Lobosa-G1) represented 68% of the eukaryotic sequences
(Table S3).

Comparisons between microeukaryotic and bacterial communities
Then, we compared alpha and beta diversities of microeukaryotes and bacteria. All alpha
diversity indices (Chao1, Evenness and Shannon) of bacteria were higher than those of
microeukaryotes (p < 0.001) (Table 2 and Table S5). However, the correlation between
18SV4BP and 16SV3V4 datasets for alpha diversity indices revealed that microeukaryotic
and bacterial communities were not significantly correlated for any indices (Table 2).

Secondly, analyses of beta diversity showed that both communities displayed similar
patterns (Fig. 4), and that dissimilarities were significantly correlated (r = 0.81, p = 0.001,
Mantel test). At the intraspecific level, the correlation was only significant for B. glabrata
(r = 0.79, p = 0.001) and not for P. metidjensis (r = −0.17, p = 0.716).

Network analysis of microbiota within B. glabrata
Because Bray-Curtis dissimilarities between microeukaryotes and bacteria were
significantly correlated for B. glabrata, a network analysis was computed to describe OTU
covariations. (Fig. 5 and Table S6). Three clusters of microeukaryotes and bacteria were
identified using the NetComi package. Among them, M_31 (Alveolata,
Oligohymenophorea) was highly linked to B_70 (Verrucomicrobia, Verrucomicrobiae),
M_7 (Amoebozoa, Lobosa-G1) to B_20 (Actinobacteria, Actinobacteria), and M_17
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(Opisthokonta, Ichthyosporea) to B_39 (Proteobacteria, Alphaproteobacteria) according
to the association measure of the network (Table S6).

Phylogenetic analyses of abundant and covarying OTUs
Phylogenetic analyses were computed to describe the most abundant (at least 10% of
all sequences) microeukaryotes (M_7_Lobosa-G1 and M_10_Ichthyosporea) and
bacteria (B_4_Mollicutes and B_3_Flavobacteriia), as well as highly linked OTUs
identified using the network analysis (M_7_Lobosa-G1, M_17_Ichthyosporea,
M_31_Oligohymenophorea, B_20_Actinobacteria, B_39_Alphaproteobacteria and
B_70_Verrucomicrobiae). Nucleotide sequences of these OTUs were compared to the
nucleotide collection of NCBI using BLASTn (see Methods for more details), and
phylogenetic reconstructions were then computed using OTUs of this study and NCBI
sequences having host information in their annotation. For microeukaryotes,
M_7_Lobosa-G1 was related to uncultured eukaryotes and to strains belonging to the
Tubulinea class within the Lobosa division (Fig. 6 and Table S7). These sequences were
identified in Arthropoda, Echinodermata and fishes. M_31_Oligohymenophorea was close
to a strain of Rhabdostyla commensalis, previously identified in a polychaete.

Figure 3 Distribution of dominant snail-associated microbial communities at the class level. Clus-
tering was computed based on class abundances using Bray-Curtis dissimilarities and Spearman’s rho
correlation coefficient distances (average linkage method) for samples and taxa, respectively. The cor-
responding taxonomic group precedes class names (M for microeukaryotes and B for bacteria). Only
classes with a relative abundance above 4% in at least one sample are shown.

Full-size DOI: 10.7717/peerj.16639/fig-3
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M_10_Ichthyosporea and M_17_Ichthyosporea belonged to a cluster formed by
uncultured eukaryotes identified in Amphibia, Arthropoda, and fishes. For bacteria,
B_3_Flavobacteriia was close to a strain of Cloacibacterim haliotis found in another
Mollusca (Fig. 7). B_4_Mollicutes was linked to Mycoplasmataceae sequences identified in
Arthropoda, birds, Mammalia, plants and Porifera. M_31_Oligohymenophorea and
B_39_Alphaproteobacteria were similar to strains associated with fishes, Mycobacterium
syngnathidarum and Tabrizicola piscis, respectively. Lastly, B_70_Verrucomicrobiae was
near the sequence of a strain of Luteolibacter ambystomatis, previously identified in
Ambystoma andersoni, an amphibian.

Table 2 Comparison of alpha diversity indices between 18SV4BP and 16SV3V4.

Index Wilcoxon test Spearman’s rho correlation

Chao1 16SV3V4 (91; 0.0001221) -0.451 (0.122)

Evenness 16SV3V4 (91; 0.0001221) 0.225 (0.459)

Shannon 16SV3V4 (91; 0.0001221) 0.368 (0.217)

Note:
For Wilcoxon tests, “18SV4BP” and “16SV3V4” indicate which marker had significantly higher values, and numbers into
parentheses are V and p-values. For Spearman correlations, numbers are correlation coefficients (Spearman’s rho
statistic) and numbers into parentheses are p-values.

Figure 4 Clustering of microbial communities using 18SV4BP and 16SV3V4. Clustering were
computed using Bray-Curtis dissimilarities based on OTU abundances, and the average linkage method.
Each color corresponds to a snail population. The grey lines rely the same samples between 18SV4BP and
16SV3V4. Full-size DOI: 10.7717/peerj.16639/fig-4
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DISCUSSION
Efficiency of blocking primers
Various efficiencies were observed for the different samples using the designed blocking
primer. On average, host sequences still represented 53% (±23%, from 19 to 97%). Such
variations were already reported in previous studies (Vestheim & Jarman, 2008; Leray
et al., 2013; Clerissi et al., 2018). Moreover, this blocking primer targets the V4 region of
18S rRNA gene, which is commonly used for metabarcoding analyses (Stoeck et al., 2010;
Decelle et al., 2014; Massana et al., 2014; Hu et al., 2015; Giner et al., 2016; Piredda et al.,

Figure 5 Network analyses between dominant microeukaryotes and bacteria. The analysis was
computed using the first 25 most abundant OTUs of microeukaryotes and bacteria. The corresponding
taxonomic group precedes OTU numbers (M for microeukaryotes and B for bacteria). Three clusters of
covarying OTUs are colored in orange, yellow and red. Red and blue lines between OTUs indicate
positive or negative correlations, respectively. Line thickness highlights association strength. Dashed
circles indicate the best association within each cluster. Full-size DOI: 10.7717/peerj.16639/fig-5
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Figure 6 Maximum-likelihood phylogenetic tree of microeukaryotic sequences. The tree was rooted using B. glabrata. Numbers are ultrafast
bootstraps (%) reflecting clade support of the main nodes. Full-size DOI: 10.7717/peerj.16639/fig-6
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2017; Tragin et al., 2017), and thus it makes possible the comparison with diverse types of
samples already available in public databases.

Dominant taxa within Planorbidae snails
We identified dominant microeukaryotes and bacteria associated with snails at the level of
phylum, class and OTU. Although the amiboïd C. owczarzaki (Filasterea) was proposed to
be a eukaryotic symbiont of B. glabrata (Hertel, Loker & Bayne, 2002; Hertel et al., 2004),
we did not find related sequences in our dataset. The closest OTU was M_2647
(Opisthokonta, Choanoflagellatea) with 84% identity for this amplified region of the
18SV4 (blastn analysis against NCBI). This absence may not be linked to a PCR bias,
because the complete 18S rRNA sequence of C. owczarzaki ATCC_30864 (available on

Figure 7 Maximum-likelihood phylogenetic tree of bacterial sequences. The tree was rooted using an
archaeon. Numbers are ultrafast bootstraps (%) reflecting clade support of the main nodes.

Full-size DOI: 10.7717/peerj.16639/fig-7
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NCBI with the accession number XR_889844.1), contains the forward and reverse regions
of 18SV4 and is not targeted by the newly designed blocking primer.

In contrast, we found that Lobosa-G1 (Amoebozoa) and Ichthyosporea (Opisthokonta)
were the main taxa of microeukaryotes identified within snails when analyses were
computed at the class level (Fig. 3). Among Lobosa-G1, an OTU represented 68% of all
microeukaryotes (M_7_Lobosa-G1), and was close to NCBI sequences of the Tubulinea
class. Lobosa and Tubulinea include free-living and parasitic microeukaryotes
(Schnittger & Florin-Christensen, 2018;Walochnik, 2018), and are also known to favor the
multiplication of several animal pathogens infecting cattle (Kadlec, 1978), fishes (Dyková &
Lom, 2004), reptiles (Telford & Bursey, 2003), and humans (Fields et al., 1989; Kuchta et al.,
1993; Fields, 1996; Brieland et al., 1996; Horn et al., 2000).

Moreover, the Ichthyosporea class was also described as containing many pathogens of
amphibians, arthropods, birds, fishes, mammals and molluscs, but also mutualistic and
commensal strains found in the nutrient-rich digestive tract of healthy hosts (Beebee &
Wong, 1992; Glockling, Marshall & Gleason, 2013; Belda et al., 2017; Xiong et al., 2018;
Chan et al., 2021). However, little is known concerning their interactions with hosts and
their role in host homeostasis so far. In our study, the Ichthyosporea class was only
composed of the Anurofeca genus. Although this genus was already identified in
B. glabrata (Hertel et al., 2004) and might regulate anuran larval populations (Beebee &
Wong, 1992), their effect on snail population remains unknown. Because the
Ichthyosporea class contains several pathogens, future studies should decipher whether
Planorbidae might act as reservoirs of pathogenic strains infecting other metazoans.

Lastly, one bacterial OTU (B_4) from the Mollicutes class dominated snail bacterial
microbiota (Table S4). This class contains pathogens, but also mutualists and commensals
(Bolaños et al., 2019; Benedetti, Curreli & Zella, 2020). Links with Mollicutes were already
observed for many invertebrate hosts, such as other snails (Pawar et al., 2012), but also
chitons (Duperron et al., 2013), oysters (King et al., 2012; Fernandez-Piquer et al., 2012; de
Lorgeril et al., 2018; Pimentel et al., 2021), and arthropods (Fraune & Zimmer, 2008).
In particular, a recent study performed on oysters highlighted a high prevalence of
Mollicutes and also a potential genomic adaptation to host environment (Pimentel et al.,
2021). Moreover, a cophylogenetic analyses of Mollicutes and scorpions showed a pattern
of cospeciation (Bolaños et al., 2019). Both observations suggested specific interactions
between Mollicutes and their hosts.

To conclude, because all snails were healthy when microbiota were sampled, we
hypothesized that the dominant taxa identified in this study might be commensals or
mutualistic partners, although one cannot reject the hypothesis that they may be
opportunistic pathogens which will become virulent when conditions are favorable.

Significant correlation between microeukaryotic and bacterial
assemblages
Our analyses highlighted that microeukaryotic and bacterial assemblages were significantly
correlated based on community dissimilarity values for microbiota of B. glabrata
(Fig. 4). The significant link observed for B. glabrata might be related to host factors,
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environmental conditions, but also to ecological interplays between microeukaryotes and
bacteria. Indeed, members of both communities establish relationships for biogeochemical
cycles as described in free-living communities (Azam et al., 1983; Thingstad et al., 2008).
They could also be linked to top-down control or competition, because ciliates and
flagellates are known grazers of bacteria (Raven, Finkel & Irwin, 2005), and competition
exists between bacteria and microeukaryotes for nutrients (Thingstad et al., 2008). Grazers
such as amoeba might also contain various resistant microorganisms (bacteria and
viruses), and even play a role of melting pot for microbial evolution (Boyer et al., 2009;
Moliner, Fournier & Raoult, 2010).

Clusters of covarying taxa within Planorbidae snails
The description of clusters of covarying taxa may help to explain the significant correlation
observed between microeukaryotic and bacterial assemblages, and to better understand the
ecological interplays within microbiota.

First, opposite distribution was observed between Lobosa-G1 and Ichthyosporea at the
class level. No opposite distribution between these two taxa has ever been observed to the
best of our knowledge. This type of distribution might reflect competition, but also
bottom-up or top-down effects. However, we were not able to identify the most important
factors at this step. As a consequence, future studies should analyze additional snail
populations in various environments to explain the basis of this dichotomy.

Secondly, a network analysis computed at the OTU level highlighted three clusters
of covarying taxa (Fig. 5). Among them, M_31_Oligohymenophorea was highly
linked to B_70_Verrucomicrobiae, M_7_Lobosa-G1 to B_20_Actinobacteria, and
M_17_Ichthyosporea to B_39_Alphaproteobacteria. Phylogenetic analyses revealed that
M_31_Oligohymenophorea and B_70_Verrucomicrobiae were close to strains of
Rhabdostyla commensalis and Luteolibacter ambystomatis, respectively. Rhabdostyla
commensalis was isolated from the polychaete Salvatoria sp. (Lu et al., 2020). The relative
OTU identified in our study might be an epibiontic strain, because several peritrich ciliates
colonize snail shells (Sartini et al., 2018). Luteolibacter ambystomatis was isolated from a
skin lesion of the salamander Ambystoma andersoni (Busse et al., 2021), possibly due to a
bacterial infection, but the pathogenic nature of this strain was not tested. Although, no
interactions were reported between both species or genera before, we hypothesized that
top-down interactions might explain this link, because Rhabdostyla commensalis is a
ciliate, organisms known to graze on bacteria (Raven, Finkel & Irwin, 2005).

The interaction between M_7_Lobosa-G1 and B_20_Actinobacteria might reflect
top-down interactions, but also endosymbiotic relationships. Indeed, while
M_7_Lobosa-G1 was affiliated to the Lobosa division (Amoebozoa), the sequence of
B_20_Actinobacteria was close to a pathogenic strain of Mycobacterium syngnathidarum
(Fogelson et al., 2018). Because Mycobacterium can enter and replicate within amoeba
(Cirillo et al., 1997), it is likely that M_7_Lobosa-G1 favored the presence of
B_20_Actinobacteria by intracellular infections.

Lastly, the interaction between M_17_Ichthyosporea and B_39_Alphaproteobacteria
was more difficult to interpret. M_17_Ichthyosporea was affiliated to the Anurofeca genus
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(Opisthokonta, Ichthyosporea), and B_39_Alphaproteobacteria was a close to a strain of
Tabrizicola piscis isolated from the intestinal tract of the freshwater fish, Acheilognathus
koreensis (Han et al., 2020). We did not find studies that previously identified interactions
between these two taxa, and because all ichthyosporeans were isolated from metazoans, it
was considered that associations with animals were exclusive. However, several genera of
Ichthyosporea (Abeoforma, Anurofeca, Pseudoperkinsus) were identified using
environmental sequences (del Campo & Ruiz-Trillo, 2013), highlighting the lack of
knowledge concerning the ecology of this microeukaryotic class and that exclusive
interactions with metazoans were not mandatory.

As a consequence, in silico analysis of microbiota might shed light on putative
interactions, but such observations must be validated in future studies using additional
populations, environmental conditions, and microbiological culture methods.

Improvements and limitations
This first exploratory analysis of eukaryotic microbiota of Planorbidae snails performed at
the community level revealed the diversity of this understudied compartment as well as
correlations with bacterial microbiota. However, it also highlighted the necessity of
increasing the sequencing depth to study microeukaryotes when using this blocking
primer, because snails and Embryophyceae still represented high proportions of the
remaining sequences. This observation had notably an impact on the number of replicates
kept to compute alpha and beta diversity analyses in this study. In addition, batch and host
effects were confused here (Table S2). Although previous studies highlighted host effect for
bacterial microbiota composition of Planorbidae snails (Huot et al., 2020), it was difficult
to explain whether differential distribution was due to competition, bottom-up or
top-down factors.

CONCLUSIONS
We designed a blocking primer to describe eukaryotic microbiota from several snail
populations and to compare microeukaryotes with bacterial assemblages. Both types of
assemblages were correlated in this study for community dissimilarities within the
B. glabrata species. Future studies should test whether this link is due to host or
environmental factors, and if ecological interplays exist between microeukaryotes and
bacteria within snail microbiota. In particular, more snail populations and environmental
conditions will be necessary to describe the observed opposite distribution between Lobosa
and Ichthyosporea, but also to better understand the highlighted covariations between
OTUs.
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