Moez Krichen
email: moez.krichen@redcad.org

Exploring the Feasibility of Formal Methods in Machine Learning and Artificial Intelligence

Keywords: Formal Methods, Validation, Verification, Machine Learning, Data Preparation, Training, Support Vector Machines, Decision Tree Ensembles

This study investigates the application of formal methods in ensuring the accuracy and reliability of machine learning systems. Traditional formal approaches have proven effective in guaranteeing the correctness of both hardware and software systems. In this work, we specifically focus on the verification and validation of machine learning systems using state-of-the-art formal methods. To begin, we provide a concise overview of existing formal approaches, highlighting their significance and benefits. Subsequently, we delve into the specific formal methods that have been developed to validate the crucial stages of data preparation and training in machine learning systems. These methods aim to ensure that the input data is appropriately processed and that the training process produces accurate and reliable models. Moving forward, we explore formal methods employed for the comprehensive verification of machine learning systems. This involves considering both partial and exhaustive techniques to thoroughly evaluate system behavior and performance. Furthermore, we conduct a thorough examination of research works dedicated to verifying support vector machines and decision tree ensembles, as these are common machine learning algorithms with widespread applications. In conclusion, based on our findings, we propose several potential future directions for the formal verification of machine learning systems. These directions encompass areas such as the development of enhanced formal methods tailored to specific types of machine learning models, the integration of formal techniques into existing machine learning frameworks, and the exploration of techniques for handling the inherent uncertainty and complexity associated with machine learning systems. By pursuing these avenues, we aim to advance the field of formal verification and contribute to the trustworthy deployment of machine learning technologies.

I. INTRODUCTION

The development of software plays a crucial role in contemporary societies and is expected to grow in importance in the coming years. Software applications have become integral to various aspects of our lives, including managing financial transactions, monitoring power generation and distribution, facilitating transportation, organizing multimedia content, and enabling communication networks.

Software engineering involves the manual creation of a set of instructions that computers can execute. However, machine learning takes this process a step further by automating the generation of rules or instructions. Unlike traditional software development, where human intelligence is employed to design and implement a solution by writing precise instructions, data scientists who work with machine learning systems take a different approach [START_REF] Aworka | Agricultural decision system based on advanced machine learning models for yield prediction: Case of east african countries[END_REF], [START_REF] Saadio | Crops yield prediction based on machine learning models: Case of west african countries[END_REF], [START_REF] Krichen | Convolutional neural networks: A survey[END_REF], [START_REF] Krichen | Deep reinforcement learning[END_REF], [START_REF] Krichen | Generative adversarial networks[END_REF], [START_REF] Zidi | Theft detection dataset for benchmarking and machine learning based classification in a smart grid environment[END_REF]. Instead of explicitly programming a solution, they gather input data and desired output values and instruct the computer to find a program that can generate the corresponding outputs for the given inputs. Figure 1 provides a visual representation of the distinction between these two concepts.

In software engineering, developers utilize their expertise to design and construct programs that encompass a predefined set of rules and logic. Conversely, in machine learning, the focus is on enabling computers to learn patterns and make predictions based on available data, without explicitly prescribing the underlying rules. This shift from manual rule-writing to automated learning algorithms has opened up new possibilities for solving complex problems and handling large datasets.

Machine learning systems have proven to be highly effective in various domains, including image recognition, natural language processing, recommendation systems, and predictive analytics. By leveraging the power of machine learning, data scientists can develop models that autonomously learn from data, adapt to changing environments, and improve their performance over time.

Formal methods [START_REF] Gleirscher | New opportunities for integrated formal methods[END_REF], [START_REF] Gleirscher | Formal methods in dependable systems engineering: a survey of professionals from europe and north america[END_REF], [START_REF] Krichen | Model-based testing for real-time systems[END_REF], [START_REF] Krichen | Formal methods and validation techniques for ensuring automotive systems security[END_REF], [START_REF] Krichen | A survey on formal verification and validation techniques for internet of things[END_REF], [START_REF] Krichen | A modelbased approach to combine conformance and load tests: an ehealth case study[END_REF], [START_REF] Krichen | A formal testing model for operating room control system using internet of things[END_REF], [START_REF] Wang | Survey on learning-based formal methods: Taxonomy, applications and possible future directions[END_REF] encompass mathematical approaches that play a crucial role in specifying, constructing, and verifying both software and hardware systems. The foundation of formal methods lies in the utilization of mathematical representation, known as formal specification languages, to describe system properties precisely.

In Figure 2, we can observe the application of formal methods, where both the system under scrutiny and the desired requirements are translated into appropriate formal specification languages. These languages provide a structured and unambiguous representation of the system and its properties. Subsequently, formal techniques are employed to rigorously analyze and verify whether the mathematical depiction of the system complies with the specified properties.

The application of formal methods is beneficial throughout various stages of the development process for a wide range of systems [START_REF]Critical Systems: Formal Methods and Automated Verification -Joint 22nd International Workshop on Formal Methods for Industrial Critical Systems[END_REF]. These methods enable rigorous analysis and verification, addressing critical aspects such as safety, security, reliability, and correctness. Over time, formal methods have gained recognition and have started to be incorporated into industry standards. This highlights the growing acceptance and adoption of formal methods as a valuable tool to enhance the development and assurance of complex systems. By leveraging formal methods, developers and engineers can benefit from the ability to mathematically reason about system behavior, identify potential flaws or errors early in the design phase, and establish formal guarantees about system correctness. This ultimately leads to the production of more robust and dependable software and hardware systems.

This study aims to explore the application of formal meth-ods specifically in the context of machine learning systems [START_REF] Krichen | Are formal methods applicable to machine learning and artificial intelligence?[END_REF]. Our objective is to provide a concise yet comprehensive review that summarizes and analyzes the key techniques, findings, challenges, and potential future directions reported in the existing research dedicated to this subject. For readers seeking more in-depth information on this topic, we recommend referring to [START_REF] Urban | A review of formal methods applied to machine learning[END_REF].

The initial contributions in the literature addressing this topic were presented in [START_REF] Kurd | Establishing safety criteria for artificial neural networks[END_REF]. Subsequently, the majority of research efforts in this area have primarily focused on the formal verification of neural networks [START_REF] Gurney | An introduction to neural networks[END_REF] [3]. Interestingly, there has been a noticeable scarcity of research dedicated to applying formal methods to traditional machine learning models such as decision trees [START_REF] Robert E Banfield | A comparison of decision tree ensemble creation techniques[END_REF], random forests [START_REF] Breiman | Random forests[END_REF], and support vector machines [START_REF] Steinwart | Support vector machines[END_REF].

Moreover, when considering the classical machine learning cycle depicted in Figure 3, it is worth noting that the focus of formal methods experts has predominantly been on the verification of machine learning models that have already been trained. Comparatively less attention has been given to the earlier stages of the cycle, which involve data gathering, data preparation, data wrangling, data analysis, and model training.

To ensure the reliability, robustness, and fairness of machine learning systems, it is crucial to address all stages of the machine learning cycle using formal methods. By incorporating formal techniques into the earlier stages, such as data gathering and preparation, it becomes possible to identify and mitigate potential biases, inconsistencies, and errors in the input data. Additionally, applying formal methods to model training can enhance the understanding of the learning process, identify overfitting or underfitting issues, and improve generalization capabilities.

By expanding the application of formal methods to the entire machine learning cycle, we can establish a more comprehensive framework for the development and verification of machine learning systems. This holistic approach will contribute to the advancement of trustworthy and explainable machine learning technologies, with broader implications for various domains and applications.

The rest of this document is organized as follows:

• In Section II, we propose a brief overview about the different existing formal methods in the literature applied in different domains. • In Section III, we review the main research contributions concerning the the formal verification of the data preparation and model training phases (Figure 3). • In Section IV, we present the main results related to the formal verification of trained machine learning models presented as neural networks. • In Section V, we focus on the verification of Decision Tree Ensembles and Support Vector Machines. • In Section VI, we conclude the paper and list some possible future work extensions.

II. FORMAL METHODS

In this section, we present a concise overview of the main types of formal methods [START_REF] Gleirscher | Formal methods in dependable systems engineering: a survey of professionals from europe and north america[END_REF], [START_REF] Wang | Survey on learning-based formal methods: Taxonomy, applications and possible future directions[END_REF] that can be found in the literature, as depicted in Figure 4:

• Abstract Interpretation [START_REF] Cousot | Abstract interpretation based formal methods and future challenges[END_REF]: Abstract interpretation aims to verify a system at a high level of abstraction by neglecting irrelevant details. This approach formalizes the idea that an over-approximation of the system's behavior can provide valuable insights into its properties. The specification is then propagated through the program's source code using techniques such as weakest preconditions and symbolic execution, to verify its conformance to the desired properties. • Design by Refinement [START_REF] Burch | Modeling techniques in design-by-refinement methodologies[END_REF], [START_REF] Lano | The B language and method -a guide to practical formal development[END_REF]: Design by refinement is an approach that involves progressively refining a sequence of graphs, starting from an abstract model and gradually developing a concrete implementation. This iterative refinement process ensures that the final implementation satisfies the desired properties.

• Model-Based Testing [49]- [START_REF] Krichen | Contributions to model-based testing of dynamic and distributed real-time systems[END_REF], [START_REF] Krichen | Real-time testing with timed automata testers and coverage criteria[END_REF]- [START_REF] Krichen | Interesting properties of the real-time conformance relation tioco[END_REF]: Model-based testing involves extracting test scenarios from the formal specification of a system and executing them to validate its behavior. This approach helps ensure that the system behaves according to its formal requirements.

In addition, a collection of techniques aimed at optimizing the utilization of formal methods was proposed in [START_REF] Krichen | Improving formal verification and testing techniques for internet of things and smart cities[END_REF]. These techniques provide insights and strategies to enhance the efficiency and effectiveness of applying formal methods in practice. They address challenges such as scalability, complexity, and integration with existing development processes, contributing to the wider adoption and utilization of formal methods in various domains.

III. FORMAL METHODS FOR DATA PREPARATION AND MODEL TRAINING

Obviously, the first stages of the machine learning process (including data preparation) may be considered as the most fragile steps of the whole computation procedure. This is quite logical since the final results tightly depend on these early stages. In contrast, these initial steps are generally considerably neglected in terms of verification, testing and validation which may lead to critical errors and problems.

In our investigation, we have noticed that formal verification efforts dealing with this issue are very restricted. Indeed to the best of our knowledge, only the work presented in [START_REF] Urban | An abstract interpretation framework for input data usage[END_REF] concentrated on this aspect by proposing an abstract interpretation technique and a static analyzer which allow to detect unused input data.

The model training phase has been also suffering form the lack of attention from formal-methods experts. The few works which concentrated on this step mainly focused on the socalled robust training [START_REF] Moumen | Robust training of artificial feedforward neural networks[END_REF], [START_REF] Mirman | Differentiable abstract interpretation for provably robust neural networks[END_REF]. The latter corresponds to the fact of producing machine learning models which are enough robust against adversarial attacks.

Adversarial training methods reduce the worst-case loss to a minimum. They rely on quick techniques to produce adversarial inputs in a threat model and utilize them to enrich the training data [START_REF] Moosavi-Dezfooli | Deepfool: A simple and accurate method to fool deep neural networks[END_REF]. In most cases, this strategy has been experimentally proven to be effective against the most well known adversaries. The study [START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF] represents a significant accomplishment against the strong adversarial attack [START_REF] Carlini | David evaluating the robustness of neural networks[END_REF] for neural networks. Other methodologies dedicated for decision tree ensembles include the contributions of [START_REF] Calzavara | Adversarial training of gradient-boosted decision trees[END_REF], [START_REF] Kantchelian | Evasion and hardening of tree ensemble classifiers[END_REF]. These methodologies, while interesting, do not ensure that models are trained to be resistant to any form of adversarial disturbance around an input with respect to the threat model under consideration. To compensate for the lack of warranties, certified training methodologies aim to reduce the worst-case loss while ensuring robustness across all training inputs [START_REF] Hein | Formal guarantees on the robustness of a classifier against adversarial manipulation[END_REF], [START_REF] Hein | Provably robust boosted decision stumps and trees against adversarial attacks[END_REF].

IV. FORMAL METHODS FOR NEURAL NETWORKS

The majority of formal verification approaches reported in the literature have only applied to already trained machine learning models.

A. Partial Formal Methods

Partial formal verification techniques [START_REF] Easterbrook | Formal methods for verification and validation of partial specifications: A case study[END_REF] are verification techniques which are sound but not complete. That is when an error is detected then it corresponds really to a fault in the system. However, some faults in the system may remain undiscovered. These techniques are appropriate for large neural networks. For instance for neural networks with hundreds of neurons, they usually take only a few minutes. Next, we give some examples of tools and works developed in this context: • [START_REF] Yisrael Elboher | An abstraction-based framework for neural network verification[END_REF]: In this study, the authors considered neuralnetworks which are feed-forward (FFNN) [START_REF] Bebis | Feed-forward neural networks[END_REF] and performed refinements over abstractions using counterexamples for verification purposes.

• [START_REF] Xiang | Output reachable set estimation and verification for multilayer neural networks[END_REF]: The approach presented in this article proposed an approximation which is based on the combination of linear programming and simulations. The considered neural networks were feed-forward too.

• [START_REF] Wong | Provable defenses against adversarial examples via the convex outer adversarial polytope[END_REF]: This work focused on piecewise-linear-layers neural networks with perturbation w.r.t L p distances.

• [START_REF] Dvijotham | A dual approach to scalable verification of deep networks[END_REF]: This work adopted optimization techniques for checking safety properties of neural-networks which are feed-forward and without any restriction on the type of activations.

• [START_REF] Weng | Towards fast computation of certified robustness for relu networks[END_REF]: This contribution covered the case of neural networks which are both fully-connected and feed-forward.

• [START_REF] Ko | Popqorn: Quantifying robustness of recurrent neural networks[END_REF] (POPQORN): This tool was dedicated for the verification of recurrent neural networks (RNN) [START_REF] Medsker | Recurrent neural networks: design and applications[END_REF] (e.g., LTSM [START_REF] Hochreiter | Long short-term memory[END_REF] and GRU [START_REF] Dey | Gate-variants of gated recurrent unit (gru) neural networks[END_REF]).

• [START_REF] Boopathy | Cnn-cert: An efficient framework for certifying robustness of convolutional neural networks[END_REF] (CNN-Cert): This tool was adopted for the case of convolutional neural networks (CNN). • [START_REF] Zhang | Verification of recurrent neural networks for cognitive tasks via reachability analysis[END_REF]: This work was dedicated for Vanilla RNN networks. It aimed at the verification of safety properties. • [START_REF] Gopinath | Property inference for deep neural networks[END_REF]: This work concentrated on the inference of safety properties for the case of FFNN Networks.

B. Total Formal Methods

Total formal methods are both complete and sound. However, they are quite heavy and usually need to run for long periods of time even for medium size neural networks [START_REF] Davis | Study on the barriers to the industrial adoption of formal methods[END_REF] large. Different types of total formal verification exist, namely: SMT-based methods1 [START_REF] Barrett | Satisfiability modulo theories[END_REF], [START_REF] Monniaux | A survey of satisfiability modulo theory[END_REF] , MILP-based methods2 [START_REF] Jeffrey | Noncommercial software for mixed-integer linear programming[END_REF], [START_REF] Pablo | Mixed integer linear programming formulation techniques[END_REF], optimization-based methods, etc.

• [START_REF] Pulina | An abstraction-refinement approach to verification of artificial neural networks[END_REF]: In this work, the authors considered fully-connected FFNNs. The considered FFNNs were encoded as Boolean combinations of linear constraints. • [START_REF] Pulina | Challenging smt solvers to verify neural networks[END_REF]: Different SMT solvers were used in this study in order to deal with neural networks with larger sizes. The SMT solver "Yices" [START_REF] Dutertre | A fast linear-arithmetic solver for dpll (t)[END_REF] was the best choice among the considered solvers.

• [START_REF] Scheibler | Towards verification of artificial neural networks[END_REF]: In this work, the authors proposed a similar methodology to the previous work. They adopted bounded model checking for verification purposes.

• [START_REF] Ehlers | Formal verification of piece-wise linear feed-forward neural networks[END_REF]: This study was based on the use of SMT-solvers and efficient approximations for reducing the size of the search space. • [START_REF] Katz | Reluplex: An efficient smt solver for verifying deep neural networks[END_REF] (Reluplex): This tool was based on SMT techniques and on the well-known Simplex algorithm [START_REF] Nabli | An overview on the simplex algorithm[END_REF] in order to verify safety properties for fully-connected FFNNs. • [START_REF] Katz | The marabou framework for verification and analysis of deep neural networks[END_REF] (Marabou): This tool is similar to the previous one.

However, it is based on splitting the search space and a parallel execution mode.

• [START_REF] Bastani | Measuring neural net robustness with constraints[END_REF]: The authors of this paper presented a method for locating the closest adversarial instance, or the input that leads to an incorrect result using linear programming. • [START_REF] Huang | Safety verification of deep neural networks[END_REF]: In this work, the authors developed an alternative method for establishing local robustness to adversarial disturbances by demonstrating that no adversarial instances exist in the proximity of considered inputs.

• [START_REF] Narodytska | Verifying properties of binarized deep neural networks[END_REF]: The authors of this work focused on binarized neural networks (BNN) [START_REF] Chen | Binarized neural architecture search for efficient object recognition[END_REF], which are considered as a much better choice than classical FFNN networks in terms of memory efficiency.

• [START_REF] Cheng | Verification of binarized neural networks via inter-neuron factoring[END_REF]: The technique presented in this study was mainly based on the use of SAT solving tools and a specific hardware combinational. BNN networks were also the focus of this project.

• [START_REF] Cheng | Verification of binarized neural networks via inter-neuron factoring[END_REF]: This work was based on MILP techniques. The authors concentrated on developing adversarial cases and identifying neural network inputs that enhance the activation of some hidden neurons.

• [START_REF] Dutta | Output range analysis for deep feedforward neural networks[END_REF] (Sherlock): This verficiation tool was also based on MILP techniques and was dedicated for FFNN networks. • [START_REF] Dutta | Output range analysis for deep feedforward neural networks[END_REF] (MIPVerify): This MILP-based verification tool concentrates on identifying the closest adversarial instance w.r.p. to special distance metrics.

• [START_REF] Ruan | Reachability analysis of deep neural networks with provable guarantees[END_REF] (DeepGo): This tool is dedicated for Lipschitz continuous neural networks [START_REF] Lyu | Autoshufflenet: Learning permutation matrices via an exact lipschitz continuous penalty in deep convolutional neural networks[END_REF] and it is based on global optimization.

C. Asymptotically Total Methods

Other total verification techniques can be derived by asymptotically completing incomplete techniques.

• [START_REF] Wang | Formal security analysis of neural networks using symbolic intervals[END_REF] (ReluVal): This tool is based on an iterative refinement of the considered input domain of the considered neural network. • [START_REF] Tran | Parallelizable reachability analysis algorithms for feed-forward neural networks[END_REF]: In this work, the authors combine accurate and approximate techniques using bounded convex polyhedra for verifying FFNN networks. • [START_REF] Tran | Starbased reachability analysis of deep neural networks[END_REF]: In this study, an equivalent representation called star sets was adopted by the authors instead of bounded convex polyhedra.

• [START_REF] Tran | Verification of deep convolutional neural networks using imagestars[END_REF]: The authors of this paper defined the notion of image stars (a variant of star sets) for proving that the considered neural network is locally robust. V. FORMAL METHODS FOR DECISION TREE ENSEMBLES AND SUPPORT VECTOR MACHINES Decision Trees (DT) may be adopted for used for both regression and classification purposes [START_REF] Breiman | Classification and regression trees[END_REF], [START_REF] Buntine | Learning classification trees[END_REF]. Next, we give a brief overview on some research works which concentrated on the verification of decision trees:

• [START_REF] Einziger | Verifying robustness of gradient boosted models[END_REF] (VeriGB): This verification tool was dedicated for classification gradient boosted DTs. It was constructed on the basis of the Z3 tool [START_REF] De | Z3: An efficient smt solver[END_REF] and developed using SMT solving techniques. • [START_REF] Törnblom | Formal verification of inputoutput mappings of tree ensembles[END_REF] (VoTE): This tool is open-source and it is based on abstract interpretation and refinement techniques for the verification of gradient boosted DTs and Random Forests (RF) [START_REF] Törnblom | Formal verification of random forests in safety-critical applications[END_REF].

• [START_REF] Ranzato | Abstract interpretation of decision tree ensemble classifiers[END_REF] (Silva): This tool consists in instantiating the framework by means of domains of intervals [START_REF] Cousot | Static determination of dynamic properties of programs[END_REF]. The proposed methodology was shown to be both complete and sound for the considered class of DTs.

• [START_REF] Calzavara | Certifying decision trees against evasion attacks by program analysis[END_REF]: In this study, the authors proposed a methodology based on the conversion of the considered DTs and input perturbations into imperative programs and on abstract interpretation for analysing the obtained programs. The only verification approach for support vector machines (SVM) that we are aware of was presented in:

• [START_REF] Ranzato | Robustness verification of support vector machines[END_REF] (SAVer): This tool was developed for verifying that the considered SVMs are locally robust against adversarial disturbances.

VI. CONCLUSION

The key findings of our study are presented in Table I, where we summarize information about the fifty research works analyzed. For each work, we provide the reference, publication year, verified phase of the machine learning process, type of machine learning technique considered, validation technique employed, and, whenever available, the name of the tool used.

However, despite the progress made, the current state of the art indicates that the research community still has a long way to go in terms of validating the entire machine learning cycle and ensuring the safety and reliability of these techniques in contemporary critical applications.

Moving forward, we identify several promising research directions that can bring machine learning researchers closer to achieving this goal:

• Development of verification techniques that can trace the origins of data and detect data duplication. These techniques will enhance the transparency and accountability of machine learning systems by providing insights into the data sources and ensuring the integrity of the training datasets. and load balancing [START_REF] Jmal Maâlej | Automated significant load testing for ws-bpel compositions[END_REF]- [START_REF] Jmal Maâlej | Distributed and resource-aware load testing of ws-bpel compositions[END_REF]. These techniques involve verifying the neural networks during their execution, allowing for real-time monitoring and detection of potential security vulnerabilities or performance issues, ensuring the system's robustness and stability. • Consideration of security [START_REF] Krichen | Security challenges for drone communications: Possible threats, attacks and countermeasures[END_REF], [START_REF] Krichen | A new model-based framework for testing security of iot systems in smart cities using attack trees and price timed automata[END_REF] and load balancing aspects [START_REF] Jmal | A model based approach to combine load and functional tests for service oriented architectures[END_REF] during the execution of machine learning tools. This involves integrating verification mechanisms within the runtime environment of the machine learning system, enabling continuous validation and ensuring the system's adherence to security protocols and load distri-bution requirements. By pursuing these research directions, the machine learning community can make significant strides towards advancing the validation and safety assurance of machine learning systems, enabling their reliable deployment in critical applications.

Fig. 1 .

 1 Fig. 1. The difference between Classical Programming and Machine Learning.

Fig. 2 .

 2 Fig. 2. A simplified illustration of how Formals Methods work.

Fig. 3 .

 3 Fig. 3. Machine Learning Lifecycle.

Fig. 4 .

 4 Fig. 4. Different types of Formal Methods.

• [33]

 33 (AI 2): This tool is based on abstract interpretation. It is dedicated for neural networks and allows to check local robustness against adversarial perturbations.•[START_REF] Singh | Fast and effective robustness certification[END_REF] (DeepZ): This tool has specific abstract transformers and it is faster and more accurate than AI 2 . •[START_REF] Singh | An abstract domain for certifying neural networks[END_REF] (DeepPoly): The speed and accuracy of this tool are higher than those of Deepz. Concrete and symbolic bounds are associated with the considered neural network. •[START_REF] Singh | Beyond the single neuron convex barrier for neural network certification[END_REF] (k-ReLU): This framework is based of the idea of producing a more accurate approximation of the layers of the considered neural network. • [74]: This work attempted to improve the accuracy of the abstract-interpretation verification methodology by means of symbolic propagation. • [110] (Libra): This is an-open source framework which allows to classify the tabular data for specific classes of neural networks and to check their fairness. • [102]: This work considers other modes of activation and other more general types of abstract domains.

 •[START_REF] Tran | Nnv: The neural network verification tool for deep neural networks and learning-enabled cyber-physical systems[END_REF] (NNV): This open-source tool was developed on top of the Matlab framework for implementing the three previously mentioned approaches, namely: image stars, star sets and bounded convex polyhedra.•[START_REF] Bak | Improved geometric path enumeration for verifying relu neural networks[END_REF] (NNENUM): Various significant software enhancements have been made by the developers of this tool for improving the star sets-based methodology,. • [100] (RefineZono): This tool combines linear programming and abstract interpretation techniques in order to check whether the considered neural networks are locally robust w.r.t. adversarial disturbances.

TABLE I SUMMARY

 I (VTM=VERIFICATION OF TRAINED MODEL, PM=PARTIAL METHOD, TM=TOTAL METHOD, AND ATM=ASYMPTOTICALLY TM).

	#	Ref	Year	Validated Phase	Machine Learning Technique	Validation Technique	Tool Name
	1	[112] 2018	Data Preparation	All Machine Learning Techniques	Abstract Interpretation & Static Analysis	-
	2	[84]	2018	Model Training	Neural Networks	Differentiable Abstract Interpretation	DiffAI
	3	[86]	2016	Model Training	Deep Neural Networks	Iterative Linearization	DeepFool
	4	[82]	2017	Model Training	Neural Networks	Robust Optimization	-
	5	[44]	2016	Model Training	Tree Ensemble Classifiers	MILP & Symbolic Prediction	-
	6	[13]	2019	Model Training	Gradient-Boosted Decision Trees	Differentiable Approximations & Optimization	-
	7	[41]	2019	Model Training	Boosted Decision & Trees	Robust Optimization	-
	8	[40]	2017	Model Training	Kernel Methods & Neural Networks	Cross-Lipschitz Regularization	-
	9	[33]	2018	VTM	Neural Networks	Abstract Interpretation -PM	AI 2
	10	[99]	2018	VTM	Neural Networks	Abstract Transformers -PM	DeepZ
	11	[101] 2019	VTM	Neural Networks	Abstract Transformers -PM	DeepPoly
	12	[98]	2019	VTM	Neural Networks	Abstract Interpretation -PM	k-ReLU
	13	[74]	2019	VTM	Neural Networks	Symbolic Propagation -PM	-
	14	[110] 2020	VTM	Neural Networks	Abstract Interpretation -PM	Libra
	15	[102] 2020	VTM	Neural Networks	Abstract Domains and Activations -PM	-
	16	[32]	2020	VTM	Feed-Forward Neural Networks	Refinements over Abstractions -PM	-
	17	[118] 2018	VTM	Feed-Forward Neural Networks	Linear Programming and Simulations -PM	-
	18	[117] 2018	VTM	Piecewise-Linear-Layers Neural Networks	Approximation and Linear Programming -PM	-
	19	[27]	2018	VTM	Feed-Forward Neural Networks	Optimization -PM	-
	20	[116] 2018	VTM	Fully Connected FFNNs	Symbolic Linear Approximations -PM	-
	21	[47]	2019	VTM	Recurrent Neural Networks	Linear Functions -PM	POPQORN
	22	[7]	2019	VTM	Convolutional Neural Networks	Linear Bounding Techniques PM	CNN-Cert
	23	[119] 2020	VTM	Vanilla Recurrent Neural Networks	Reachability Analysis -PM	-
	24	[37]	2019	VTM	Feed-Forward Neural Networks	Iterative Relaxation of Decision Patterns -PM	-
	25	[92]	2010	VTM	Fully-Connected FFNNs	Boolean Combinations of Linear Constraints -TM	-
	26	[93]	2012	VTM	Neural Networks	SMT Solvers -TM	-
	27	[97]	2015	VTM	Neural Networks	Bounded Model-Checking -TM	-
	28	[29]	2017	VTM	Neural Networks	SMT-Solvers -TM	-
	29	[45]	2017	VTM	Neural Networks	SMT & Simplex Algorithm -TM	Reluplex
	30	[46]	2019	VTM	Neural Networks	Splitting Search Space & Parallel Execution -TM	Marabou
	31	[5]	2016	VTM	Neural Networks	Linear Programming -TM	-
	32	[43]	2017	VTM	Multi-Layer FFNNs	SMT Solvers -TM	-
	33	[89]	2018	VTM	Binarized Neural Networks	Boolean Representation & Satisfiability -TM	-
	34	[17]	2018	VTM	Binarized Neural Networks	SAT Solvers -TM	-
	35	[18]	2018	VTM	Neural Networks	MILP -TM	-
	36	[25]	2018	VTM	Feed-Forward Neural Networks	MILP -TM	Sherlock
	37	[26]	2018	VTM	Neural Networks	MILP -TM	MIPVerify
	38	[96]	2018	VTM	Lipschitz Continuous Neural Networks	Global Optimization -TM	DeepGo
	39	[115] 2018	VTM	Neural Networks	Iterative Refinement -ATM	ReluVal
	40	[108] 2019	VTM	Feed-Forward Neural Networks	Bounded Convex Polyhedra -ATM	-
	41	[107] 2019	VTM	Neural Networks	Star Sets -ATM	-
	42	[106] 2020	VTM	Neural Networks	Image Stars -ATM	-
	43	[109] 2020	VTM	Neural Networks	BC Polyhedra & Star Sets & Image Stars -ATM	NNV
	44	[2]	2020	VTM	Neural Networks	Star Sets -ATM	NNENUM
	45	[100] 2018	VTM	Neural Networks	Linear Programs & Abstract Interpretation -ATM	RefineZono
	46	[30]	2019	VTM	Gradient Boosted Decision Trees	SMT Solvers	VeriGB
	47	[105] 2020	VTM	Gradient Boosted Decision Trees	Abstract Interpretation and Refinement	VoTE
	48	[95]	2020	VTM	Decision Trees	Domains of Intervals	Silva
	49	[12]	2020	VTM	Decision Trees	Imperative Programs and Abstract Interpretation	-
	50	[94]	2019	VTM	Support Vector Machines	Standard Interval Domains	SAVer

SMT = Satisfiability Modulo Theory.

MILP = Mixed Integer Linear Programming.