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sn this rtileD we study nonExewtonin tokesErnsport systemF his set of his ws introdued s model for desriing the ehvior of loud of prtiles in suspension in tokes )uidD nd is nonliner oupling etween hyperoli eqution @rnsportA nd nonliner ellipti eqution @nonExewtonin tokesAD nd s suh n e onsidered s n tive slr equtionF e prove the existene of glol wek solutions with initil dt in ritil veesgue spesF sn order to overome the di0ulties introdued y the highly nonliner spet of this prolemD we resort to omintion of hiernEvions theory of trnsport equtions nd winty9s trik for ellipti equtionsF

1 Introduction he purpose of this pper is to study the existene of glol wek solutions of the following tokesErnsport system with nonExewtonin visosityX

@IA      ∂ t ρ + u • ∇ρ = 0 -div ν(ρ)|Du| p-2 Du + ∇π = ρg div(u) = 0.
sn the equtions oveD whih re set on the dEdimensionl torus T d with d ≥ 2D the unknown ρ(t, x) ∈ R is slr funtion whih @roughlyA represents density funtion of prtiles suspended in nonExewtonin )uidF he vetor quntity u(t, x) ∈ R d is the veloity (eld of the )uidD nd π(t, x) ∈ R is the pressure (eldF vet us speify tht the initil dt of the system is given y ρ 0 (x) ∈ RD nd tht we onsider throughout the rest of the rtile null men ssumption on the veloity (eldD i.e. 1 u = 0F pinllyD g ∈ R d is the @onstntA grvityD p > 1 is (xed prmeter nd ν : R -→ R + is given ontinuous funtion whih is loud to degenerte t zeroD nmely one n hve ν(0) = 0F rere nd heneforthD we denote y Du the strin rte tensorD whih is the mtrix de(ned y [Du] ij = 1 2 (∂ i u j + ∂ j u i )F rolem @IA ppers in the mthemtil desription of prtiles suspended in )uidF es suhD it is nonExewtonin lterntive of the usul tokesErnsport system @PA      ∂ t ρ + u • ∇ρ = 0 -∆u + ∇π = ρg div(u) = 0, whih ws derived from mirosopi models y röfer QS nd weheret RS nd orresponds to @IA when tking p = 2 nd ν(r) ≡ 1F st hs lso een present in the physil literture s ontinuum model for sedimenttionD see PV nd the referenes in QSF hile we will give more detil in the rest of the introdutionD lredy we point out tht prolem @PA hs een intensively studied y mthemtiins in the pst (ve yersD s di'erent uthors hve een exploring questions reltedD for exmpleD to wellEposedness RID RUD ITD ontrollility or regulrity of prtile trjetories RUD or stility of strti(ed equiliri IWF sn dditionD it should e noted tht prolem @IA elongs to lss of his lled tive slr equtions @e.g. generlized q equtionsAD whih is urrently under deep srutiny @see the disussion elowAF es we will seeD the study of the nonExewtonin generliztion @IAD whih we elieve to e new in the mthemtil litertureD presents some dditionl di0ulties in omprison with the usul tokesErnsport system @PAD due to the ft tht the leding order terms in the seond eqution re nonlinerF his will e re)eted in the ft tht the methods we use in this rtile to onstrut solutions re entirely di'erent from those used in previous works for @PAD nd re muh more involvedF sn dditionD the introdution of visosity multiplier ν(r) tht is loud to degenerte t zero ν(0) = 0 lso omplites mttersF sn the rest of this introdutionD we will strt y shortly desriing the physil kground of the hi system @IAD efore disussing previous works on the @xewtoninA tokesErnsport equtions @PA nd relted hisF pinllyD we will stte nd omment our min resultD onerning the existene of glol wek solutions for @IAF 1.1

Physics of the Problem vet us strt y desriing the physil prolem from whih system @IA origintesF e onsider n inompressile nonExewtonin )uid of onstnt density ρ > 0D inside whih lie suspended prtiles distriuted ording to the density funtion µ = ρ + ρF yn the one hndD the prtiles re ssumed to e without inertiD so tht they re simply trnsported y the )uid veloityF his gives (rst reltion

∂ t µ + u • ∇µ = 0,
whih is equivlent to the (rst eqution in @IAF yn the other hndD the )uid veloity is ssumed to evolve muh slower thn the prtile densityD so it is governed y tokes eqution

-div S[ρ, u] + ∇P = µg div(u) = 0,
where P is the pressure inside the )uidF xote tht µ n e repled y ρ up to repling the pressure P y the quntity π(t, 1 We will only consider the case of a simple uid, where the shear rate γ and strain rate Du tensors are equal. We refer to the classical textbook [53] for more on this topic. P where δ ∈ {0, 1} nd p > 1F yur model @IA overs the se where S[ρ, u] is multiple of power of the strin rteX @RA S[ρ, u] = ν(ρ)|Du| p-2 Du, where p > 1 is given s prmeter of the )uidF pixing ν ≡ 1 in @QA for simpliityD we oserve tht ν dereses s |Du| inreses when 1 < p < 2D nd inreses s funtion of the growth of |Du| when p > 2F hese two visosity regimes re referred to s sherEthinning nd sherEthikening ehvior respetivelyD nd over mny physilly interesting sesF ixmples of sherEthinning )uids inlude iologil )uids suh s loodD mixtures from the food industry suh s kethup or myonniseD or mixtures used in the petrohemil industry suh s pints or ementF es fr s sherEthikening )uids re onernedD onsiderD for exmpleD slightly diluted queous solution of ornstrhD or mny olloidl suspensionsF yur model is formlly 2 ssoited with dilute loud of inertiless prtiles suspended in nonExewtonin )uid following lw of the form @RAD whih we ll n ystwldEheele or powerEtype lwF uh visosity lw holds for lrge numer of )uidsD typilly loodD whih is sherEthinningD or suspensions of sili prtiles in polyethylene glyolD whih exhiit sherE thikening ehvior @see e.g. IID RVD SIAF uite oftenD nonExewtonin )uids re in ft themselves suspensions of prtiles in xewE tonin )uidD nd the presene of the prtiles onfer nonExewtonin properties to the mixture through their mirosopi intertionF por exmpleD lood is suspension of erythroytes @i.e. red lood ellsA in lood plsm @see e.g. QWD RPAD whih is xewtonin )uid @nd lso suspension of vrious prtiles suh s proteinsD etFAF vikewiseD polyethylene glyol in the exmple ove is xewtonin )uidD while suspensions of sili prtiles therein re notF gonsequentlyD possile interprettion of our model is to onsider the suspension of @lrgerA prtiles in nonExewtonin )uidD whih my therefore eD for exmpleD suspension of @smllerA prtiles in xewtonin )uidD ut whose presene is estlished in suh wy tht the intertions of these prtiles with eh other do not in)uene the glol visosity of the suspensionD i.e. the mirosopi intertions they indue @n her ls or fohr foresA re negligileF 1.2

Overview of Previous Results on Related Systems sn this prgrphD we ondut survey of the mthemtil literture on the di'erent topis relted to our resultF 1.2.1 Stokes-Transport Equations es we hve sid oveD the tokesErnsport system @PA ws (rst derived from mirosopi priniE ples y röfer QS nd weheret RSF vterD röfer nd huert QT derived tokesErnsport system when tking into ount the iinstein e'etive visosity of the suspended prtilesF his leds to visous strin tensor tht depends on the prtile density through

S[ρ, u] = ν(ρ)Du,
where ν is slr funtionF xote tht this orrespondsD in the se p = 2D to the visosity lw @RAF es mentioned in the previous susetionD this nD for exmpleD desrie lood plsm s suspension of dilute prtiles whose mirosopi intertions re smll or negligileF roweverD the tokesErnsport system with fully nonExewtonin visosity @i.e. depending nonlinerly on DuA isD to the est of our knowledgeD new in the mthemtil litertureF he wellEposedness issue for the tokesErnsport system @PA hs een studied y numerous uthorsF elong with the derivtion of the equtionsD the uthors of QS nd QT lso show wellE posedness in high regulrity spesF ixistene nd uniqueness in the spe L 1 (R 3 ) ∩ L ∞ (R 3 ) under (nite moment ondition hs susequently een proved y weheret in RTF e similr result ws otined y velond in RI when the equtions re set in ounded domin of R 2 or R 3 F st should e noted tht the se of two dimensions of spe retes di0ultiesD s the ellipti tokes prolem @SA -∆u + ∇π = ρg div(u) = 0

is not wellEposed on the whole spe R 2 F his is due to integrility issuesD s the inverse mp ρ → uD whose ehvior is losely relted of the inverse vplin (-∆) -1 D nturlly sends L 1 to the spe of funtions of founded wen ysilltions BMOD whih re de(ned up to the ddition of onstntF his phenomenon is known s the tokes prdoxF xeverthelessD some results re ville in two dimensionsF velond RI hs proved the existene nd uniqueness of solutions in the strip R×]0, 1[ for ounded initil dt while qryer QQ hs done so in the whole spe R 2 for ounded nd omptly supported initil dt ρ 0 F he (rst uthor IT hs lso shown wellE posedness in R 2 for initil densities ρ 0 in the homogeneous fesov spes Ḃ0 1,1 ∩ Ḃ0 2,1 @in prtiulrD ρ 0 is of zero vergeAF feuse the inverse tokes mp u = Ψ(ρ) solving @SA ehves essentilly s the inverse vple opertor @it n in ft e written s Ψ(ρ) = (-∆) -1 P(ρg)D where P is the very projetionAD it is pprent tht the spe L 1 (R 3 ) ∩ L ∞ (R 3 ) is not optiml for solving @PAF sndeedD the trnsport struture suggests tht it is enough for the veloity to e @vogAEvipshitz to otin uniqueness of solutionsD while the Qh tokes mp Ψ sends L ∞ to C 2-ϵ ⊊ W 1,∞ F gonsequentlyD weheret nd ueur RU hve shown glol existene nd uniqueness for @PA in the ritil spe L 1 (R 3 ) ∩ L 3 (R 3 ) y using sserstein distne W 1 F fy iulerin tehniquesD the (rst uthor of the present pper hs lso proved IT n nlogous ritil wellEposedness result for system with frtionl visosityF pinllyD the existene of @possilyA nonEunique vgrngin solutions with L 1 (R 3 ) initil dt hs een shown y snversi in QUF wny rtiles hve lso een written onerning the qulittive desription of solutionsF por exmpleD following pper of ilgindi PS on the invisid snompressile orous wedi @swA equtions @whih hs omprle strutureA hlirdD quillod nd velond IW hve explored the long time ehvior of solutions in horizontl hnnel for initil dt tht re lose to linerly strti(ed equiliriumD whih involves some mixing e'etsF th solutionsD of the form ρ(t) = 1 Ω(t) hve lso een studied y weheret RT nd qryer QQF ueur nd weheret RU study the ext ontrollility of the system s well s the nlytiity of prtile trjetoriesF 1.2.2 Active Scalar Equations es previously mentionedD the @nonAExewtonin tokesErnsport system is prtiulr se of very generl lss of his lled tive slr equtionsF hese re slr trnsport @or trnsportE di'usionA equtions ssoited to veloity (eld tht is given s funtion of the slr unknownF sn generlD these his tke the form

∂ t ρ + u • ∇ρ = 0 u = T (ρ),
where T is possily nonliner nd nonElol mp nd in whih we rell tht we impliitly onsider n initil dtum ρ 0 F sn our seD T = Ψ is the inverse tokes mpF yther ses inlude urfe R usiEqeostrophi equtions @qA set on R 2 nd where T is given y

u = T (ρ) := -∇ ⊥ (-∆) -β/2 ρ
for some β ∈]0, 2]F his system is minly used to model the dynmis of the temperture in the tmosphereF sn the se β = 2D the q equtions redue to the Ph iuler system in vortiity formF he q eqution hve eenD nd ontinue to eD the ojet of intense ttention y mthemtiinsD nd it is impossile for us here to give deent piture of the litertureF e will simply sy tht the opertor T = -∇ ⊥ (-∆) -β/2 is skewEsymmetriD nd so retes ommuttor struture in the energy estimtesD thus enling solutions to exists even when the veloity (eld is less regulr thn the slr unknown β < 1F his ft ws disovered y esnik RW nd exploited to onstrut wek solutions @see lso wrhnd RRAF vol wellEposedness hs lso een otined y using the ommuttor struture y gheD gonstntinD górdoD qnedoo nd u IQF e point out tht this ommuttor struture is solutely ruil to wellEposedness when β < 1D s shown in the work of priedlnderD qnedoD un nd iol QH where illEposedness is shown for singulr sw equtionD for whih the opertor T is symmetriF yther tive slr equtions inlude the furgers eqution T (ρ) = ρD the rmiltonEtoi eqution or the invisid sw equtionD whih is of speil interest to us euse of its proximity to the tokesErnsport systemX the veloity u = T (ρ) is given y hry9s lw

u + ∇π = ρg div(u) = 0.
he question of glol wellEposedness for the sw equtions is hllenging in the extremeF ilgindi PS hs proven the existene of glol regulr solutions ner linerly strti(ed equilirium @see lso gstroD górdo nd ver IPAD while the (rst uthor of the present rtile hs proved lol wellEposedness in optiml fesov spes ITF 1.2.3 Non-Newtonian Fluids sn roder ontextD severl results hve een estlished onerning nonExewtonin )ows sine the IWTHsF he mthemtil nlysis of powerElw type )owsD minly in the se of homogeneous )uidsD ws (rst initited y vdyzhensky RHD nd tFvF vions QVF sn this seD we minly onsider qusiliner proli systems of the form

@TA ∂ t u + (u • ∇)u -div S[u] + ∇π = f div(u) = 0,
with some oundry onditionsD nd where the visous stress tensor is ssoited with visosity of the type @QA for onstnt ρF st is then possile to show the existene of glol wek solutions for prmeter p > 2d/(d + 2)D we refer for exmple to the work of hieningD •zikD nd olf PP s well s fulíekD qwizdD wálekD nd wierzewskEqwizd W for the homogeneous se @onstnt densityAD or prehse nd •zik QI for the nonEhomogeneous one @nonEonstnt densityAF et this pointD it is importnt to point out tht the role of the prmeter p > 1 plys key role in the mthemtil nlysis of suh modelsF pirstlyD when the )uid is su0iently sherE thikeningD i.e. when p > 2 is lrge enoughD it is possile to show the existene nd uniqueness of glol strong solutionsD we minly refer to the work of wálekD xesD nd •zik RQ @see lso QVAF sn the more generl se where the inequlity p > 2 is not ssumedD prolem @TA my exhiit pthologil ehviorF hile it is priori possile to show the existene of wek solutions for p > 1D note tht energy solutions @i.e. of the veryEropf typeA n e nonEunique ording to S the work of furzkD wodenD nd zékelyhidi IH for 1 < p < 2d/(d + 2)D whih orresponds to the limiting se of the emedding W 1,p → L 2 F roweverD in the sene of onvetive termD one expets the existene of good energy solutions from the work of ferselli nd •zik T t lest on wellEhosen domins @see lso the work of qwizdD wierzewskEqwizd nd rólewsk QRAF xote tht even the ellipti pEvplin prolem is illEposed @solutions my e nonEuniqueAF por exmpleD golomo nd ione IV show nonEuniqueness when the domin does not stisfy suitle one ondition over the wek derivtivesF st lso remins possile to show the existene of lol strong solutions for @TA s proved in the work of ferselliD hiening nd •zik R s well s emnn9s PF hespite these di0ultiesD other properties pper when 1 < p < 2F por exmpleD it is possile to show tht the energy ssoited with the )ow stops in (nite time @see the work of ghupinD gîndeD nd the seond uthor of the present rtile in IRAF hese results re lso vlid for the proli pEvplin ording to the work of hifenedetto @see PIAF sn prtiulrD this mkes it possile to estlish glol ext ontrollility properties @see the work of gînde nd the seond uthor of the present rtile ISAF vet us fous gin on the tokesErnsport system @IAF sn ontrst with @TAD prolem @IA is oupled hyperoliEellipti systemD the ellipti prt of whih is tokes system with nonliner visosity oe0ientF fy itselfD the ellipti prolem hs lredy een intensively studiedX ferselli nd •zik SD U hve exmined the existene nd regulrity of wek solutionsF yne of the di0ulties rising from the nonliner nture of the tokes system present in @IA is to tke oupling into ount when estlishing wek solutionsD whih then omes down to showing tht the mpping whih ssoites the density with the veloity (eldD whih we shll refer s the inverse tokes mppingD is ontinuous in suitle topologyF pinllyD let us oserve two ftsF fy onsidering (nite numer of prtiles s rigid odies immersed in suh )uidD it is possile to show the existene of suitle wek solutions for oupled )uidEprtile intertionF e refer to the work of peireislD rilliretD nd xesová PU estlished in su0iently sherEthikening frme given y p ≥ 4F st is lso worth to mention the rtile of trovoitov SPD who showed the sene of ollision etween rigid odies immersed in the )uidF roweverD our model @IAD whih is formlly ontinuum limit of immersed prtiles suspended in powerElw type )uidD hs not yet een studied in the mthemtil litertureF eondlyD let us point out thtD for the ske of simpliityD we study the prolem @IA on the dEdimensionl torus T d F his hs the doule dvntge of working on ompt domin while retining the possiility to resort to pourier nlysis @nd in prtiulr vittlewoodEley theory nd prdi'erentil lulusAF st should e noted tht the nlysis of nonExewtonin )ows is often rried out within suh frmeworkD s in the work of etiello nd peireisl ID lthough generliztion to ounded domins of R d follows from minor modi(tionsF e expet this to lso e the se for our prolemF 1.3 Main Result sn this prgrphD we omment on the min di0ulties linked to the question of existene of solutions for @IAF e then stte our min resultX the existene of glol wek solutionsF pinllyD we give short overview of the methods used in our proofF 1.3.1 Principal Diculties in the Problem es we hve explined in the survey of the mthemtil literture relted to the tokesErnsport prolem oveD reserh hs essentilly een onerned with the se of xewtonin )uids @PAF st should e pointed out tht the nonExewtonin system @IA is expeted to ehve very di'erentlyX T this is due to the ft tht the nonExewtonin tokes prolem @UA -div ν(ρ)|Du| p-2 Du + ∇π = ρg div(u) = 0 is nonliner ellipti prolem with possily nonEsmooth oe0ients depending on the density ρF sn suh settingD the inverse tokes mp u = Ψ(ρ) for @UA nnot e expeted to produe vipshitz veloity (elds if the density only elongs to L ∞ F his shows tht ny glol wellEposedness result would e @if possileA hrd to proveD s one nnot rely on the preservtion of veesgue normsF sn ftD even the existene of glol wek solutions my seem hllenging t (rst glneD due to the nture of the nonlinerities in the nonExewtonin tokes eqution @UAF sndeedD the si energy estimtes ville for @UA yield ounds of the form @see roposition RA

@VA Du ∈ L p ν(ρ) dx ⊂ W 1,β
provided tht the density is in veesgue spe ρ ∈ L q of exponent q su0iently lrge nd β is hosen ppropritelyF his mens tht there is lk of omptness to del with the visosity lw @RA whih involves nonliner expression |Du| p-2 Du of the strin rteF sn dditionD the estimte @VA is mde in weighted speD nd di0ulties my rise when the visosity multiplier ν(ρ) degenertes @nd we hve ssumed it myAF pinllyD the presene of the visosity multiplierD whih is nonliner funtion of the densityD retes nother set of prolems s the usul veesgue estimtes ρ ∈ L ∞ (R + ; L q (R d )) do not provide omptness to hndle itF Remark 1. st should e noted tht the energy spe @VA is weighted veesgue spe with weight depending on the densityF his mens tht the nturl funtionl frmework for prolem @IA hs the prtiulrity to involve the solution itselfF e refer to PH for nother exmple where dynmil solution spe is involved in )uid prolemF hether this struture n e used to improve our results is n ongoing work of the uthorsF 1.3.2 Statement of the Main Result hespite these three issuesD it is possile to prove the existene of glol wek solutions in some distriutionl senseF his is the purpose of heorem P elowD whih is the min result of this pperF Theorem 2. We work in dimension d ≥ 2. Consider p ∈]1, +∞[ and a function ν ∈ C 0,γ (R \ {0}) ∩ L ∞ (R) such that ν(|r|) ≥ ν * |r| γ for all |r| ≤ 1 and some xed constants ν * , γ > 0, and setting γ = min{1, γ}. Consider exponents q ∈]1, 2[ and σ ∈ [1, +∞] such that one of the following conditions is satised:

(i) Sub-critical case: either we have the strict inequality

@WA 1 p 1 + γ σ + 1 q - 1 d < 1 ;
(ii) Critical case: either we have equality

@IHA 1 p 1 + γ σ + 1 q - 1 d = 1 ,
as well as the condition q ≥ 2d d+2 . In particular, this last inequality is always true when

d = 2.

U

Then, for any initial datum ρ 0 ∈ L q (T d ) such that 1/ρ 0 ∈ L σ (T d ), there exists a weak solution

ρ ∈ L ∞ R + ; L q (T d ) associated to a velocity eld u ∈ L ∞ (R + ; L q ′ (T d )) such that ν(ρ)|Du| p ∈ L ∞ (R + ; L 1 (T d )). In addition, if ρ 0 ∈ L r (T d ) for some r ∈ [1, +∞], then ∥ρ(t)∥ L r = ∥ρ 0 ∥ L r
for almost all times t ≥ 0.

fefore disussing the proof of heorem PD we ring ouple of points to the reder9s ttentionF pirst of llD s will pper lerly when we perform energy estimtes @roposition RAD the ondition

1 p 1 + γ σ + 1 q - 1 d ≤ 1
@long with the ondition q ≥ 2d d+2 in the ritil seA is neessry for the produt ρu to e wellEde(nedD nd hene for the hi system to hold in the sense of distriutionsF elthough we do use hiernEvions theory in our proofD we point out tht the wek solution ρ is not only renormlized solution of the trnsport equtionD ut is full distriutionl solutionF eondlyD when ν(r) ≡ 1 nd p = 2 @nd so γ = 0AD the nonExewtonin tokesErnsport eqution redues to the usul tokesErnsport eqution @PAF sn tht seD heorem P exist provided ρ 0 ∈ L q (T d ) with

q ≥ q 0 := 2d d + 2
.

his is onsistent with the existene of wek solutions proved in IT for q > q 0 @lthough they re proved unique only for q ≥ dD RUD ITAF he ft tht the optiml exponent q 0 n e rehed is due to the use of hiernEvions theoryF 1.3.3 Overview of the Proof sn this prgrphD we explin how the di0ulties mentioned ove re solved in the proof of heorem PF es is usul when deling with evolution prolemsD the wek solutions of @IA re onstruted s limit points of sequene of pproximte solutions (ρ n )D whih solve system of the form

@IIA      ∂ t ρ n + u n • ∇ρ n = 0 u n = S n v n v n = Ψ(ρ n ),
where S n is n pproximtion opertor nd u = Ψ(ρ) is the inverse tokes mp ssoiting the dtum ρ to the solution u of the ellipti prolem @UAF hese pproximte solutions ful(ll the sme energy estimtes s smooth solutionsD nd this ft provides uniform ounds with respet to the prmeter nD nmely

(ρ n ) ⊂ L ∞ (L q ) nd (u n , v n ) ⊂ L ∞ (W 1,β ),
for some exponent 1 < β < pF roving the existene of these pproximte solutions lredy requires some workD s system @IIA is nonliner set of hisF elthough the presene of the smoothing opertor S n simpli(es things very muhD the degenery of the visosity multiplier ν(r) lredy retes prolemsX euse the funtion is required to ehve t worst s ν(|r|) ≥ ν * |r| γ round zero @ rölderEtype onditionAD the mp Ψ my e nonEvipshitzF hen writing n yhi pproximtion of @IIAD this mens tht we should use the guhyEeno theorem insted of guhyEvipshitz @lso known s irdE vindelöfA theoryF V yne the existene of pproximte solutions is estlishedD there re two min stepsF pirstD in order to show suitle onvergene properties for pproximte solutionsD it is then neessry to enjoy some ontinuity properties for the inverse tokes mp ΨF essuming ρ n → ρ in suitle topologyD we n then formlly write

v n = Ψ(ρ n ) → Ψ(ρ) = v.
sn other wordsD the limit veloity v is solution of the nonExewtonin tokes eqution with righthnd side input ρF his llows the pproximtion sheme to onvergeF xeverthelessD the a priori estimtes imply tht it is then nturl to onsider onvergene for the strong topology of L q in speD whih is not trivil a prioriF hen omes the next importnt ideD nmely the use of hiernEvions theory PQ to otin strong onvergene of the solutionsF fy dpting the stility theory of PQ for trnsport equtions @see ppF SPI!SPQAD it is possile to show tht

ρ n -→ ρ in L r loc (L q )
for ll 1 < r < +∞F e refer to IU where relted method hs een used to perform singulr perturtion nlysisF Notation e summrize here the nottion nd onventions tht will e used throughout the rtileF nless expliitly stted otherwiseD ll the integrls er over the whole torus

T d F herefore ¡ f = ¡ T d f F por ny exponent r ∈ [1, +∞]D we note r ′ the onjugte exponent de(ned y the reltion 1 r + 1 r ′ = 1F gonsider sequene (f n ) n≥1 of
elements in metri spe XF sf the sequene is ounded in XD i.e. if there exists onstnt C > 0 suh tht ∥f n ∥ X ≤ C for ll nD then we note

(f n ) n≥1 ⊂ XF nless otherwise mentionedD the rkets ⟨ • , • ⟩ should lwys e understood in the sense of distriutions D ′ × DF Denition 3. e onsider dimension d ≥ 2 nd n exponent q ∈ [1, +∞]F vet ρ 0 ∈ L q e
n initil dtumF e sy tht funtion ρ ∈ L ∞ (L q ) is weak solution of the tokesErnsport prolem @IA ssoited to the initil dtum ρ 0 is the following onditions re stis(edX @iA here exists veloity (eld u : R

+ × T d -→ R d suh tht ν(ρ)|Du| p-1 ∈ L 1 loc (R + × T d ) nd whih isD for lmost every time t ∈ R + D wek solution of the @nonlinerA tokes equtionX in other words div(u) = 0 in D ′ (R + × T d )D the zero verge ondition 1 u = 0 is ful(lled t ll times ndD for ny divergeneEfree ϕ ∈ D(R + × T d ; R d )D we hve ¤ ν(ρ)|Du| p-2 Du : Dϕ dx dt = ¤ ρg • ϕ dx dt ; @iiA he veloity (eld is u ∈ L ∞ (L q ′ ) nd ρ is wek solution of the trnsport eqution with initil dtum ρ 0 D tht isD for ll ϕ ∈ D(R + × T d ; R)D we hve ¤ ρ∂ t ϕ + ρu • ∇ϕ dx dt + ¢ ρ 0 ϕ(0) dx = 0.
3 A Priori Estimates sn this prgrphD we perform the si energy estimtes whih will e used throughout the proofF Proposition 4. Consider a smooth initial datum ρ 0 associated to a smooth solution ρ and smooth velocity and pressure elds u and π. Then, under the assumptions of Theorem 2, we have the following inequalities:

∥ρ∥ L ∞ (L q ) ≤ ∥ρ 0 ∥ L q and @IPA ∥Du∥ L β ≲ 1/ρ 0 γ p-1 L σ ∥ρ 0 ∥ 1 p-1 L q ,
where 1 < β < +∞ is dened by the relation 1

β = 1 p 1 + γ σ .
In addition, we also have the inequality

@IQA ∥u∥ L q ′ ≲ ∥Du∥ L β .
Remark 5. xotie thtD when the visosity oe0ient ν(ρ) is degenerteD tht is when γ > 0 nd σ < +∞D then we my experiene loss of regulrity when ompred to the usul pEvplin estimtesX the veloity (eld is not W 1,p ut only W 1,β F Remark 6. snequlity @IPA is onsistent with the eqution9s sling propertiesF ine the visosity oe0ient ehvesD t worseD s ν * |ρ| γ in neighorhood of ρ = 0D we see tht the tokes eqution -div ν(ρ)|Du| p-2 Du + ∇π = ρg ehves roughly s @in physiist nottionA density γ × veloity p-1 = density , so tht the veloity is homogeneous to density t the power 1-γ p-1 F his is solutely onsistent with the righthndEside of @IPAD whih lso sles s density to the power 1-γ p-1 F Proof (of Proposition 4). pirst of llD thnks to the ft tht the veloity (eld is ssumed to e divergeneEfreeD the )ow mp ssoited to u preserves the veesgue mesureD nd therefore ll veesgue normsF e dedue tht @IRA ∥ρ(t)∥ L q = ∥ρ 0 ∥ L q for ll t ∈ R + .
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por the sme resonsD we lso hve

@ISA 1/ρ(t) L σ = 1/ρ 0 ∥ L σ .
xowD let us fous on the (nding estimtes for the veloity (eldF por thisD we perform n energy estimte in the ellipti equtionX y tking the slr produt of the tokes eqution y uD we otin

¢ ν(ρ)|Du| p-2 Du : ∇u = ¢ ρg • u.
feuse the symmetri nd skewEsymmetri spes form orthogonl suspes for the d×d mtrix slr produtD we dedue tht

@ITA ¢ ν(ρ)|Du| p = ¢ ρg • u.
here will e two steps in our estimtesF pirst of llD we will show how the norm ∥Du∥ L β n e ontrolled y the lefthnd term in this inequlityF yne we hve done thtD we will fous on the righthnd side term nd exmine how to lose the estimtesF e then strt y (nding n upper ound for ∥Du∥ L β F he ide is to introdue the visosity multiplier ν(ρ) in order to otin fore the pprition of the lefthnd side term of @ITAF e hveX

Du = ν(ρ) 1/p Du 1 ν(ρ) 1/p .
e remrk tht the L p norm of the (rst ftor ν(ρ) 1/p Du is extly @up to the 1/pEth powerA the lefthnd side of @ITAF yn the other hndD euse of our ssumption on the visosity multiplier ν(r)D we my ound the lst ftor in this produt y power of 1/ρD nmely

1 ν(ρ) 1/p ≤ 1/ν 1/p * |ρ| γ/p .
so tht the L σp/γ power of ν(ρ) -1/p will extly e the L σ norm of 1/ρ @ginD up to the 1/σEth powerAF epplying rölder9s inequlityD we immeditely otin

∥Du∥ L β ≤ ν(ρ)Du L p 1/|ρ| γ/p L σp/γ ≲ ¢ ν(ρ)|Du| p 1/p 1/ρ γ/p L σ , @IUA
where the exponent β is de(ned y the reltion

1 β = 1 p + γ σp = 1 p 1 + γ σ .
xote tht this inequlity is homogeneous in the sense of emrk TF he seond step is now to ound the righthnd side in the energy lne eqution @ITAF feuse ρ is ounded in L q D we will try to show tht u is ounded in L q ′ F ith tht in mindD we express u s funtion of the strin rte tensorX keeping in mind tht div(u) = 0D we my write

@IVA u = -2(-∆) -1 div(Du).
sn other wordsD u is the imge of Du y pourier multiplier of order -1F his mkes possile expressing the regulrity of u in terms of tht Du ∈ L β F wo ses must e distinguishedD ording to whether the suEritil or the ritil ssumptions of heorem P holdF II First case: ritil seF pirst of llD note tht the ondition q ≥ 2d d+2 is equivlent to the inequlity 1 q -1 d ≤ 1 2 F sn prtiulrD we hve β ≤ 2 thnks to the reltion 1 β + 1 q -1 d = 1F hereforeD pplying the fesov emeddings of roposition PPD we otin tht L β ⊂ B 0 β,2 F es q ′ ≥ 2 y ssumptionD ropositions PI nd PP therefore provide the hin of emeddings

B 1 β,2 ⊂ B 0 q ′ ,2 ⊂ L q ′ ,
sine the exponents stisfy 1 q ′ = 1 β -1 d F fy use of roposition PQD this leds us to the ound ∥u∥ L q ′ ≲ ∥Du∥ L β D nd soD y plugging this in the energy lne eqution @ITAD we hve

¢ ν(ρ)|Du| p = ¢ ρg • u ≤ ∥ρ∥ L q ∥u∥ L q ′ ≲ ∥ρ∥ L q ∥Du∥ L β .
Second case: suEritil seF sn tht seD the roposition PI provide the inlusion

B 1 β,∞ ⊂ B s q ′ ,∞ ⊂ L q ′ with s = d 1 -1 β -1 q + 1 d > 0F
sn prtiulrD thnks to roposition PQD we otin the sme inequlity s oveX

¢ ν(ρ)|Du| p = ¢ ρg • u ≤ ∥ρ∥ L q ∥u∥ L q ′ ≲ ∥ρ∥ L q ∥Du∥ L β .
sn oth sesD we my use these estimtes in inequlity @IUA in order to (nish the proof of the propositionX (rst we write

∥Du∥ L β ≲ ¢ ν(ρ)|Du| p 1/p 1/ρ γ/p L σ ≲ ∥Du∥ 1/p L β ∥ρ∥ 1/p L q 1/ρ γ/p 2 L σ ,
nd then we pply oung9s inequlity ab ≲ ϵa p + 1 ϵ b p ′ in order to sor the ∥Du∥ L β ftor in the lefthnd sideD nd (nlly getD

∥Du∥ L β ≲ ∥ρ∥ p ′ /p L q 1/ρ γp ′ /p 2 L σ ≲ ∥ρ∥ 1 p-1 L q 1/ρ γ p-1 L σ .
@IWA he upper ound n e evluted t initil time t = 0 thnks to @IRA nd @ISAF 4 Well-Posedness for the Stokes System rving this in mindD in order to show tht we do de(ne n tive slr eqution vi system @IAD let us egin y proving tht the tokes prolem with nonliner visosity

@PHA -div ν(ρ)|Du| p-2 Du + ∇π = ρg div(u) = 0.
hs unique solution stisfying suitle estimtesF xmelyD the following roposition holdsF IP Proposition 7. Consider 1 < p, q < +∞. For any ρ ∈ L q there is a unique solution

u ∈ W 1,β such that - ¡ u dx = 0 and satisfying @PIA ¢ ν(ρ)|Du| p ≲ ∥ρ∥ 1 p-1 L q 1/ρ γ p-1 L σ .
We introduce the following notation: we call Ψ(ρ) the unique solution associated to ρ, thus dening a nonlinear map Ψ : L q -→ W 1,β .

Proof. e introdue the rel re)exive fnh spe

@PPA Y ρ := v ∈ W 1,1 / E ¢ v dx = 0, div(v) = 0, ¢ ν(ρ)|Dv| p dx < +∞
endowed with the norm

∥v∥ Yρ := ¢ ν(ρ)|Du| p dx 1 p
whih is the norm involved on Y ρ y the one de(ned over L p (T d , ν(ρ) dx)D sine ν(ρ) dx is mesure from the positivity lmost everywhere nd the oundedness of ν(ρ)F e point out tht the divergene free nd men vlue integrls ssumption rising in the de(nition of Y ρ mke sense sine from our priori estimtes we hve

Y ρ ⊂ W 1,β ⊂ D ′ F henD let us point out tht the funtionl A ρ de(ned over Y ρ y @PQA A ρ (u) := 1 p ¢ ν(ρ)|Du| p dx - ¢ ρg • u dx n e rewritten s @PRA A ρ (u) := 1 p ∥u∥ p Yρ - ¢ ρg • u dx.
sn prtiulrD the strit onvexity of veesgue norms implies tht A ρ is stritly onvex funtionlD sine for every

(u, v) ∈ Y ρ D u ̸ = v nd every θ ∈ (0, 1)X A ρ (θu + (1 -θ)v) = 1 p ∥θu + (1 -θ)v∥ p Yρ - ¢ ρg • (θu + (1 -θ)v) dx < θ 1 p ∥u∥ p Yρ - ¢ ρg • u dx + (1 -θ) 1 p ∥v∥ p Yρ - ¢ ρg • v dx = θA ρ (u) + (1 -θ)A ρ (v).
he seond inequlity ove eing true sine the funtion t → t p de(ned over R + is stritly onvexF he iulerEvgrnge formultion ssoited to the minimiztion of A ρ ledsD omputing the derivtive in the diretion of test funtionD to the ft tht eh of its minimizers re wek solution of @PHAD nd vie vers @thnks to the onvexity of A ρ AF st remins to prove the existene nd uniqueness of suh minimizerF rere we underline tht A ρ is oerive over Y ρ D sine we get from @PRAD using rölder9s inequlityD

@PSA A ρ (u) ≥ 1 p ∥u∥ p Yρ -∥ρ∥ L q ∥u∥ L q ′ .
henD thnks to @IQAD we get from @PSA @PTA A ρ (u) ≳ ∥u∥ p Yρ -∥ρ∥ L q ∥Du∥ L β IQ sing one gin our a priori estimtes it follows from @PTA thtD omining @ISA nd @IUA

@PUA A ρ (u) ≳ ∥u∥ p Yρ -C(ρ 0 ) ¢ ν(ρ)|Du| p dx 1 p
pinllyD oung9s inequlity pplied in the rightEhnd side of @PUA leds to the wished resultD nmely

A ρ (u) ≳ (1 -ε) ∥u∥ p Yρ -C(ε, p ′ , ρ 0
) he previous omputtions men tht A ρ is pEoerive funtionl over Y ρ F reneD it follows from PTD etion VFPFPFD heorem PD heorem Q tht it dmits unique minimum in Y ρ D one gin denoted uD this lst eing wek solution of @PHAD whih is hene uniqueF esting now into the wek formultion ginst uD then using oth estimtes @IQA nd @IWA leds to @PIAF 5 Continuity of the Inverse Stokes Map sn the prgrph just oveD we hve shown tht the tokes eqution n e uniquely solvedX with the nottions of heorem PD for ny ρ ∈ L q D there exists unique u solution of the tokes eqution @PHA whih lies in the spe W 1,β D where 1 β = 1 p 1 + γ σ F sn other wordsD we hve de(ned nonliner mp

@PVA L q -→ W 1,β Ψ : ρ -→ u.
he purpose of this setion is to prove form of ontinuity property for the mp ΨF yf ourseD it is too muh to expet tht Ψ is norm ontinuous L q -→ W 1,β F roweverD y relxing the topologiesD we my still otin ontinuity resultF he following roposition is sed on the winty9s trik @see SHD vemm PFIQFAF Proposition 8. Let us assume that p, q, γ, σ are dened as in Theorem 2 and β as in Proposition 4. We consider a sequence (ρ n ) n∈N such that there exists ρ n → ρ in L q . Then, one have for Ψ given by @PVA

Ψ(ρ n ) ⇀ Ψ(ρ) in W 1,β .
In other words, the nonlinear map Ψ is L q -→ W 1,β w continuous, where W 1,β w is the Sobolev space W 1,β equipped with its weak topology.

Proof. pirstD let us introdue for

ϕ ∈ D div := {φ ∈ D / div(φ) = 0} the funtionl X n (ϕ) := ¢ ν(ρ n ) |Du n | p-2 D(u n ) -|Dϕ| p-2 Dϕ : (Du n -Dϕ) dx
where u n = Ψ(ρ n ) is the unique solution of @PHA ssoited to ρ n D s given y roposition UF hnks to inequlity @PIA we re sure tht the funtionl X n is wellEde(ned on the spe D div F sn dditionD the funtionls X n re nonnegtive due to the following lemmF Lemma 9. Consider n ∈ N and 1 < p < +∞. Then for every regular and divergence-free function ϕ ∈ D div , we have a monotonicity inequality: @PWA X n (ϕ) ≥ 0.
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Proof. e egin with the oservtion tht the funtionl

A n (ϕ) := 1 p ¢ ν(ρ n )|Dϕ| p dx is onvex euse p > 1F purthermoreD A n ts s potentil with respet to X n F his mens tht X n (ϕ) is formlly given y the reltion @QHA X n (ϕ) = dA n (u n ) -dA n (ϕ), u n -ϕ ,
where dA n (f ) is the di'erentil of A n evluted t point f F till formllyD the onvexity of A n shows tht the ove is nonEnegtive X n (ϕ)F he rgument s it is is not entirely ompleteX this is euse while ϕ ∈ C ∞ is very regulrD it my not e the se of u n = Ψ(ρ n ) whih is de(ned s the unique solution of nonliner ellipti prolemF roweverD we my rgue y densityX the funtionl X n is ontinuous on the spe

Y n := f ∈ W 1,1 , Df ∈ L p ν(ρ n ) dx ,
nd the visosity multiplier ν(r) is oundedD so C ∞ is dense suspe of L p ν(ρ n ) dx F st is therefore enough to show tht the rkets in @QHA re nonEnegtive when ssuming tht u n is smoothF sing the wek formultion of @PHA into @PWAD we get for ll ϕ

∈ D div X @QIA X n (ϕ) = ¢ ρ n (u n -ϕ)g dx - ¢ ν(ρ n )|Dϕ| p-2 Dϕ : (Du n -Dϕ) dx ≥ 0.
e n now pss to the limit on n in this expressionF pirstD we hve tht ρ n → ρ FeF sine

ρ n -→ ρ in L q D nd Du n ⇀ Du in L β D in view of @IUA nd @PIAF elso we hve tht ν(ρ n ) -→ ν(ρ) in L β ′ F hus we getX @QPA ¢ ν(ρ n )|Dϕ| p-2 Dϕ : (Du n -Dϕ) dx -→ n→+∞ ¢ ν(ρ)|Dϕ| p-2 Dϕ : (Du -Dϕ) dx.
woreoverD we rell tht from @IUA nd @PIA we hve the oundedness (u n ) ⊂ W 1,β ⊂ L q ′ whih leds to wek onvergene u n ⇀ u in L q ′ D up to n extrtionF purthermoreD the strong onE vergene ρ n -→ ρ in L q leds to distriutionl onvergene of the produt ρ n u n F sf ψ ∈ DD we hve

⟨ρ n u n -ρu, ψ⟩ = ⟨ρ n -ρ, u n ψ⟩ + ⟨u n -u, ρψ⟩ = ∥ρ n -ρ∥ L q ∥u n ψ∥ L q ′ + ⟨u n -u, ρψ⟩ -→ 0 s n → +∞. sn other wordsD @QQA ρ n u n -→ n→+∞ ρu in D ′ .
prom @QQAD @QPA nd @QIAD we n let n → +∞ in the funtionl X n (ϕ)F por every test funtion ϕ ∈ D div we hve

@QRA X n (ϕ) -→ n→+∞ X(ϕ) = ¢ ρ(u -ϕ)g dx - ¢ ν(ρ)|Dϕ| p-2 Dϕ : (Du -Dϕ) dx ≥ 0.
IS yn the other hndD the sequene ν(ρ n )|Du n | p-2 Du n is ounded in the spe L p ′ D thnks to the inequlity

∥ν(ρ n )|Du n | p-1 ∥ p ′ L p ′ ≤ ∥ν∥ p ′ -1 L ∞ ¢ ν(ρ n )|Du n | p dx ≤ ∥ν∥ p ′ -1 L ∞ ∥ρ -1 0 ∥ σ 1-p ′ r L σ ∥ρ 0 ∥ p ′ L q .
his mens tht it possesses wek limit χ up to n extrtionX there exists χ ∈ L p ′ suh tht

@QSA ν(ρ n )|Du n | p-2 Du n ⇀ χ in L p ′ .
he min ojetive is now to show tht χ = ν(ρ)|Du| p-2 DuD nd tht we hve the onvergene desired in the equtionF por thisD we will use the onvergene properties of the funtionl X n we hve explored oveF feuse the funtions (ρ n , u n ) solve the tokes prolem @PHA we get tht for ll test funtion

ψ ∈ D div X @QTA ¢ ν(ρ n )|Du n | p-2 Du n : Dψ dx = ¢ ρ n gψ dx.
his implies from @QQA nd @QSAD tht the funtion χ ful(lls the following reltionX for every

ψ ∈ D ′ div D @QUA ¢ χ : Dψ dx = ¢ ρgψ dx.
gomining @QUA together with @QRA we getX

@QVA X(ϕ) = ¢ χ : D(u -ϕ) -ν(ρ)|Dϕ| p-2 Dϕ : (Du -Dϕ) dx ≥ 0.
o mke use of this inequlity nd prove the propositionD we would now like to test into @QVA ginst some wellEhosen ϕ funtionsF oD hoosing ϕ = u + λψD for ψ ∈ D div nd λ > 0 in @QVAD then divide y λ leds toX @QWA -

¢ χ : Dψ + ν(ρ)|D(u + λψ)| p-2 D(v + λψ) : Dψ dx ≥ 0.
fy pssing to the limit s λ → 0 into @QWAD we infer tht xowD thnks to @QTAD we otin y mens of @RHA tht u stis(es the wek formultion of @PHAD nmely ¢ ν(ρ)|Du| p-2 Du : Dψ -ρgψ dx = 0.
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Remark 10. e point out tht the struture of the proof of roposition V is quite roustF sn prtiulrD if we hd dded to the tokes eqution n ellipti termD sy -ν 0 ∆ k for some onstnt ν 0 > 0D so s to hve insted

-ν 0 ∆ k u -div ν(ρ)|Du| p-2 Du + ∇π = ρg div(u) = 0,
then the result would still pplyX one ould use the methods of roposition U to otinD for every ρ ∈ L q D the existene nd uniqueness of solution u ∈ L p ν(ρ) dx ∩ H k D noted Ψ 0 (ρ)D nd strightforwrd dpttion of the proof immeditely ove would yield ontinuity Ψ 0 : L q -→ W 1,β w regrdless of the vlue of ν 0 F 6 Approximate Solutions sn this prgrphD we will onstrut fmily of funtions regulr (ρ n ) tht solve n pproximte systemD nmely

@RIA            ∂ t ρ n + div(ρ n u n ) = 0 u n = S n v n -div ν(ρ n )|Dv n | p-2 Dv n + ∇π n = ρ n g div(v n ) = 0.
sn the oveD the opertor S n is the vittlewoodEley pproximtion opertor given from @TRA nd the ensuing disussionF e equip system @RIA with the following initil vluesX for every nD

@RPA ρ n (0) = S n ρ 0 .
st follows tht the pproximte initil dt re uniformly ounded in L q with respet to qD tht is ∥S n ρ n ∥ L q ≲ ∥ρ 0 ∥ L q F yur resoning is the followingX formllyD tking the limit n → +∞ lets us reover the nonExewtonin tokesErnsport system @IAF sn dditionD the veloity (elds u n re smooth funtions with respet to the spe vrile @they re in ft trigonometri polynomilsAD nd so the solutions ρ n re lso smooth funtionsF sn prtiulrD the a priori estimtes of roposition R hold for the pproximte solutionsF roweverD the pproximte system @RIA is set of highly nonliner hisD so tht even the existene of solutions to @RIA is not ovious3 sn the next propositionD we mke sure tht @RIA does indeed hve glol smooth solutionsF Proposition 11. Consider any ℓ ≥ 0. Then the initial value problem @RIA-@RPA has a solution

ρ n ∈ L ∞ (L 2 ) ∩ W 1,∞
loc (H ℓ ) such that, for almost every time t ≥ 0, the function v n is a solution of the Stokes system @PHA with righthand side input ρ n . In particular, inequality @PHA holds: for almost all times,

¢ ν(ρ n )|Dv n | p ≲ ∥ρ n ∥ 1 p-1 L q 1/ρ n γ p-1 L σ ,
and so inequality @IUA provides v n ∈ L ∞ (W 1,β ).

Proof. sn order to show existene of solutions to the pproximte system @RIAD we introdue nother pproximte systemD for whih solutions will e shown to exists through the guhyE eno theoremF vet us onsiderD for ny (xed n nd for ll N ≥ 1D the system

@RQA            ∂ t ρ N + E N div(ρ N u N ) = 0 u N = S n v N -1 N ∆ k v N -div ν(ρ N )|Dv N | p-2 Dv N + ∇π N = ρ N g div(v N ) = 0,
IU where E N is pourier truntion opertor de(ned y ∀f ∈ S,

E N f (ξ) = 1 |ξ|≤N f (ξ).
nd k ≥ 1 is n exponent whih will e (xed lter onF sn ftD E N is the L 2 Eorthogonl projetion on the spe of funtions whose pourier trnsform is supported in the ll B(0, N )F e equip system @RQA with the initil dtum @RRA ρ N (0) = E N S n ρ 0 .

STEP 1: dening an ODE systemF pirst of llD we show tht for ny N ≥ 1D system @RQA possesses glol solution ρ N F e will do this y mens of the guhyEeno theorem pplied in suspe of L 2 F e de(ne mp F N : L 2 -→ L 2 y the following stepsD whih will e justi(ed immeditely elowX IF por ny ρ N ∈ L 2 D we de(ne v N to e the unique solution of tokes system with improved visosityX @RSA -1

N ∆ k v N -div ν(ρ N )|Dv N | p-2 Dv N + ∇π N = ρ N g div(v N ) = 0 ;
PF e then de(ne the trigonometri polynomil u N y the reltion

u N = S n v N Y QF pinllyD we set F N (ρ N ) := div(ρ N u N )D whih is trigonometri polynomilD nd hene in L 2 F
sn the three steps oveD only the (rst one requires dditionl explntionsD s roposition U does not give per se solutions to this modi(ed tokes equtionF roweverD the proof of roposition U n e dpted with strightforwrd modi(tionsD simply y repling the funtionl @PQA with

A ρ (u) = 1 2N ¢ |∇ k u| 2 + 1 p ¢ ν(ρ)|Du| p - ¢ ρg • u
nd y working in the spe Y ρ ∩ H k insted of @PPAF feuse we hve ssumed tht q < 2D the sme omputtions s in the proof of roposition U show tht the funtionl A ρ is stritly onvex nd oeriveF e dedueD in the sme wyD tht for every ρ N ∈ L 2 D system @RSA possesses unique wek solution

v N ∈ H k ∩ Y ρ tht stis(es ¡ v N = 0 nd ∥v N ∥ H k ≲ √ N ∥ρ N ∥ L 2 .
Remark 12. sntroduing penlized term ting s n improved visosity y dding -1 N ∆ k in the tokes prolem is neessry stepX it llows v N to e estimted in some spe y n upper ound tht does not involve ∥1/ρ N ∥ L σ D thus enling the guhyEeno theorem to work in the energy spe L 2 F STEP 2: applying the Cauchy-Peano theoremF sf we wish to pply the guhyEeno theorem to the yhi

∂ t ρ N = F N (ρ N )D we must hek tht F N : L 2 -→ L 2 is ontinuousF gonsider then two funtions ρ N , ρ ′ N ∈ L 2 to whih we ssoite v N nd v ′ N solutions of the tokes prolem @RSAD nd (u N , u ′ N ) = S n (v N , v ′ N )F henD we hve F N (ρ N ) -F N (ρ ′ N ) H M ≲ C(N ) E N div (ρ N -ρ ′ N )u N H M + C(N ) E N div (u N -u ′ N )ρ ′ N H M ≲ C(N )∥ρ N -ρ ′ N ∥ L 2 ∥u N ∥ L ∞ + C(N )∥u N -u ′ N ∥ L ∞ ∥ρ ′ N ∥ L 2 .
@RTA IV e turn our ttention to the di'erene u N -u ′ N F e sutrt the ellipti eqution stis(ed y v N y the one stis(ed y v ′ N D multiply y the funtion v N -v ′ N nd integrte y prts so s to otin

1 N ¢ ∇ k v N -∇ k v ′ N 2 + ¢ ν(ρ N )|Dv N | p-2 Dv N -ν(ρ ′ N )|Dv ′ N | p-2 Dv ′ N : D(v N -v ′ N ) = ¢ (ρ N -ρ ′ N )g • (v N -v ′ N ).
@RUA vet us deompose the lrge integrl ove into two prtsD in order to ene(t from the monotoniity inequlities ful(lled y the tokes opertorX we hve

¢ ν(ρ N )|Dv N | p-2 Dv N -ν(ρ ′ N )|Dv ′ N | p-2 Dv ′ N : D(v N -v ′ N ) = ¢ ν(ρ N ) |Dv N | p-2 Dv N -|Dv ′ N | p-2 Dv ′ N : D(v N -v ′ N ) + ¢ ν(ρ N ) -ν(ρ ′ N ) |Dv ′ N | p-2 Dv ′ N : D(v N -v ′ N )
fy using the onvexity of the L p ν(ρ N ) dx norm extly s in vemm WD we see tht the (rst integrl in the righthnd side ove is nonnegtiveF hereforeD we dedue from eqution @RUA tht

1 N ∥v N -v ′ N ∥ H k ≤ ν(ρ N ) -ν(ρ ′ N ) L ∞ ∥Dv ′ N ∥ p-1 L ∞ ∥Dv N -Dv ′ N ∥ L 1 + ∥ρ N -ρ ′ N ∥ L 2 ∥v N -v ′ N ∥ L 2 .
fy (xing the exponent k so tht k > 1 + d/2D we my ene(t from the oolev emedding H k ⊂ W 1,∞ F woreoverD we use the ft tht the funtion ν(r) isD y ssumptionD C 0,γ ErölderD where γ = min{γ, 1}F he omintion of these two fts yields the inequlity

1 N ∥v N -v ′ N ∥ H k ≲ ∥ρ N -ρ ′ N ∥ γ L ∞ ∥Dv ′ N ∥ p-1 H k + ∥ρ N -ρ ′ N ∥ L 2 .
lugging this inequlity in @RTA nd using the ft tht the opertor E N is in ft ounded in H -1 -→ L 2 shows tht the mp F N : L 2 -→ L 2 is γErölderD nd therefore ontinuousF he guhyEeno pplied in the nite dimensional spe

X N := ker(Id -E N ) endowed with the norm ∥ . ∥ L 2
onsequently provides the existene of lol solution ρ N ∈ C 1 ([0, T N [; X N ) for the pproximte prolemF STEP 3: lifespan of the approximate solutionsF he next step is to prove tht the lifespn T N of the pproximte solution ρ N n e extended to reh T N = +∞F por thisD we note tht y performing simple energy estimte in the trnsport eqution in @RQAD we otin onservtion of the

L 2 normsX sine ρ N = E N ρ N D we hve 1 2 d dt ¢ |ρ N | 2 = - ¢ ρ N E N div(ρ N u N ) = - ¢ ρ N div(ρ N u N ) = 0. nd so @RVA ∥ρ N (t)∥ L 2 = ∥E N S n ρ 0 ∥ L 2 ≤ ∥S n ρ 0 ∥ L 2 .
e dedue tht the pproximte solutions lwys hve ounded time derivtiveX ∥∂ t ρ N ∥ L 2 ≤ max ∥r∥ L 2 ≤1 ∥F (r)∥ L 2 F sn prtiulrD this mens tht the guhyEeno solution ρ N : [0, T N [-→ L 2 neessrily hs limit t time T - N D s in tht se the sequene

ρ N T N - 1 j = ρ N (0) + ¢ T N -1 j 0 F (ρ N ) dt

IW

is guhy s j → +∞F fy using the guhyEeno theorem gin with initil vlue ρ N (T - N )D we onstrut n @ontinuous nd not neessrily uniqueA extension of the yhi solution on [0, TN [D whih we ontinue to ll ρ N F his extension is C 1 with respet to time y virtue of the equtionX

∂ t ρ N = F N (ρ N ) ∈ C 0 (L 2
)F e infer tht the mximl time T * N eyond whih there exists no extension of the solution must in ft e T * N = +∞D nd hene dedue the existene @ut not uniquenessA of glol yhi solution ρ N : R + -→ L 2 F STEP 4: uniform bounds and weak convergenceF e now prepre to tke the limit N → +∞ in the pproximte system @RQAF ith this in mindD we use roposition U nd @RVAD nd write the following uniform estimtes @rell tht q < 2AF (

ρ N ) ⊂ L ∞ (L 2 ) ⊂ L ∞ (L q ) nd (v N ) ⊂ L ∞ (W 1,β ) ⊂ L ∞ (L q ′ ).
gonerning the veloity (elds u N = S n v N D the presene of the regulriztion opertor S n implies tht the u n re trigonometri polynomils of uniform degree @t most C2 n AD nd so (u N ) ⊂ L ∞ (H ℓ ) for ny ℓ ∈ ZF sn dditionD y using the trnsport eqution to trde spe regulrity for time regulrityD we see thtD provided ℓ > d/2 so tht

H ℓ ⊂ L ∞ D @RWA ∂ t ρ N = -div(ρ N u N ) ⊂ L ∞ (H -1
), so tht we getD for every (nite T > 0D the uniform ound ρ N ⊂ W 1,∞ T (H -1 F esoli9s theorem lets us dedue strong onvergene of the densities to some limit

ρ N -→ N →+∞ ρ n in C 0 T (H -2 ).
gonerning the sequenes (v N ) nd (u N )D the uniform ounds ove provide wekE( * ) onvergene

v N * ⇀ v n in L ∞ (W 1,β ∩ L q ′ ) ndD for ll ℓ ∈ ZD u N * ⇀ u n in L ∞ (H ℓ ).
he high regulrity the veloity (eld hs trnsfers to the densityD sine the initil dtum ρ N (0) = E N S n ρ 0 is uniformly ounded with respet to N in H ℓ F fy invoking heorem IVD we hveD provided tht ℓ > 1 + d/2 so tht

H ℓ ⊂ W 1,∞ D ∥ρ N ∥ L ∞ T (H ℓ ) ≤ ∥E N S n ρ 0 ∥ H ℓ exp C ¢ T 0 ∥u N ∥ H ℓ dt .
feuse of the inequlity ∥E N S n ρ 0 ∥ H ℓ ≤ ∥S n ρ 0 ∥ H ℓ nd the uniform ounds on the sequene (u N )D we dedue from the ove the estimte (ρ N ) ⊂ L ∞ T (H ℓ ) for ll su0iently lrge ℓF sn prtiulrD the interpoltion inequlity

∥ρ N -ρ n ∥ L 2 ≤ ∥ρ N -ρ n ∥ 1/2 H -2 ∥ρ N -ρ n ∥ 1/2 H 2
shows tht the onvergene of the densities

(ρ N ) is in ft strongX @SHA ρ N -→ ρ n in C 0 T (L 2 ).
pinllyD these high regulrity ounds (ρ N ), (u N ) ⊂ L ∞ T (H ℓ ) show thtD y using the trnsport eqution s in @RWA to trde spe for time regulrityD we hve (ρ N ) ⊂ W 1,∞ T (H ℓ-1 )F st remins to mke sure tht the funtions (ρ n , u n , v n ) re solutions of the trget prolem @RIAF STEP 5: the transport equationF e (rst hek tht ρ n is solution of the trnsport eqution with veloity (eld u n D whih is solutely strightforwrd given the strong onvergene PH @SHA of the densitiesF sndeedD thnks to the uniform ounds (u N ) ⊂ L ∞ (H ℓ )D we hve wek onvergene of the produt

ρ N u N ⇀ ρ n u n in L ∞ (L 2 ).
vikewiseD we hve strong onvergene of the initil density de(ned in @RRAD

E N S n ρ 0 -→ S n ρ 0 in H ℓ .
his implies tht ρ n is indeed solution of the trnsport eqution with the pproprite initil dtumX

∂ t ρ n + div(ρ n u n ) = 0 ρ n (0) = S n ρ 0 .
STEP 6: the Stokes equationF sn order to tke the limit N → +∞ in the tokes equtionD we resort to the ontinuity properties of the inverse tokes mpD s in roposition VF vet us explinF e note Ψ N : L q -→ W 1,β the mp tht ssoites ny ρ N ∈ L q to the wek solution v N of the tokes prolem @RSAF fy the remrks we mde in i I oveD this mp is wellEde(nedF xowD s we hve lredy notiedD the presene of the ellipti summnd -1 N ∆ k does not hnge ny of the onvexity or oerivity properties required to solve the tokes prolemF wore thn thtD quik glne t the proof of roposition shows tht the minor modi(tions @e.g. the ddition of non negtive term to the funtionls X n A of the ext sme rgument yield similr ontinuity propertyX ssume tht we hve strong onvergene

@SIA ρ N -→ N →+∞ ρ n in L q .
hen we my dedue the wek onvergene

Ψ N (ρ N ) ⇀ N →+∞ Ψ(ρ n ) in W 1,β .
feuse q < 2Y the strong C 0 T (L 2 ) onvergene @SHA of the sequene (ρ N ) implies tht the onverE gene @SIA must tke ple t @lmostA every time t ∈ [0, T [D so tht v n is indeed solution of the ellipti prolem ssoited to ρ n t lmost every timeX

-div ν(ρ n )|Dv n | p-2 Dv n + ∇π n = ρ n g div(v n ) = 0.
his ends the proof of roposition IIF 7 Strong Convergence of the Densities es explined in the previous susetionD roposition II provides sequene of pproximte soluE tions (ρ n , u n , v n ) whih solve prolem @RIAF e now egin to study the limit n → +∞ y fousing on the densities (ρ n )D on whih we estlish strong onvergeneF Proposition 13. Let (ρ n , u n , v n ) be the sequence of approximate solutions as given in 11. We have, up to an extraction, strong and pointwise convergence of the densities, namely

ρ n -→ ρ in L r loc (L q )
and a.e. on R + × T d . for every 1 < r < +∞. In addition, still up to an extraction, we have weak-( * ) convergence of the velocities u n ⇀ * u in L ∞ (W 1,β ) and the function ρ is a weak solution of the transport equation:

@SPA ∂ t ρ + div(ρu) = 0 ρ(0) = ρ 0 .

PI

Proof. por the proof of roposition IQD we use ides from hiernEvions theory of trnsport equtionsD whih is expeted to work on our prolem euse our a priori estimtes show tht the veloity (eld is expeted to hve regulrity u ∈ L ∞ (W 1,β )D where β is s de(ned in roposition RF sndeedD ssumptions @WA or @IHA show tht we must hve 1 < β < +∞ so tht heorem PR pplied to @IVA gives

∥∇u∥ L β = 2∥∇(-∆) -1 div(Du)∥ L β ≲ ∥Du∥ L β
pirst of llD we notie tht due to the form of the pproximte system @RIAD ll the ounds of roposition II in ft hold for the pproximte solutionsF xmelyD we hve the following uniform estimtesX

@SQA (ρ n ) n ⊂ L ∞ (L q ), nd 1/ρ n n ⊂ L ∞ (L σ ), s well s @SRA (u n ) n ⊂ L ∞ (W 1,β ) ⊂ L ∞ (L q ′ ) nd (v n ) n ⊂ L ∞ (W 1,β ) ⊂ L ∞ (L q ′ ).
yne of the min points of hiernEvions theory is to del with low regulrity solutions y using renormliztion funtionsX more preiselyD we sy tht funtion η ∈ C 1 (R) ∩ L ∞ (R) is admissible if η ′ > 0 everywhereF por one suh funtion ηD we my multiply the (rst eqution in the pproximte system @RIA y η ′ (ρ n ) nd otin new solution of the trnsport equtionX

@SSA ∂ t η(ρ n ) + div η(ρ n )u n = 0 η(ρ n (0)) = η(S n ρ 0 ).
his eqution is muh esier to hndleX indeed the sequene η(ρ n ) is ounded in the spe L ∞ (L ∞ )F purthermoreD thnks to the ft tht η ′ > 0D no informtion is lostD s @SSA implies tht ρ n is solution of the pproximte trnsport eqution in @RIAF xowD thnks to the remrk tht η(ρ n ) ⊂ L ∞ (L ∞ )D we dedue wekE( * ) onvergene in tht spe up to n extrtionX there exists g ∈ L ∞ (L ∞ ) suh tht

η(ρ n ) * ⇀ g in L ∞ (L ∞ ).
sn dditionD the uniform ounds of SR lso provideD up to n extrtionD the wekE( * ) onvergene

u n * ⇀ u in L ∞ (W 1,β ∩ L q ′ ).
e will prove tht g is solution of the trnsport eqution with veloity (eld uF por thisD we need to otin strong omptness on the sequene η(ρ n ) in order to tke the limit in the produt η(ρ n )u n F xote tht we hve the uniform ound η(ρ n ) ⊂ L ∞ (L q ′ )D so tht y exploiting eqution @SSA nd the emedding L q ′ ⊂ B 0 q ′ ,∞ D we get

∂ t η(ρ n ) = -div η(ρ n ) ⊂ L ∞ (B -1 q,∞ ) ⊂ L ∞ (B -1-d/q ′ ∞,∞
).

he lst inlusion ove is n pplition of roposition PIF he ove therefore shows tht the sequene η(ρ n ) is uniformly ounded in the spe

W 1,∞ T (B -1-d/q ′ ∞,∞
) for every (nite T > 0D in ddition to eing lredy ounded in the spe

L ∞ (L ∞ ) ⊂ L ∞ (B 0 ∞,∞ )F hereforeD n interpoltion rgument shows thtD for smll enough θ ∈]0, 1[D we my write n inlusion in rölderEfesov speX L ∞ (B 0 ∞,∞ ) ∩ W 1,∞ T (B -1-d/q ′ ∞,∞ ) ⊂ C 0,θ T (B -s/2 ∞,∞ ),

PP

where the regulrity exponent -s/2 < 0 my e tken s lose to zero s desired y tking θ > 0 s lose to zero s neessryF sn prtiulrD the esoli theorem provides strong onvergene

@STA η(ρ n ) -→ g in L ∞ T (B -s ∞,∞ ).
sn order to use this strong onvergene nd prove tht g is solution of the trnsport eqution with veloity (eld uD we stte nd prove the following produt lemmF Lemma 14. Assume that 0 < s < 1. The function product (f, h) → f h is continuous in the

B 1 β,∞ × B -s ∞,∞ -→ B -s
β,∞ topology. Proof (of the lemma). his is diret pplition of the fony deompositionF e write the produt f h s sum

f h = T f (h) + T h (f ) + R(f, h).
yn the one hndD the (rst prprodut my e evluted in the following wyX for j ≥ -1D

∥∆ j T f (h)∥ L β ≲ |j-m|≤4 ∥S m-1 f ∥ L β ∥∆ m h∥ L ∞ ≲ 2 js ∥f ∥ L β ∥h∥ B -s ∞,∞ ≲ 2 js ∥f ∥ B 1 β,∞ ∥h∥ B -s ∞,∞ , so tht we hve ∥T f (h)∥ B -s β,∞ ≲ ∥f ∥ B 1 β,∞ ∥h∥ B -s ∞,∞ F vikewiseD the seond prprodut is ounded in the sme mnnerX for ny j ≥ -1D ∥∆ j T h (f )∥ L β ≲ |j-m|≤4 ∥S m-1 h∥ L ∞ ∥∆ m f ∥ L β ≲ 1 s 2 js ∥h∥ B -s ∞,∞ 2 -j ∥f ∥ B 1 β,∞ ≲ 2 (1-s)j ∥f ∥ B 1 β,∞ ∥h∥ B -s ∞,∞ , nd this gives the inequlity ∥T h (f )∥ B 1-s β,∞
F pinllyD the reminder term n e ounded y using roposition PSF e hve

∥R(f, h)∥ B 1-s β,∞ ≲ ∥f ∥ B 1 β,∞ ∥h∥ B -s ∞,∞
. he omintion of ll three inequlities proves the lemmF vet us pply vemm IR in order to study the onvergene of the produt η(ρ n )u n s we let n → +∞F por ny funtion ϕ ∈ D([0, T [×T d )D we hve

η(ρ n )u n -gu, ϕ ≲ ∥η(ρ n ) -g∥ L ∞ T (B -s β,∞ ) ∥u n ∥ L ∞ T (B 1 β,∞ ) ∥ϕ∥ L 1 T (B s-1 β ′ ,1 ) + ⟨u n -u, gϕ⟩ .
pirstlyD the strong onvergene property @STA shows tht the (rst summnd in the previous upper ound tends to zero s n → +∞F eondlyD we know tht u n onverges to u in the wekE( * ) topology of L ∞ (L q ′ )D while the funtion gϕ is n element of L 1 (L ∞ )D nd so elongs to the predul spe L 1 (L q ) @rell tht 1 ≤ q < dAF his mens tht the rket in the ove inequlity lso onverges to zeroF pinllyD the initil dt for the trnsport eqution @SSA onverges stronglyX for ny r < +∞D dominted onvergene yields

η(S n ρ 0 ) -→ η(ρ 0 ) in L r
for ll r < +∞F his shows tht the limit g is wek solution of the initil vlue prolem @SUA ∂ t g + div(gu) = 0 g(0) = η(ρ 0 ). PQ e will show tht in ft g = η(ρ)D nd therey dedue tht ρ is solution of the trnsport equtionF fy performing the sme steps y repling the funtion η y η 2 D we see tht the funtions η(ρ

n ) 2 hve limit η(ρ n ) 2 ⇀ h in L ∞ (L ∞ )
whih is solution of the initil vlue prolem

@SVA ∂ t h + div(hu) = 0 h(0) = η(ρ 0 ) 2 .
xowD let us show tht g 2 is lso solution of the initil vlue prolem @SVAF e wish to multiply the trnsport eqution @SUA y gF sn order to mke sure we n do thisD we (rst go through regulriztion proedureX onsider molli(tion sequene (ψ ϵ ) ϵ>0 nd set g ϵ = ψ ϵ * gF hen g ϵ solves the eqution

∂ t g ϵ + u • ∇g ϵ = u • ∇, ψ ϵ * g,
whereD in the oveD the rkets [A, B] = AB -BA represent ommuttor of opertorsD where ψ ϵ * : f → ψ ϵ * f is the onvolution opertor nd where u • ∇ must e understood in the wek sense u • ∇ = div(f u)F wultiplying the ove y g ϵ gives

∂ t (g 2 ϵ ) + div(g 2 ϵ u) = g ϵ u • ∇, ψ ϵ * g. o hek tht g 2
lso is solution of the trnsport eqution @SVAD we only must hek tht the righthnd side tends to zero s ϵ → 0 + F his is the seD thnks to vemm IUD whih provides

u • ∇, ψ ϵ * g -→ 0 in L 1 T (L β ). gonsequentlyD g 2 ∈ L ∞ (L ∞ ) nd h ∈ L ∞ (L ∞
) solve the sme initil vlue prolem @SVAF sn dditionD the trnsport eqution with L ∞ (W 1,β ) oe0ient is wellEposed in tht speD y heorem ITD so tht we must hve h = g 2 nd therefore

η(ρ n ) 2 * ⇀ g 2 in L ∞ (L ∞ ).
vet us prove tht the wek onvergene ove implies strong onvergene of the η(ρ n )F fy (xing ny T > 0 nd using 1 [0,T ] ∈ L 1 (L 1 ) s test funtion in the wekE( * ) onvergeneD we see tht

∥η(ρ n )∥ 2 L 2 T (L 2 ) = ⟨η(ρ n ) 2 , 1 [0,T ] ⟩ -→ ⟨g 2 , 1 [0,T ] ⟩ = ∥g∥ 2 L 2 T (L 2 ) . sn other wordsD the sequene η(ρ n ) onverges weklyE( * ) in L ∞ (L ∞ )D nd therefore wekly in the L 2 T (L 2 )D nd dditionlly the norms onvergeF hereforeD roposition QH implies onvergene in the norm topology of L 2 T (L 2 )D nd so @SWA η(ρ n ) -→ g in L 2 loc (L 2
), ndD up to extrting ginD the onvergene is lso true lmost everywhere in R + × T d F e now show tht the pointwise onvergene of the η(ρ n ) implies onvergene lmost everyE where of the ρ n F por thisD we resort to n pproprite hoie of dmissile funtions η nd the notion of onvergene in mesure @see he(nition PTAF e (rst prove tht the sequene (ρ n ) is onvergent in mesure on every [0, T ] × T d y resorting to guhy riterion @see roposition PUAF pix n ϵ > 0 nd two indies m > n ≥ 1F woreoverD we hoose sequene of renormliztion funtions

(η k ) suh tht η ∈ C b (R) nd @THA        η k ∈ C 1 b (R) 0 < η ′ k ≤ 1 in R η k (r) = r in [-k, k]. PR henD y deomposing the produt [0, T ] × T d ording to whether |ρ n |, |ρ m | ≤ k or notD we hve |ρ n -ρ m | ≥ ϵ = |ρ n -ρ m | ≥ ϵ ∩ |ρ n | ≤ k nd |ρ m | ≤ k ⊔ |ρ n -ρ m | ≥ ϵ ∩ |ρ n | > k or |ρ m | > k .
yn the one hndD the wrkov inequlity provides the ound

meas |ρ n | > k or |ρ m | > k ≲ 1 k q ¢ T 0 ¢ |ρ m | q + |ρ n | q dx dt ≲ T ∥ρ 0 ∥ q L q k q .
yn the other hndD on the set where oth |ρ m | nd |ρ n | re smller thn kD we know tht these funtions re equl toD respetivelyD

η k (ρ m ) nd η k (ρ n )F e dedue tht meas |ρ n -ρ m | ≥ ϵ ≲ meas |η k (ρ n ) -η k (ρ m )| ≥ ϵ + T ∥ρ 0 ∥ q L q k q .
xowD we hd dedued from @SWA thtD for ny given kD the sequene η k (ρ n ) n onverges lmost everywhere @to limit g k AF roposition PV then shows tht the sequene onverges in mesureD nd in prtiulr it must ful(ll the guhy riterion of roposition PUD so tht the mesure in the inequlity immeditely ove onverges to zero s m > n ≥ N → +∞F fy tking the limit superiorD we infer tht

lim m>n≥N →+∞ meas |ρ n -ρ m | ≥ ϵ ≲ T ∥ρ 0 ∥ q L q k q .
ine this upper ound n e mde s smll s desired y tking k s lrge s neessryD we see tht the limit superior must e zeroD nd so the sequene (ρ n ) must onverge in mesureF roposition PV then sserts tht the onvergene is lso true lmost everywhere on [0, T ] × T d up to tking n extrtionF fy tking T s hving integrl vlues T = M → +∞D we see y mens of digonl extrtion tht the onvergene n in ft e ssumed hold lmost everywhere on R + × T d F vet f e the limit of this onvergeneX

ρ n -→ f FeF on R + × T d .
st is onsequene of roposition PW tht in ft f = ρD so tht the ρ n onverge to ρ lmost everywhere on R + × T d F pinllyD let us show tht the onvergene of (ρ n ) tkes ple in the norm topology of L r (L q )F eording to roposition QHD it is enough to show onvergene of the norms ∥ρ n ∥ L r T (L q ) for every T > 0D s the spe L r T (L q ) is uniformly onvex @sine 1 < r < +∞AF yn the one hndD we hveD sine the )ows of the smooth u n @whih re trigonometri polynomilsA preserve the veesgue norms

@TIA ∥ρ n (t)∥ L q = ∥ρ n (0)∥ L q = ∥S n ρ 0 ∥ L q -→ n→+∞ ∥ρ 0 ∥ L q .
sf we show tht the preservtion of the veesgue norms trnsfers to the limit ∥ρ(t)∥ L q = ∥ρ 0 ∥ L q D then the preeding eqution is enough to pply roposition QHF snsted of working diretly with the density ρD we do this y mens of the lmost everywhere onvergene ρ n -→ ρ tht we hve shown just oveD nd pply it to the renormlized eqution @SSAF gonsider funtion η k s in @THA nd note thtD s η k (ρ n ) is solution of the initil vlue prolem @SSA with η = η k D we must hve

η k (ρ n (t)) L q = ∥η k (S n ρ 0 )∥ L q for FeF t ∈ R + .
PS roweverD the onvergene S n ρ 0 -→ ρ 0 in L q nd the lmost everywhere onvergene of the ρ n implies thtD y dominted onvergeneD nd up to tking n extrtionD

∥η k (S n ρ 0 )∥ L q -→ η k (ρ 0 ) L q s n → +∞ nd η k (ρ n (t)) L q -→ n→+∞ η k (ρ(t)) L q for FeF t ∈ R + .
niqueness of the pointwise limit then shows tht

η k (ρ(t)) L q = η k (ρ 0 ) L q for FeF t ∈ R + .
vstlyD y our hoie of η k D we note tht |η k (r)| ≤ |r|D nd η k (r) → r pointwise s k → +∞D so tht dominted onvergene yields

η k (ρ) L r T (L q ) -→ ∥ρ∥ L r (L q ) s k → +∞ nd η k (ρ 0 ) L q -→ ∥ρ 0 ∥ L q s k → +∞,
so tht we do indeed hve preservtion of the veesgue norms ∥ρ(t)∥ L q = ∥ρ 0 ∥ L q nd @TIA llows us to dedue onvergene of the norms ∥ρ n ∥ L r T (L q ) -→ ∥ρ∥ L r T (L q ) F es explined oveD this is enough to invoke roposition QH nd therey end the proofF Remark 15. e hve lso shown in the proof tht the L q norms of the solution re preserved ∥ρ(t)∥ L q = ∥ρ 0 ∥ L q for lmost ll times t ≥ 0F fy rguing extly in the sme wyD we n show tht if the initil dtum lso n element of nother veesgue speD ρ 0 ∈ L r for some r ∈ [1, +∞]D then the sme holds for the L r normX ∥ρ(t)∥ L r = ∥ρ 0 ∥ L r for lmost ll times t ≥ 0F 8 End of the Proof of Theorem 2 sn this prgrphD we omine ll the elements ove nd show the existene of wek solution of the nonExewtonin tokesErnsport prolemF roposition II provides the existene of fmily (ρ n , u n , v n ) of funtions whih solve the pproximte prolem @RIAD nd for whih the a priori estimtes lso holdD see @SQA nd @SRAF sn dditionD roposition IQ shows tht the densities strongly onverge @up to n extrtionA

@TPA ρ n -→ ρ in L r loc (L q ),
where ρ is solution of trnsport eqution @SPA with initil dtum ρ 0 F gonerning the veloitiesD we hve the wek onvergenes

v n ⇀ * v u n ⇀ * u in L ∞ (W 1,β ).
ell tht remins to show is then tht u = v nd tht v isD t lmost every time t ∈ R + D wek solution of the tokes equtionD nmely

-div ν(ρ)|Dv| p-2 Dv + ∇π = ρg div(v) = 0.
vet us rephrse the prolemX if Ψ : L q -→ W 1,β is the inverse mp introdued in roposition UF e know tht v n (t) = Ψ ρ n (t) for lmost every time t ∈ R + nd we hve to show tht PT u = v = Ψ ρ(t) F his will e done y resorting to the ontinuity property of the mp Ψ from roposition VF gonsider funtion ϕ ∈ L 1 (L q )F henD

v n , ϕ L 1 (L q ′ )×L ∞ (L q ) = ¢ +∞ 0 ¢ Ψ(ρ n )ϕ dx dt = ¢ +∞ 0 ⟨Ψ(ρ n ), ϕ⟩ L q ′ ×L q dt.
roweverD roposition V shows tht Ψ is ontinuous with respet to the L q -→ W 1,β w ⊂ L q ′ w topologyF sn dditionD @TPA insures tht strong onvergene

ρ n (t) -→ ρ(t)
in L q ours for lmost every time t ∈ R + D hene onvergene for the rkets Ψ ρ n (t) , ϕ(t) L q ′ ×L q -→ Ψ ρ(t) , ϕ(t) L q ′ ×L q lso ours t lmost every time t ∈ R + F fy dominted onvergeneD we dedue onvergene in the whole speEtime rketD nd hene Ψ(ρ n ) -→ Ψ(ρ)F sn other wordsD v is indeed solution of the tokes prolem for lmost every timeF he lst thing left is to hek tht u = vF ell tht we hve u n = S n v n D so tht the pourier trnsforms u n nd v n must oinide on ny ll B(0, R)D provided tht n is tken lrge enough n ≥ C log(R)F gonsequentlyD the limit pourier trnsforms u nd v must lso gree on every llD nd so u = vF e hve (nished proving heorem PF 9 Appendix: Dierent Tools from PDEs and Analysis sn this ppendixD we rie)y rell the results derived from hiernEvions theory for trnsport equtionsD nd from vittlewoodEley theory nd prdi'erentil lulus in seond stepF e onentrte here on the results nd de(nitions used in the present work nd refer the interested reder to the referenes mentioned for further detils nd developmentsF 9.1 Transport Equations sn this setionD we rell some results onerning trnsport equtions whih will e used in the rtileF e re onerned with the liner trnsport eqution

@TQA ∂ t f + div(f u) = 0 f (0) = f 0
where u is divergeneEfree vetor (eld div(u) = 0D nd will e ssumed to hve regulrity u ∈ L 1 T (W 1,β ) with respet to speD for some β ≥ 1F he (rst result we mention is wellE posedness theorem for @TQAF Theorem 16 @ee roposition ssFI nd heorem ssFP in PQA. Let q ≥ β ′ and consider an initial datum f 0 ∈ L q . Then there exists a unique weak solution f ∈ L ∞ (L q ) of the transport equation. he proof of this heorem relies on regulriztion proedureX let (ψ ϵ ) ϵ>0 e molli(tion sequene on T d F henD y tking the onvolution of the trnsport equtionD we otin the system

∂ t f ϵ + div(f ϵ u) = u • ∇, ψ ϵ * f,
where f ϵ = ψ ϵ * f nd the ommuttor is to e understood in the wek senseX we hve

u • ∇, ψ ϵ * f = div(f ϵ u) -ψ ϵ * div(f u).
he following lssil lemm shows tht the ommuttor in ft onverges to zero s the molliE (tion prmeter doesF PU Lemma 17 @vemm ssFI in PQA. Assume that u ∈ L 1 (W 1,β ) and x a function g ∈ L ∞ (L q ) for some q ≥ β ′ We then have

u • ∇, ψ ϵ * g -→ 0 in L 1 (L α ),
where α is given by 1

α = 1 β + 1 q .
pinllyD we ite one lst resultD whih hs to do with propgtion of regulrityX the solution f n e s regulr s the veloity (eld nd the initil dtum llowsF Theorem 18 @ee for exmple heorem QFIW in QA. Consider s > 1 + d/2 and assume that u ∈ L 1 (H s ) and f 0 ∈ H s . Then the unique solution f of the transport equation @TQA given by theorem 16 has regularity f ∈ L ∞ loc (H s ) and we have, for every T > 0,

∥f ∥ L ∞ T ≤ ∥f 0 ∥ H s exp C ¢ T 0 ∥∇u∥ H s-1 dt . 9.2 Besov Spaces
sn this susetionD we rell some sis onerning nonEhomogeneous fesov spes on T d nd some of their properties tht re useful to us in this rtileF pirstD we rell tht the vittlewoodE ley deomposition is sed on dydi prtition of the unity in frequeny speD i.e. we n (nd rdilly symmetri funtion with ompt support χ ∈ D ] -π, π[ d suh tht the mpping r → χ(re) is deresing for ll e ∈ R d D nd

χ(x) = 1 for |x| ≤ 1 nd χ(x) = 0 for |x| ≥ 2, thenD writing φ(ξ) = χ(ξ) -χ(2ξ) nd φ j (ξ) = φ(2 -j ξ)D we otin for every ξ ∈ Z d @see QD roposition PFIHFA 1 = χ(ξ) + j≥0 φ j (ξ).
whih is prtition of unity in frequenyF his leds to the de(nition of vittlewoodEley loks given y @TRA

∆ j = 0 if j ≤ -2, ∆ -1 = χ(D), ∆ j = φ j (D)
for j ≥ 0.

xextD we n de(ne lowEfrequeny truntion opertorD given y S j = χ(2 j-1 D)F e point out tht the opertors ∆ j nd S j re respetively sled versions of φ(D) nd ∆ -1 D nd thus for ll q ∈ [1, +∞] these opertors re uniformly ounded in the L q -→ L q topologyF e then n write for instne

Id = j≥-1 ∆ j ;
this equlity eing known s the non homogeneous vittlewoodEley deompositionD nd holds over D ′ (T d ) @see QD roposition PFIPFD roposition PFIQFAF yne of the min properties linked with vittlewoodEley deomposition is given y the ft tht it is possile to estimte the derivtives of distriution in terms of its frequeniesX given distriution uD the pourier trnsform of ∆ j u hs its support inluded in n nnulus of size more or less 2 j D thus the derivtive of u will t s multiplition y 2 j F his is the ojet of the following resultF PV Proposition 19 @fernstein inequlitiesD QD vemm PFIFA. Let 0 < r < R. There exists a constant C > 0 such that for any nonnegative integer k, any couple (p, q) in [1, +∞] 2 , with p ≤ q, and any function u ∈ L p , we have, for all λ > 0,

supp ( u) ⊂ B(0, λR) =⇒ ∥∇ k u∥ L q ≤ C k+1 λ k+d 1 p -1 q ∥u∥ L p ; supp ( u) ⊂ {ξ ∈ Z d | rλ ≤ |ξ| ≤ Rλ} =⇒ C -k-1 λ k ∥u∥ L p ≤ ∥∇ k u∥ L p ≤ C k+1 λ k ∥u∥ L p .
e re now le to de(ne the wished non homogeneous fesov spesD whih re fnh spesF Denition 20 @xonEhomogeneous fesov speA. vet s ∈ R nd 1 ≤ p, r ≤ +∞F he nonE homogeneous fesov spe B s p,r = B s p,r (T d ) is de(ned s the set of tempered distriutions f ∈ S ′ for whih ∥f ∥ B s p,r := 2 js ∥∆ j f ∥ L p j≥-1 ℓ r < +∞ .

imilr to the se of oolev spes W s,p D the prmeter s ∈ R ts s regulrity index nd the prmeter p s n integrility exponentF es ftD fernstein inequlities diretly leds to the emeddings

@TSA B k p,1 ⊂ W k,p ⊂ B k p,∞ ,
these emeddings holding for ll k ∈ N nd for ll p ∈ [1, +∞]F purthermoreD we emphsize tht nother onsequene of fernstein inequlities is tht it lso leds to some emeddings etween fesov spesF wore preiselyD we hveX Proposition 21 @ee roposition PFUI in QA. Consider s 1 ∈ R and q 1 , q 2 , r 1 , r 2 ∈ [1, +∞] such that q 1 ≤ q 2 and r 1 ≤ r 2 , then the inclusion B s q 1 ,r 1 ⊂ B s 2 q 2 ,r 2 holds with

s 2 := s 1 -d 1 q 1 - 1 q 2 .
here re emeddings tht re (ner thn those presented in @TSAF wore preiselyD it is mtter of devoting speil ttention to the role of the index r of the spe B s p,r F Proposition 22 @heorems PFRH nd PFRID ppF UW!VPD in QA. Consider q ∈ [1, 2] and r ∈ [2, +∞[.

Then we have the following continuous embeddings:

L q ⊂ B 0 q,2 and B 0 r,2 ⊂ L r .
and also

B 0 q,q ⊂ L q and L r ⊂ B 0 r,r .
he following result llows us to estlish some ontinuity properties on pourier multipliers deling with dydi loksF Proposition 23 @ee vemm PFP in QA. Consider a Fourier multiplier m(ξ) whose symbol is a smooth function away from the origin m ∈ C ∞ (R d \ {0}) such that there is an order M ∈ R with the following property: for all α ∈ N d with |α| ≤ d + 2, there exists a constant C α > 0 with

∀ξ ̸ = 0, |∂ α m(ξ)| ≤ C α |ξ| M -|α| .
Then, for any Lebesgue exponent q ∈ [1, +∞] and any f ∈ D ′ (T d ), we have

∀j ≥ -1, ∥m(D)∆ j f ∥ L q ≤ C(d)2 M j ∥∆ j f ∥ L q .
PW fy deling only with dydi loksD one nnot ompletely understnd lowEfrequeny ehvE iorF husD other tools re requiredD suh s the use of fernstein inequlities for exmpleF enother possiility is to onsider the glderónEygmund theoryD whose essentil result is presented thereE fterF Theorem 24 @glderónEygmundD see QPD heorem RFPFPFA. Consider a Fourier multiplication operator m(D) whose symbol is a homogeneous function of degree zero m ∈ C ∞ (R d \ {0}). Then for any 1 < q < +∞, the operator m(D) : D(T d ) -→ D ′ (T d ) has a unique bounded extension m(D) : L q -→ L q e now introdue the prprodut opertorF oughly spekingD this involves showing tht the produt of two elements u nd v of S ′ n e deomposed into guhy seriesD i.e. we hve

@TTA u v = T u (v) + T v (u) + R(u, v) ,
where we set

T u (v) := j S j-1 u∆ j v, nd R(u, v) := j |j ′ -j|≤1 ∆ j u ∆ j ′ v .
he term R is lled the reminder opertorD nd T is lled the prprodutD while the eqution @TTA is referred s the fony deompositionF e then hve the following resultF Proposition 25 @ee QD heorem PFVSFA. For any (s, p, r) ∈ R × [1, +∞] 2 and t > 0, the paraproduct operator T maps continuously L ∞ ×B s p,r in B s p,r and B -t ∞,∞ ×B s p,r in B s-t p,r . Moreover, the following estimates hold:

∥T u (v)∥ B s p,r ≲ ∥u∥ L ∞ ∥∇v∥ B s-1 p,r
as well as

∥T u (v)∥ B s-t p,r ≲ 1 t ∥u∥ B -t ∞,∞ ∥∇v∥ B s-1 p,r and 
∥T u (v)∥ B s-t p,r ≲ 1 t ∥u∥ B -t p,∞ ∥∇v∥ B s-1 ∞,r .
For any (s 1 , p 1 , r 1 ) and

(s 2 , p 2 , r 2 ) in R × [1, +∞] 2 such that s 1 + s 2 > 0, 1 p := 1 p 1 + 1 p 2 ≤ 1 and 1 r := 1 r 1 + 1 r 2 ≤ 1, the remainder operator R maps continuously B s 1 p 1 ,r 1 × B s 2 p 2 ,r 2 into B s 1 +s 2 p,r
. Also, we have the estimates over the remainder: 

∥R(u, v)∥ B s 1 +s 2 p,r ≲ ∥u∥ B s 1 p 1 ,r 1 ∥v∥ B s 2 p 2 ,r 2 In the case s 1 + s 2 = 0, provided r = 1, operator R is continuous from B s 1 p 1 ,r 1 × B s 2 p 2 ,
: [0, T ] × T d -→ R.
Then the sequence (f n ) converges in measure to a measurable function f if and only if the following Cauchy criterion is satised: for all ϵ, ϵ ′ > 0, there exists a rank N ≥ 1 such that, for all m > n ≥ N we have

meas |f n -f m | ≥ ϵ ≤ ϵ ′ .
In other words, the sequence (f n ) converges in measure if and only if, for all ϵ > 0, we have

meas |f n -f m | ≥ ϵ -→ 0 as m > n ≥ N → +∞.
pinllyD we gther few results onerning the links existing etween onvergene in mesure nd onvergene lmost everywhereF Proposition 28 @ee PRD ghpter FIQFA. Consider T > 0 and a family of measurable functions

f n : [0, T ] × T d -→ R, for n ≥ 1.
Then the following statements hold:

(i) If the sequence (f n ) converges almost everywhere on [0, T ] × T d , then the sequence converges in measure.

(ii) Conversely, if the sequence (f n ) converges in measure, then there is an extracted sequence which converges almost everywhere on [0, T ] × T d .

e seond prt of this susetion is onerned with wek onvergeneD nd its reltion to lmost everywhere or strong onvergeneF Proposition 29. Consider 1 < q, r < +∞, and a sequence of functions f n : R + × T d -→ R such that there is convergence

f n ⇀ n→+∞ f in L r (L q ) f n -→ n→+∞ g a.e.
The both limits must be equal f = g.

Proof. he proof is n pplition of wzur9s lemm @gorollry QFV in VAF he wek onvergene @in the re)exive spe L r (L q )A provides the existene of sequene of onvex omintions of the f n whih onverge strongly in tht speF wore preiselyD there exists set of oe0ients

λ n (k) > 0D with n ≤ k ≤ A n D a n ≥ nD nd n ≥ 1D suh tht k λ n (k) = 1 nd R n := An k=n f k -→ f in L r (L q ). xow onsider point (t, x) ∈ R + × T d suh tht the onvergene f n (t, x) -→ g(t, x) holdsF henD y ompring R n nd g t tht pointD we otin R n (t, x) -g(t, x) ≤ 1n k=n λ n (k) ρ k (t, x) -g(t, x) ≤ sup k≥n ρ k (t, x) -g(t, x) -→ n→ 0.
e dedue tht R n -→ g lmost everywhereF ine the sequene (R n ) onverges lmost everyE where to f up to n extrtionD uniqueness of the pointwise limit gives f = gF QI pinllyD we will use the following resultD esy in the ontext of rilert spesD whih llows to dedue strong onvergene of sequene from wek onvergene nd onvergene of the normsF Proposition 30 @ ee SRD vemm QFIFTFA. Consider a uniformly convex Banach space X and a sequence (f n ) of X functions such that we have

f n ⇀ f in X for some f ∈ X and ∥f ∥ X -→ ∥f ∥ X .
Then the sequence converges in the norm topology of 

  x) = P (t, x) -g • xF sn the tokes eqution immeditely oveD S[ρ, u] is the visous stress tensorF hile S[ρ, u] is simply multiple of the strin rte Du for xewtonin )uid 1 it is no more true while onsidering more generl nonExewtonin settingF sn this seD S[ρ, u] ssumes nonliner expression of Du nd ρ generlly hving the form S[ρ, u] = ν(ρ, Du)Du, the nonlinerity then ppers in the visosity oe0ient νF por exmpleD typil visosity lws follow polynomil type growth with respet to the strin rteX @QA ν(ρ, Du) = ν(ρ)(δ + |Du| 2 )

¢

  ν(ρ)|Du| p-2 Dv : Dψ dx ≥ ¢ χ : Dψ dx. pollowing the sme line of rguments with ϕ = u -λψ leds to the onverse inequlityD nd then to the equlityX @RHA ¢ ν(ρ)|Du| p-2 Du : Dψ dx = ¢ χ : Dψ dx.

  QH he next proposition sttes tht the topology of the onvergene in mesure is ompleteF Proposition 27 @guhy riterionD see PWD heorem PFQHFA. Consider T > 0 and a family of measurable functions f n

	values in B 0 p,∞ .	r 2 with
	9.3	Convergence Lemmas
	sn this setionD we hve gthered numer of eleti results from funtionl nlysis nd mesure
	theory whih we will use throughout the rtileF e strt y presenting notion tht is neighor
	to lmost everywhere onvergeneX onvergene in mesureF
	Denition 26 @gonvergene in mesureA. gonsider T > 0 nd fmily of mesurle funtions
	f, f n : [0, T ] × T d -→ RD for n ≥ 1F e sy tht (f n ) onverges in mesure to f if nd only if for
	ll ϵ > 0D
		meas |f n -f | ≥ ϵ -→ 0	s n → +∞.

emrk tht onvergene in mesure is ssoited to metri dD de(ned y

d(f, g) := n=1 1 2 n min 1, meas |f -g| ≥ 2 -n .

  eF etielloD nd iF peireislX On a class of generalized solutions to equations describing incompressible viscous uidsF ennli di wtemti ur ed epplit @IWPQEAD IWWD IIVQEIIWS @PHPHAF P rF emnnX Stability of the rest state of a viscous incompressible uidF erhive for rtionl mehnis nd nlysis @IWWRAD IPTD PQIEPRPF Q rF fhouriD tFEF ghemin nd F hnhinX Fourier analysis and nonlinear partial dierential equations F qrundlehren der wthemtishen issenshften @pundmentl riniples of wthemtil ienesAD pringerD reidelergD PHIIF R vF ferselli D vF hieningD nd wF •zikX Existence of strong solutions for incompressible uids with shear dependent viscositiesF tournl of wthemtil pluid wehnis @PHIHAD IPD IHIEIQPF S vF ferselliD nd wF •zikX Global regularity for systems with p-structure depending on the symmetric gradientF edvnes in xonliner enlysisD W@IAD @PHIVA IUTEIWPF T vF ferselliD nd wF •zikX Natural second-order regularity for parabolic systems with operators having (p, δ)-structure and depending only on the symmetric gradientF glulus of ritions nd rtil hi'erentil iqutionsD @PHPPA TI@RAD IQUF U ferselliD nd wF •zikX Global regularity properties of steady shear thinning owsF tournl of wthemtil enlysis nd epplitionsD @PHIUA RSH@PAD VQWEVUIF V rF frezisX Functional analysis, Sobolev spaces and partial dierential equationsF niversitext pringerD xew orkD PHIIF xivCSWW ppF W wF fulíekD F qwizdD tF wálekD nd eF wierzewskEqwizdX On unsteady ows of implicitly constituted incompressible uidsF sew tournl on wthemtil enlysis @PHIPAD RR@RAD PUSTEPVHIF IH tF furzkD F wodenD nd vF zékelyhidiX Non uniqueness of power-law owsF gommunitions in wthemtil hysis @PHPIAD QVVD IWWEPRQF II rF goD F ghenD uF inD F h nd uF uX Shear-thickening behavior of modied silica nanoparticles in polyethylene glycolF tournl of xnoprtile eserhD @PHIPA IRD IEWF IP eF gstroD hF górdo nd hF verX Global existence of quasi-stratied solutions for the conned IPM equationF erhF tionF wehF enlFPQP@PHIWAD noFID RQU!RUIF IQ hF gheD F gonstntinD hF górdoD pF qnedo nd tF uX Generalized surface quasi-geostrophic equations with singular velocitiesF gommF ure epplF wthF TS @PHIPAD nF VD ppF IHQU!IHTTF IR vF ghupinD xF gînde nd qF vourX Variational inequality solutions and nite stopping time for a class of shear-thinning owsF https://doi.org/10.48550/arXiv.2112.02871 IS xF gîndeD nd qF vourX Null controllability of quasilinear parabolic equations with gradient dependent coecientsF riv preprint rivXPQHRFHVHPPF @PHPQAF https://doi.org/10.48550/arXiv. 2304.08022 IT hF goX On the Well-Posedness of a Fractional Stokes-Transport SystemF https://doi.org/10. 48550/arXiv.2301.10511 IU hF go nd pF pnelliX Rigorous derivation and well-posedness of a quasi-homogeneous ideal MHD systemF xonliner enlF el orld epplFTH@PHPIAD per xoF IHQPVRD QT ppF IV wF golomoD nd F ioneX Non-classical solutions of the p-Laplace equationF riv preprint rivXPPHIFHURVR @PHPPAF https://doi.org/10.48550/arXiv.2201.07484 IW eFEvF hlirdD tF quillod nd eF velondX Long-time behavior of the Stokes-transport system in a channelF https://doi.org/10.48550/arXiv.2306.00780 PH phël hnhinX Global Well-Posedness for 2D Inhomogeneous Viscous Flows With Rough Data Via Dynamic InterpolationF 'hlEHRPPUIUQf @PHPQAF PI iF hifenedettoX Degenerate parabolic equationsF pringer iene 8 fusiness wedi @IWWQAF PP vF hieningD wF •zikD nd tF olfX Existence of weak solutions for unsteady motions of generalized Newtonian uidsF ennli dell uol xormle uperiore di isEglsse di ienze @PHIHAD W@IAD IERTF QQ PQ F tF hiern nd FEvF vionsX Ordinary dierential equations, transport theory and Sobolev spacesF snventF wthF WV @IWVWAD noFQD ppF SII!SRUF PR tF hooX Measure theoryF pringer iene 8 fusiness wedi @IWWQAD olF IRQF PS F ilgindiX On the asymptotic stability of stationary solutions of the inviscid incompressible porous medium equationF erhF tionF wehF enlFPPS@PHIUAD noFPD SUQ!SWWF PT vFgF ivns X Partial dierential equationsF Pnd iditionD qrdute tudies in wthemtisD olF IWD emerin wthemtil oietyD PHIHD PU iF peireislD wF rilliretD nd F xesováX On the motion of several rigid bodies in an incompressible non-Newtonian uidF xonlinerity @PHHVAD PI@TAD IQRWF PV pF peuilleoisX Sedimentation in a dispersion with vertical inhomogeneitiesF tF pluid wehF IQWD IRS!IUI @IWVRAF PW qF pollndX Real analysis: modern techniques and their applicationsF tohn iley 8 ons @IWWWAD olF RHFF QH F priedlnderD pF qnedoD F un nd F iolX On a singular incompressible porous media equationF tF wthF hysF SQ @PHIPAD nF IID IISTHPD PH ppF QI tF prehseD nd wF •zikX Non-homogeneous generalized Newtonian uidsF wthemtishe eitshrift @PHHVAD PTH@PAD QSSEQUSF QP vF qrfkosX Modern fourier analysisF xew orkX pringer @PHHWAD olF PSHD ppF xviCESHRF QQ rF qryerX Dynamics of Density Patches in Innite Prandtl Number ConvectionF erh tionl weh enl PRUD TW @PHPQAF QR F qwizdD e wierzewskEqwizdD nd eF rólewskX Generalized Stokes system in Orlicz spacesF hisrete gontinF hynF yst @PHIPAD QP@TAD PIPSEPIRTF QS F röferX Sedimentation of inertialess particles in Stokes owsF gommF wthF hysF QTH @PHIVAD noF ID SS!IHIF QT F röfer nd F huertX The inuence of Einstein's eective viscosity on sedimentation at very small particle volume fractionF ennF snstF rF oinré g enlF xon vinéire QV @PHPIAD noF TD IVWU! IWPUF QU wF snversiX Lagrangian solutions to the transport-Stokes systemF xonliner enlFPQS@PHPQAD per xoF IIQQQQD PW ppF QV tFEvF vionsX Quelques méthodes de résolution des problèmes aux limites non linéairesF hunodD quthierEillrs ris @IWTWAF QW wFF umenevD eFwF oertson nd eF equeirX HemorheologyF snX remodynmil plowsF yerE wolfh eminrsD vol QUF firkhäuser fsel @PHHVAF RH yF vdyzhenskyX New equations for the description of the motions of viscous incompressible uids, and global solvability for their boundary value problemsF rudy wtemtiheskogo snstitut smeni e teklov @IWTUAD IHPD VSEIHRF RI eF velondX Well-posedness of the Stokes-transport system in bounded domains and in the innite stripF tF wthF ures epplF @WAISV@PHPPAD IPH!IRQF RP pF vuD eF urteroniD nd eF enezini @edsAX Cardiovascular Mathematics: Modeling and simulation of the circulatory system. Vol. 1F pringer iene 8 fusiness wediD PHIHF RQ tF wálekD tF xesD nd wF •zikX On weak solutions to a class of non-Newtonian incompressible uids in bounded three-dimensional domains: The case p>= 2F edvnes in hi'erentil iqutions @PHHIAD T@QAD PSUEQHPF RR pF wrhndX Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces L p or Ḣ-1/2 F gommF wthF hysF PUU @PHHVAD nF ID ppF RS!TUF RS eF weheretX Sedimentation of particles in Stokes owF uinetF eltF wodels IP @PHIWAD noF SD WWS!IHRRF QR RT eF weheretF On the sedimentation of a droplet in Stokes owF PHPH o pper in gomm wth iF RU eF weheret nd pF ueurX A few remarks on the transport-Stokes systemF https://doi.org/10. 48550/arXiv.2209.11637 RV F wihud nd wF outrenonX Energy dissipation in concentrated monodisperse colloidal suspensions of silica particles in polyethylene glycolF golloid nd olymer ieneD PWPD @PHIRA QPWIEQPWWF RW F esnikX Dynamical problems in nonlinear advective partial dierential equationsF hFhF thesisD niversity of ghigoD IWWSF SH F ouíek @PHIQAF Nonlinear partial dierential equations with applicationsF pringer iene 8 fusiness wedi @PHIQAD olF ISQF SI F udyk nd hF retikovX Viscosity and rheology of the ethylene glycol based nanouids with single-walled carbon nanotubesF tF hysFX gonfF erF IQVP HIPIHH @PHIWAF SP F trovoitovX Behavior of a rigid body in an incompressible viscous uid near a boundaryF sn pree foundry rolemsX heory nd epplitions @ppF QIQEQPUAF fselX firkhäuser fsel @PHHQAF SQ gF ruesdellX A rst course in rational continuum mechanics. Vol. 1F fostonD weX edemi ressD IWWIF SR F hengX Nonlinear evolution equationsF gg ress @PHHRAF QS

X. QP References I

Strictly speaking, system (1) has not yet been derived from microscopic principles, but is a reasonable generalization of the Newtonian Stokes-Transport problem which has been.

Denition of Weak Solutionssn this setionD we de(ne the notion of wek solution for the tokesErnsport eqution @IAF elthough this is firly strightforwrdD there re few points tht require our ttentionF pirst of llD s we hve explined oveD the tokesErnsport system @IA is n tive slr equtionX this mens tht the only dynmil unknown is the density ρD nd ll the other unE knownsD the veloity (eld u nd the pressure π should e expressed in terms of ρF henD s onsequeneD only the properties of the density should mtter when de(ning notion of wek solutionF sn other wordsD funtion ρ is wek solution if nd only if there exists funtions u nd π suh tht the eqution is stis(ed in the sense of distriutionsF king this into onsidertionD we formulte the following de(nitionF W
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