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Abstract. Computational mechanics has seen remarkable progress in recent years due to the integration of machine
learning techniques, particularly neural networks. Traditional approaches in solid mechanics, such as the finite element
method (FEM), often require extensive manual labor in discretization and mesh generation, making them time-consuming
and challenging for complex geometries. Moreover, these methods heavily rely on accurate and complete data, which
may not always be readily available or prone to measurement errors. On the other hand, Physics-Informed Neural
Networks (PINNs) are a machine learning technique that can learn from data and physics equations, allowing accurate
and physically consistent predictions. Through this study, we aim to demonstrate the effectiveness of PINNs in accurately
predicting the stress distribution in a triangular plate, showcasing their potential as a valuable tool in solving real-world
solid mechanics problems. Combining the elasticity conservation laws and boundary conditions into the neural network
architecture creates a PINN and is trained on a coarse mesh of points over the plate domain and evaluated on a fine mesh
using a data-free approach, compared with the Airy analytical solution.

Keywords: solid mechanics, physics-informed neural networks, stress distribution, data-free modeling

1. INTRODUCTION

The Finite Element Method (FEM) is a widely utilized and sophisticated stress analysis technique that is employed in
most solid mechanics problems and was originally created to solve complicated structural mechanics problems (Maggi
et al., 2005; Lo, 2014). While FEM is high efficient for direct problems in stress analysis, their main drawback lies in
the requirement for a fine element mesh to achieve satisfactory accuracy. The mesh refinement process, aiming for pre-
cise results, often necessitates careful consideration of aspect ratios and the placement of smaller elements in areas with
significant stress gradients (Xu et al., 2020). In contrast, Physics-Informed Neural Networks (PINNs) offer a complemen-
tary paradigm shift by merging the expressive capacity of neural networks with fundamental physics principles, resulting
in a unique framework that can overcome some traditional solid mechanics methods’ limitations. They are designed to
follow the governing laws of physics, making them ideal for problems with limited or noisy data (Haghighat et al., 2020).
They also offer a promising technique for addressing numerical instabilities in engineering applications like Uncertainty
Quantification (UQ), inverse problems, and optimization, making them ideal for extensive model evaluations.

The primary motivation behind PINNs lies in their ability to learn from both observational and physical data simul-
taneously. Traditional neural networks lack the explicit incorporation of physical laws, which limits their applicability
in physics-driven problems. PINNs address this limitation by explicitly encoding the underlying physical equations and
boundary conditions into the neural network architecture. This integration ensures that the learned solutions are not only
data-driven but also adhere to the governing laws of the problem, leading to physically consistent predictions (Raissi et al.,
2019; Karniadakis et al., 2021; Antonelo et al., 2021; Rodriguez-Torrado et al., 2022).

PINNs have found numerous applications across various scientific and engineering domains. In the context of solid
mechanics, they have been successfully applied to problems such as structural analysis, deformation prediction, stress
analysis, and fracture mechanics, being employed in diverse scenarios, including the analysis of beams, plates, shells,
and more complex structures (Goswami et al., 2020; Vahab et al., 2021; Jin et al., 2023; Roy et al., 2023). PINNs offer
great potential in scenarios where traditional methods face challenges, such as problems involving complex geometries,
nonlinear material behavior, and multiphysics coupling (Ma et al., 2022).

This article provides an overview of PINNs, emphasizing their theoretical foundations, advantages, and limitations.
Specifically, we focus on their application to analyze a triangular plate subjected to a triangular load. We outline the
formulation of the PINN methodology, incorporating the elasticity conservation laws and boundary conditions specific to
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the problem. The training process, which optimizes the neural network weights and biases to satisfy the physics-based
constraints, is described. The graphical abstract of this work is shown in Fig. 1.

Figure 1. Graphical abstract of the developed work involving PINNs applied to a Solid Mechanics problem.

2. METHODOLOGY

In this session, it is presented the methodology of the work involving the problem to be solved in the field of solid
mechanics, as well as the theoretical foundations for both the formulation of PINNs and the generation of a reference
solution for the problem using the Airy stress function.

2.1 The problem: triangular plate subjected to a triangular load

The schematic of the two-dimensional triangular plate studied in this work is illustrated in Fig. 2. The plate comprises
a right triangle shape with perpendicular sides equal to L = 1 m; face BC is fixed, while face AB experiences a triangular
loading ranging from zero to q0 = 10 N/m2; the coordinate system’s origin is placed at point A. The objective is to get
the stress field over the triangular plate.

Figure 2. Scheme of the clamped-free triangular plate with a triangular load.

The boundary conditions are obtained by evaluating the stress tensor (σ) applied to each face of the plate, as follows:

• Face AB (y = 0, ∀x, 0 ≤ x ≤ L):
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n̂AB = −ĵ ; ~tAB = σn̂AB ⇒ ~tAB =

[
σx τxy
τxy σy

]{
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}
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}
, where q(x) = −q0

L
x (1)

∴ τxy(x, 0) = 0 and σy(x, 0) =
q0
L
x. (2)

• Face AC (y = x, 0 ≤ x ≤ L):

n̂AC = − 1√
2
î+

1√
2
ĵ; ~tAC = σn̂AC ⇒ ~tAC =

[
σx τxy
τxy σy

]{− 1√
2
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2

}
=

{
0
0

}
(3)

∴ σx(x, x) = τxy(x, x) and σy(x, x) = τxy(x, x). (4)

• Face BC (x = L, ∀y, 0 ≤ y ≤ L):

n̂BC = +î ; ~tBC = σn̂BC ⇒ ~tBC =

[
σx τxy
τxy σy

]{
1
0

}
=

{
tx
ty

}
(5)

∴ σx(L, y) = tx and τxy(L, y) = ty. (6)

2.2 Elasticity equations for two-dimensional problems

Cauchy’s equilibrium equations, strain-displacement relationships, and constitutive equations produce a Boundary
Value Problem (BVP) with 15 unknowns and 15 equations. Numerical approximations, including the Finite Element
Method (FEM), can be used for complex geometries. Indeed, several practical scenarios of relevance can be approxi-
mated as 2D problems. In such circumstances, analytical solutions can be easily achieved without resorting to numerical
approaches, which will be discussed later. Assuming a plane stress condition, the equilibrium equations and the com-
patibility condition for strains yield three equations that explain any two-dimensional elasticity problem (Love, 1927;
Timoshenko and Goodier; Boresi and LYNN, 1974; Sadd, 2009; Soutas-Little, 2012):

∂σx
∂x

+
∂τxy
∂y

= 0 , (7)

∂τxy
∂x

+
∂σy
∂y

= 0 , (8)

∂2σx
∂x2

+
∂2σy
∂x2

+
∂2σx
∂y2

+
∂2σy
∂y2

= 0 , (9)

where the (x, y) pair is the Cartesian coordinates; σx and σy represent the normal stresses in the x and y directions re-
spectively; and τxy represents the shear stress in the xy-plane. These equations can be simplified into two main equations:

∇ · σ = 0 , (10)

∇2 (σx + σy) = 0 , (11)

where Eq. (10) is the divergence form of the equilibrium equations in which ∇ represents the gradient operator, and σ
is the stress tensor, and Eq. (11) rewrites the compatibility condition using the Laplacian operator ∇2. By describing the
boundary conditions for this BVP, it is possible to determine σx(x, y), σy(x, y), and τxy(x, y).

2.3 Airy stress function

The Airy stress function is a special case of the Maxwell stress functions, in which it is assumed that the third element
of the main diagonal of Maxwell’s tensor (Φ3,3 = C) is a function of x and y only. As a result, this stress function can only
be used for two-dimensional issues. The stress function C is commonly represented as φ(x, y) in the elasticity literature
(Soutas-Little, 2012), and the stresses are given by:

σx =
∂2φ

∂y2
, σy =

∂2φ

∂x2
, τxy = − ∂2φ

∂x∂y
, (12)

which satisfy the equilibrium equations (Eqs. (7) – (8)) previously described.
Therefore, to ensure the existence of an Airy function, it is sufficient to verify if φ(x, y) is a sufficiently smooth (at

continuously twice differentiable function), satisfying Eq. (9) as follows:

∇2 (σx + σy) = 0 ⇒ ∇2

(
∂2φ

∂y2
+
∂2φ

∂x2

)
= 0 ⇒ (13)

∇2(∇2φ(x, y)) =
∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+
∂4φ

∂y4
= 0 ⇒ ∇4φ = 0. (14)

with this, ∀φ(x, y) that ensures ∇4φ = 0 can be used to describe σx(x, y), σy(x, y), and τxy(x, y).
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2.4 Analytical stress field

To obtain an analytical solution to compare with PINN methodology, we propose an Airy function for the triangular
plate problem as follows:

φ(x, y) = Ax3 +Bx2y + Cxy2 +Dy3. (15)

First it were obtained σx, σy and τxy based on Eq. (12):

σx = 2Cx+ 6Dy , σy = 6Ax+ 2By , τxy = −2Bx− 2Cy , (16)

where the coefficients A, B, C, and D can be obtained by applying the boundary conditions (Eqs. (2), (4) and (6))
corresponding to each face of the plate. Solving the system with 6 equations (BCs) and 6 variables (A,B, C,D, tx, ty) can
be obtained the analytical stress field of the triangular plate to be used as a comparison with PINN’s solution:

σx(x, y) = −q0
L

(x− 2y) , (17)

σy(x, y) =
q0
L
x , (18)

τxy(x, y) =
q0
L
y , (19)

tx(y) = q0

(
2

L
y − 1

)
, (20)

ty(y) = q0. (21)

2.5 von Mises yield criterion

The von Mises yield criterion in materials science and engineering can be expressed in terms of the von Mises equiv-
alent stress σv , a scalar stress value calculated from the Cauchy stress tensor. Based on the results of simple tension tests,
the von Mises equivalent stress is used to estimate the yielding of the material under any loading scenario. In the case of
plane stress, as present in this study, the von Mises criterion states that:

σv =
√
σ2
1 − σ1σ2 + σ2

2 , (22)

where σ1 and σ2 are the principal stresses obtained from the eigenvalues of the stress tensor σ :

σ =

[
σx τxy
τxy σy

]
(23)

2.6 Physics-Informed Neural Networks (PINNs)

PINNs combine the strength of neural networks with the incorporation of fundamental physics concepts to handle
complicated issues in a data-efficient manner. PINNs seek to learn the underlying physics equations directly from data,
allowing for accurate predictions while adhering to the problem’s governing principles. PINNs are created by embedding
the physics equations and boundary conditions into the neural network architecture (Karniadakis et al., 2021).

Consider a general partial differential equation (PDE) representing the physics of the problem:

F(u,∇u) = 0, (24)

where u represents the unknown field, and∇ denotes the gradient operator. The goal of PINNs is to find an approximation
u(x;θ) that satisfies both the given PDE and the associated boundary conditions.

The neural network u(x;θ) takes the spatial coordinate x as input and is parameterized by θ, which represents the
weights and biases of the network. The network output is defined as u(x;θ) ≈ σ(x;θ), where σ represents the activation
function. PINNs employ automatic differentiation to calculate the derivatives of u(x;θ) concerning x to enforce the
physics constraints and use them to construct the residual function:

R(x;θ) = F(u(x;θ),∇u(x;θ)). (25)

The residual functionR(x;θ) quantifies the deviation from the governing physics equations. By minimizing the mean
squared residual over a set of training points D, the neural network parameters θ can be optimized:

θ∗ = arg min
θ

1

N

∑
x∈D

(R(x;θ))
2
, (26)
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where N represents the number of training points.
Additional terms are added to the loss function to incorporate the boundary conditions. For example, for a Dirichlet

boundary condition u(xb;θ) = g(xb), where xb represents a point on the boundary and g(xb) is a given boundary
function, the corresponding term in the loss function is:

Lb =
1

M

∑
xb∈B

[u(xb;θ)− g(xb)]
2
, (27)

where B represents the set of boundary points and M is the number of boundary points.
By minimizing the combined loss function, which includes the mean squared residual and the boundary terms, PINNs

can learn the underlying physics and provide accurate solutions. The ability of PINNs to handle complicated geometries,
nonlinear behaviors, and multiphysics interaction without the requirement for explicit mesh generation is one of their main
features. Since they are designed to learn from both observational and physical data simultaneously, PINNs can efficiently
manage situations with limited or noisy data (Brunton and Kutz, 2022). It is crucial to point out, however, that PINNs
face multiple restrictions. To achieve accurate and consistent convergence, the training procedure can be computationally
expensive, especially for large-scale issues, and careful consideration must be given to the choice of network architecture,
activation, and loss functions.

2.6.1 Building a PINN to solve the problem

The process utilized to build the Physics-Informed Neural Network (PINN) used in this study is outlined below.
SciANN, a high-level artificial neural network API written in Python with Keras and TensorFlow backends, was used
(Haghighat and Juanes, 2021). It allows rapid experimentation with various network designs, emphasizing scientific
computations, physics-informed deep learning, and inversion. With this API one can start deep-learning in a very few
lines of code.

The initial step is to build the stress approximation space described by σ̂x, σ̂y and τ̂xy . The Cartesian pair (x, y) are
the independent variables and Nσx

, Nσy
, and Nτxy

are the neural networks for each of the stresses:

σ̂x : (x, y)→ Nσx
(x, y;W,b) (28)

σ̂y : (x, y)→ Nσy
(x, y;W,b) (29)

τ̂xy : (x, y)→ Nτxy
(x, y;W,b) (30)

A deep neural network with four layers of twenty neurons each was employed for each stress. The networks receive
as input the Cartesian pair (x, y) created by a mesh of points over the problem’s domain (plate surface) and output the
respective stress for each network. A coarse mesh that comprises 1275 points on the plate (50×50 points excluding points
above the diagonal) was chosen for PINN’s training. On the other hand, a fine mesh was used to evaluate the analytical
solution over 125250 points on the plate (500 × 500 points excluding points above the diagonal). The objective is to
extrapolate the network training and perform a comparison with the analytical solution. The produced meshes for each
approach are shown in Fig. 3.

Figure 3. Representation of the generated mesh for evaluating the stress field of the plate. The analytical solution is
obtained over the red points (•) of the mesh, while the black points (•) represent the mesh evaluated by the PINN.

It should be noted that no analytical data was used to train the PINN: the physics provided to the networks is based on
the previously stated constraints, which include three conservation equations (Eqs. (7) – (9)) and four boundary conditions



E. Fuzaro de Almeida et al.
Physics-Informed Neural Networks for Solving Elasticity Problems

(Eqs. (2) and (4)) only. Equation (6) was not used because its sole purpose is to estimate specific stresses at the fixed
boundary, which are inevitably dependent on the network solution and may delay the training process.

The PINN was trained for 1000 epochs, with an initial learning rate of 0.01 and a batch size of 50 (equal to the number
of points for each plate dimension). The loss function used was the mean squared error (MSE), the activation function was
hyperbolic tangent (tanh), and the optimizer was Adam, a stochastic gradient descent method that relies on the adaptive
estimation of first and second-order moments. Once again, it is worth noting that no analytical data was used to train the
PINN, only conservation laws and boundary conditions.

3. RESULTS AND DISCUSSIONS

Figure 4 depicts the MSE during the training process and the variation of the learning rate. Figure 5 presents the
same MSE for each of the seven objective functions, with the conservation equations represented by the letter “L” and
the boundary conditions represented by the letter “C”. The methodology entails minimizing the loss function over the
issue domain throughout a set number of steps (epochs), as described in Eq. (27). The PINN training takes roughly 40
minutes1.

Figure 4. Representation of the MSE loss (•) and the learning rate (•) of the PINN throughout the training process as a
function of the number of epochs.

Figure 5. MSE loss for each physical condition presented to the network. Conditions labeled with the letter “L” correspond
to the conservation equations, while those labeled with the letter “C” correspond to the boundary conditions.

The PINN was extrapolated after training to evaluate the fine mesh. Then, the corresponding stress tensors for each
approach were computed over the 125250 points. The principal stresses were then obtained, and the von Mises stress
for the plate was determined. Figure 6 presents the von Mises stress field for each of the methodologies: (a) shows the
analytical solution, (b) displays the PINN solution, and (c) illustrates the absolute error between the methodologies. The
maximum error occurs near the plate diagonal and has a magnitude of 0.2 MPa, equivalent to 1%.

1DELL G15: i5-12500H, 16GB RAM DDR5, RTX 3050 4GB DDR6
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Figure 6. Stress field in MPa via von Mises yield criterion for the cases: (a) Analytical solution via Airy; (b) PINN,
trained solely using conservation equations and boundary conditions; (c) Absolute error between the methodologies.

4. FINAL REMARKS

In this work, a Physics-Informed Neural Network (PINN) technique is used to accurately forecast the stress distribution
in a triangular plate subjected to a triangle load. It was proved that PINNs can solve a solid mechanics problem without
analytical data, relying on conservation equations and boundary conditions. When the PINN solution was compared to the
analytical solution generated from the Airy stress function, there was good agreement with a maximum error of about 1%
using the von Mises stress field. The results show that PINNs have the potential to be a valuable tool for solving complex
problems in computational mechanics, particularly in cases where traditional methods fail. The fact that the PINN was
trained on a coarse mesh and evaluated on a fine mesh is highlighted. This is a significant difference from FEM which
requires computation and evaluation on the same pre-established mesh, which is a significant drawback. Future research
will examine how PINNs can solve various solid mechanics problems involving nonlinear material behavior, multiphysics
interaction, and complex geometries.
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