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Abstract. This work addresses the challenging problem of structural optimization, specifically focusing on
minimizing the mass of a structure while satisfying constraints related to natural frequencies. Traditional opti-
mization methods that rely on gradient information are not suitable for such complex problems. To overcome
this limitation, metaheuristic methods have emerged as effective alternatives. In this study, we propose a novel
framework that employs the Cross-Entropy (CE) method, a powerful Monte Carlo technique for handling non-
convex optimization problems. By applying the CE method to optimize structural trusses as benchmark tests,
we compare its performance with the genetic algorithm (GA). Through numerical experiments, we demonstrate
that the CE method provides accurate and computationally efficient solutions, outperforming other metaheuristic
optimization methods. This research highlights the efficacy of the CE method as a valuable tool for addressing
non-convex structural optimization problems, enabling efficient solutions with natural frequency constraints.
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1. INTRODUCTION

Structural optimization plays a crucial role in engineering design, aiming to find the optimal configuration
of a structure that meets specific performance criteria (???). In many real-world applications, the objective
is to minimize the mass of the structure while satisfying constraints related to natural frequencies. Achieving
such optimization poses significant challenges due to the non-convex nature of the problem and the complex
interplay between mass and natural frequency constraints.

Traditional optimization techniques, such as gradient-based methods, rely on the availability of explicit
gradients of the objective function and constraints (????). However, in several structural optimization problems
with non-convex objectives and complex constraints, obtaining these gradients can be impractical or even
impossible. Moreover, even if gradients are available, the presence of multiple local optima makes it challenging
to guarantee finding the global optimum. To address these challenges, metaheuristic methods have emerged as
promising approaches for solving non-convex optimization problems (??????). Metaheuristics, unlike traditional
methods, do not rely on gradient information and are capable of exploring complex search spaces efficiently.
These methods have been successfully applied in various fields, including structural optimization, due to their
ability to handle non-convexity and constraints without explicit gradient information.

In the context of structural optimization, the minimization of mass while respecting natural frequency
constraints is of paramount importance. However, this problem presents additional difficulties, as it requires
balancing conflicting objectives and dealing with complex nonlinear system. The optimization process must
strike a delicate balance between achieving a lightweight structure while ensuring avoiding undesirable vibration
modes.

In this paper, we address the challenges associated with structural optimization, particularly focusing on
the problem of minimizing mass subject to natural frequency constraints. To tackle this problem, we propose
the utilization of the Cross-Entropy (CE) method, a powerful metaheuristic algorithm capable of handling non-
convex optimization problems (????). The CE method, originally developed for rare event simulation, provides
an efficient approach to explore complex search spaces and find near-optimal solutions. The primary motivation
for employing the CE method in this context is twofold. Firstly, the CE method does not require explicit
gradient information, making it suitable for non-convex problems where gradients are unavailable or difficult to
compute. Secondly, the CE method offers a balance between accuracy and computational efficiency, providing
competitive solutions for optimization problems with constraints.
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In this study, we compare the performance of the CE method with the genetic algorithm (GA) on benchmark
structural truss problems (??). We aim to demonstrate that the CE method can effectively handle the non-convex
structural optimization problem of minimizing mass while satisfying natural frequency constraints. Through
numerical experiments, we evaluate the accuracy and computational efficiency of the CE method, highlighting
its potential as a valuable tool in the field of structural optimization.

2. Structural optimization

The optimization problem of interest in this work seeks to find a configuration of areas for the cross sections
of a truss structure with n bars that minimize its total mass, respecting certain restrictions imposed on the k
first natural frequencies. This problem can be mathematically formulated as finding a vector of design variables
x = {A1, · · · , An} that minimizes the objective function

J (x) =

∫
Truss

ρ(x) dV , (1)

respecting the constraints defined by

ω1 ≥ ω∗1 , · · · , ωk ≥ ω∗k , (2)

for natural frequencies obtained from

Kφi = ω2
i Mφi (i = 1, · · · , k) , (3)

where ρ is the truss material density, ωi is the i-th natural frequency, ω∗i is the i-th natural frequency constraint,
and Ae is the cross-sectional in e-th bar element. The natural frequencies of a structural model are obtained
by the eigenvalue problem, being, M the mass matrix, ω2 the eigenvalue, and φ the eigenvector, where ω is the
value of the natural frequency.

3. Cross-Entropy method

The Cross-Entropy (CE) method is a Monte Carlo technique used for estimation and optimization. In the
estimation setting, the CE provides a form of searching for the sampling of optimal importance. After formulat-
ing an optimization problem as an estimation problem, CE becomes a powerful stochastic search method. The
method is based on a simple iterative procedure and in each iteration it contains only two phases: generating
the random data samples (trajectories, vectors, etc.) and updating the parameters of random mechanisms based
on the data in order to produce a better sample in the next iteration (?).

The CE has its origin in the adaptation of the algorithm to estimate a rare event based on variance min-
imization. This procedure was soon modified to an algorithm adapted for the estimation of rare events and
combinatorial optimization, where the minimum variation programs were replaced by the CE minimization
program (?).

Let J be the objective function in Rn. Suppose one wants to find the maximum of J in Rn, i.e.,

x∗ = arg max
x∈Rn

J (x) , (4)

and the achieved maximum is denoted by γ∗ = J (x∗).
Associating it with the probability estimation problem, P(J (X) ≥ γ), where X is a randomized version of

the design variables vector with f(x;v) in Rn, the maximum can be approximated by the estimation of this
probability. In fact, if γ is a near-unknown choice γ∗, this is typically the probability of a rare-event, and the
CE approach for estimation can be used to search for the distribution of importance sampling near the sampling
density of theoretical greatest importance, which concentrates all its mass on the point x∗ (?). Sampling from
this distribution produces optimal or close to optimal results. A schematic of CE method is represented in
Figure 1, and the algorithm is presented in the sequence.
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Sampling

v0 = (µ0, σ0) draw

samples

X1,X2, · · · ,XNs objective

function

J (X1),J (X2), · · · , (XNs)vt = (µt, σt)

Learning

µt, σt update

estimators

εt
eliteset

global

optimal

Figure 1: Schematic representation of the CE algorithm for optimization.

CE Algorithm for optimization

1. Choose an initial parameter vector v0. Let Ne = [%Ns].
Set t = 1. (iteration counter);

2. Generate X1, . . . ,XNs ∼ iid. Calculate Ji = J (Xi) for all i,
and order these from smallest to largest: J(1) ≤ . . . ≤ J(N);
Let γ̂t be the sample (1− %) - quantile of performances; that is, γ̂t = J(Ns−Ne+1).

3. Use the same sample X(1), . . . ,X(Ne) to solve the stochastic program

max
v

1

N

N∑
XkεE

ln f(Xk;v)

Denote the solution by v̂t;

4. If some stopping criterion is met, stop; otherwise, set t = t+ 1,
and return to Step 2.

Algorithm reproduced integrally from (?).

Whenever the optimization problem has constraints qi(X) = 0 i = q, · · · , k, a penalization strategy is used,
where the objective function is modified to

J̃ (X) = J (X) + ν

k∑
i=1

max{qi(X), 0} , (5)

being ν < 0 the i-th penalty parameter (?).

4. Numerical Results

This section presents the numerical results for the optimization of a 10-bar truss structure, as illustrated in
Figure 2. The objective of the optimization is to find the optimal configuration of the truss that satisfies specific
natural frequency requirements. Specifically, the target natural frequencies are set as ω∗1 = 7 Hz, ω∗2 = 15 Hz,
and ω∗3 = 20 Hz. Additionally, the truss structure must accommodate an added mass mad of 454 kg distributed
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at nodes 1, 2, 3, and 4. The optimization problem also includes constraints on the cross-sectional areas,
where each area Ae must fall within the range of 65.4 mm2 to 5000 mm2. The aim of the optimization is to
find a truss configuration that minimizes the overall mass while satisfying these frequency and cross-sectional
area constraints. To reduce the mass of the structural system while satisfying the defined natural frequency
constraints, the cross-sectional areas of the bars are systematically reduced. The optimization methods aim to
find the minimum mass configuration that achieves or exceeds the target natural frequency values.
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Figure 2: Illustration of the truss structure to be optimized.

Figure 3 presents the box plot with the statistics of the values ends of the truss mass in each of the two
metaheuristics of the 100 obtained values where the red line represents the median, the lower and upper limits
of the blue box represent the 25% quartile, and the 75% quartile, respectively, the dashed upper and lower limits
represent the most extreme values, disregarding the outliers, which are the red crosses. CE obtained a median
value better than GA.
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Figure 3: Boxplot with GA and CE.
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Table 1 displays the cross-sectional areas obtained by the optimization methods with mean values, while
Table 2 provides an illustration of the corresponding area distributions. The achieved natural frequencies
resulting from the optimization methods are presented in Table 3. It can be observed that all the optimization
methods have successfully respected the constraints, with the first three natural frequencies (ω1, ω2, and ω3)
matching or exceeding the defined constraints (ω∗1 , ω∗2 , and ω∗3). This demonstrates the effectiveness of the
optimization methods in achieving the desired structural performance while minimizing the mass.

Table 1: Values of cross-sectional area in the Truss found by optimization methods GA and CE in mm2.

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

GA 3476 1427 3339 1398 131 466 2521 2441 1236 1516

CE 3558 1490 3558 1490 65 462 2403 2402 1256 1257

Table 2: Areas obtained by the two optimization methods considering natural frequencies constraints.

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

GA

CE

Table 3: Natural frequencies in the Truss found by optimization methods GA and CE in Hz.

Method ω1 ω2 ω3

GA 7.0 16.6 20.0

CE 7.0 16.2 20.0

In the past decade, two metaheuristic methods, Harmony Search (HS) and Firefly Algorithm (FA), have
gained attention as effective optimization techniques (?). In this study, these two methods are applied to the
optimization problem with constraints on natural frequencies, which involves nonlinear dynamic optimization.
It is worth noting that this was the first time these methods were utilized for sizing and shape optimization
with natural frequency constraints. The results of these methods, along with the CE method (median), are
presented in Table 4.

Table 4: Comparison between the results obtained by CE, HS and FA optimizing the area of each bar in Truss.

Method mass (kg)

CE 531
HS 535
FA 531

Table 6 provides an overview of the cross-sectional areas obtained by the CE, HS, and FA optimization
methods. Additionally, Table 7 illustrates the corresponding area distributions obtained by these methods. The
natural frequencies resulting from the optimization are shown in Table 5. It is important to note that the values
for HS and FA are taken from (?). It is worth mentioning that CE, HS, and FA are relatively new optimization
methods that hold potential for further improvement and future advancements in this example.
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Table 5: Natural frequencies in the Truss found by optimization methods CE, HS and FA in Hz.

Method ω1 ω2 ω3

CE 7.0 16.2 20.0

HS 7.0 16.7 20.1

FA 7.0 16.1 20.0

Table 6: Values of cross-sectional area in the Truss found by optimization methods CE, HS and FA in mm2.

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

CE 3558 1490 3558 1490 65 462 2403 2402 1256 1257

HS 3428 1565 3764 1606 107 474 2250 2460 1287 1210

FA 3620 1403 3475 1490 65 467 2347 2551 1271 1235

Table 7: Illustration of the areas obtained by CE, HS and FA considering natural frequencies constraint in
Truss.

Method A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

CE

HS

FA

5. Concluding remarks

Numerical experiments evaluate the effectiveness and robustness of the CE in the context of structural
optimization. The results show that the evaluated method is very competitive, proving to be an appealing tool
for optimization problems.

The results indicate that CE performs favorably compared to GA, HS and FA. This highlights the efficiency
and viability of CE as a technique for structural optimization. Despite this, the comparative analysis suggests
that CE, HS and FA have potential for improvement and may yield better results in future studies. However,
it is important to highlight that, for computational expensive problems like structural optimization, the use
of metaheuristics is only justified if, despite being expensive, it is still feasible, and it is not viable to use
gradient-based methods, either because the problem is non-differentiable, or there is a great need to obtain a
global optimum and the non-convexity of the problem makes a solution obtained by gradient-based methods
unattractive.

In summary, CE demonstrates strong performance and efficiency in the considered structural optimization
problem. Furthermore, in future works CE will be applied in other structural optimization scenarios such as in
3D structural models.
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