Marcos Vinícius 
  
Santos Issa 
email: marcos.issa@uerj.br
  
Americo Cunha 
email: americo.cunha@uerj.br
  
Francisco Soeiro 
email: soeiro@uerj.br
  
Marcos Vinicius Issa 
  
Francisco José Da Cunha 
  
Pires Soeiro 
  
Anderson Pereira 
email: anderson@puc-rio.br
  
  
  
Optimizing truss structures with natural frequency constraints using the cross-entropy method

Keywords: structural optimization, non-convex optimization, stochastic simulation

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

Structural optimization plays a crucial role in engineering design, aiming to find the optimal configuration of a structure that meets specific performance criteria (???). In many real-world applications, the objective is to minimize the mass of the structure while satisfying constraints related to natural frequencies. Achieving such optimization poses significant challenges due to the non-convex nature of the problem and the complex interplay between mass and natural frequency constraints.

Traditional optimization techniques, such as gradient-based methods, rely on the availability of explicit gradients of the objective function and constraints (????). However, in several structural optimization problems with non-convex objectives and complex constraints, obtaining these gradients can be impractical or even impossible. Moreover, even if gradients are available, the presence of multiple local optima makes it challenging to guarantee finding the global optimum. To address these challenges, metaheuristic methods have emerged as promising approaches for solving non-convex optimization problems (??????). Metaheuristics, unlike traditional methods, do not rely on gradient information and are capable of exploring complex search spaces efficiently. These methods have been successfully applied in various fields, including structural optimization, due to their ability to handle non-convexity and constraints without explicit gradient information.

In the context of structural optimization, the minimization of mass while respecting natural frequency constraints is of paramount importance. However, this problem presents additional difficulties, as it requires balancing conflicting objectives and dealing with complex nonlinear system. The optimization process must strike a delicate balance between achieving a lightweight structure while ensuring avoiding undesirable vibration modes.

In this paper, we address the challenges associated with structural optimization, particularly focusing on the problem of minimizing mass subject to natural frequency constraints. To tackle this problem, we propose the utilization of the Cross-Entropy (CE) method, a powerful metaheuristic algorithm capable of handling nonconvex optimization problems (????). The CE method, originally developed for rare event simulation, provides an efficient approach to explore complex search spaces and find near-optimal solutions. The primary motivation for employing the CE method in this context is twofold. Firstly, the CE method does not require explicit gradient information, making it suitable for non-convex problems where gradients are unavailable or difficult to compute. Secondly, the CE method offers a balance between accuracy and computational efficiency, providing competitive solutions for optimization problems with constraints.

In this study, we compare the performance of the CE method with the genetic algorithm (GA) on benchmark structural truss problems (??). We aim to demonstrate that the CE method can effectively handle the non-convex structural optimization problem of minimizing mass while satisfying natural frequency constraints. Through numerical experiments, we evaluate the accuracy and computational efficiency of the CE method, highlighting its potential as a valuable tool in the field of structural optimization.

Structural optimization

The optimization problem of interest in this work seeks to find a configuration of areas for the cross sections of a truss structure with n bars that minimize its total mass, respecting certain restrictions imposed on the k first natural frequencies. This problem can be mathematically formulated as finding a vector of design variables

x = {A 1 , • • • , A n } that minimizes the objective function J (x) = Truss ρ(x) dV , (1) 
respecting the constraints defined by

ω 1 ≥ ω * 1 , • • • , ω k ≥ ω * k , (2) 
for natural frequencies obtained from

K φ i = ω 2 i M φ i (i = 1, • • • , k) , ( 3 
)
where ρ is the truss material density, ω i is the i-th natural frequency, ω * i is the i-th natural frequency constraint, and A e is the cross-sectional in e-th bar element. The natural frequencies of a structural model are obtained by the eigenvalue problem, being, M the mass matrix, ω 2 the eigenvalue, and φ the eigenvector, where ω is the value of the natural frequency.

Cross-Entropy method

The Cross-Entropy (CE) method is a Monte Carlo technique used for estimation and optimization. In the estimation setting, the CE provides a form of searching for the sampling of optimal importance. After formulating an optimization problem as an estimation problem, CE becomes a powerful stochastic search method. The method is based on a simple iterative procedure and in each iteration it contains only two phases: generating the random data samples (trajectories, vectors, etc.) and updating the parameters of random mechanisms based on the data in order to produce a better sample in the next iteration (?).

The CE has its origin in the adaptation of the algorithm to estimate a rare event based on variance minimization. This procedure was soon modified to an algorithm adapted for the estimation of rare events and combinatorial optimization, where the minimum variation programs were replaced by the CE minimization program (?).

Let J be the objective function in R n . Suppose one wants to find the maximum of J in R n , i.e.,

x * = arg max x∈R n J (x) , (4) 
and the achieved maximum is denoted by γ * = J (x * ).

Associating it with the probability estimation problem, P(J (X) ≥ γ), where X is a randomized version of the design variables vector with f (x; v) in R n , the maximum can be approximated by the estimation of this probability. In fact, if γ is a near-unknown choice γ * , this is typically the probability of a rare-event, and the CE approach for estimation can be used to search for the distribution of importance sampling near the sampling density of theoretical greatest importance, which concentrates all its mass on the point x * (?). Sampling from this distribution produces optimal or close to optimal results. A schematic of CE method is represented in Figure 1, and the algorithm is presented in the sequence. 2. Generate X 1 , . . . , X N s ∼ iid. Calculate J i = J (X i ) for all i, and order these from smallest to largest: J (1) ≤ . . . ≤ J (N ) ; Let γt be the sample (1 -) -quantile of performances; that is, γt = J (N s -N e +1) .

Sampling v 0 = (µ 0 , σ 0 ) draw samples X 1 , X 2 , • • • , X N s objective function J (X 1 ), J (X 2 ), • • • , (X N s) v t = (µ t , σ t ) Learning µ t , σ t update estimators ε t elite set global optimal
3. Use the same sample X (1) , . . . , X (N e ) to solve the stochastic program max

v 1 N N X k E ln f (X k ; v)
Denote the solution by vt ; 4. If some stopping criterion is met, stop; otherwise, set t = t + 1, and return to Step 2.

Algorithm reproduced integrally from (?).

Whenever the optimization problem has constraints q i (X) = 0 i = q, • • • , k, a penalization strategy is used, where the objective function is modified to

J (X) = J (X) + ν k i=1 max{q i (X), 0} , (5) 
being ν < 0 the i-th penalty parameter (?).

Numerical Results

This section presents the numerical results for the optimization of a 10-bar truss structure, as illustrated in Figure 2. The objective of the optimization is to find the optimal configuration of the truss that satisfies specific natural frequency requirements. Specifically, the target natural frequencies are set as ω * 1 = 7 Hz, ω * 2 = 15 Hz, and ω * 3 = 20 Hz. Additionally, the truss structure must accommodate an added mass m ad of 454 kg distributed at nodes 1, 2, 3, and 4. The optimization problem also includes constraints on the cross-sectional areas, where each area A e must fall within the range of 65.4 mm 2 to 5000 mm 2 . The aim of the optimization is to find a truss configuration that minimizes the overall mass while satisfying these frequency and cross-sectional area constraints. To reduce the mass of the structural system while satisfying the defined natural frequency constraints, the cross-sectional areas of the bars are systematically reduced. The optimization methods aim to find the minimum mass configuration that achieves or exceeds the target natural frequency values. Figure 3 presents the box plot with the statistics of the values ends of the truss mass in each of the two metaheuristics of the 100 obtained values where the red line represents the median, the lower and upper limits of the blue box represent the 25% quartile, and the 75% quartile, respectively, the dashed upper and lower limits represent the most extreme values, disregarding the outliers, which are the red crosses. CE obtained a median value better than GA. Table 1 displays the cross-sectional areas obtained by the optimization methods with mean values, while Table 2 provides an illustration of the corresponding area distributions. The achieved natural frequencies resulting from the optimization methods are presented in Table 3. It can be observed that all the optimization methods have successfully respected the constraints, with the first three natural frequencies (ω 1 , ω 2 , and ω 3 ) matching or exceeding the defined constraints (ω * 1 , ω * 2 , and ω * 3 ). This demonstrates the effectiveness of the optimization methods in achieving the desired structural performance while minimizing the mass. Table 2: Areas obtained by the two optimization methods considering natural frequencies constraints. In the past decade, two metaheuristic methods, Harmony Search (HS) and Firefly Algorithm (FA), have gained attention as effective optimization techniques (?). In this study, these two methods are applied to the optimization problem with constraints on natural frequencies, which involves nonlinear dynamic optimization. It is worth noting that this was the first time these methods were utilized for sizing and shape optimization with natural frequency constraints. The results of these methods, along with the CE method (median), are presented in Table 4. Table 6 provides an overview of the cross-sectional areas obtained by the CE, HS, and FA optimization methods. Additionally, Table 7 illustrates the corresponding area distributions obtained by these methods. The natural frequencies resulting from the optimization are shown in Table 5. It is important to note that the values for HS and FA are taken from (?). It is worth mentioning that CE, HS, and FA are relatively new optimization methods that hold potential for further improvement and future advancements in this example. 

Method A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 GA CE
. Method A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 CE HS FA

Concluding remarks

Numerical experiments evaluate the effectiveness and robustness of the CE in the context of structural optimization. The results show that the evaluated method is very competitive, proving to be an appealing tool for optimization problems.

The results indicate that CE performs favorably compared to GA, HS and FA. This highlights the efficiency and viability of CE as a technique for structural optimization. Despite this, the comparative analysis suggests that CE, HS and FA have potential for improvement and may yield better results in future studies. However, it is important to highlight that, for computational expensive problems like structural optimization, the use of metaheuristics is only justified if, despite being expensive, it is still feasible, and it is not viable to use gradient-based methods, either because the problem is non-differentiable, or there is a great need to obtain a global optimum and the non-convexity of the problem makes a solution obtained by gradient-based methods unattractive.

In summary, CE demonstrates strong performance and efficiency in the considered structural optimization problem. Furthermore, in future works CE will be applied in other structural optimization scenarios such as in 3D structural models.
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Figure 1 :

 1 Figure 1: Schematic representation of the CE algorithm for optimization.

  144 m ; P = 444.8 kN ; E = 68.9 × 10 9 N/m 2 .

Figure 2 :

 2 Figure 2: Illustration of the truss structure to be optimized.

Figure 3 :

 3 Figure 3: Boxplot with GA and CE.

Table 1 :

 1 Values of cross-sectional area in the Truss found by optimization methods GA and CE in mm 2 .

	Method	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
	GA	3476 1427 3339 1398 131 466 2521 2441 1236 1516
	CE	3558 1490 3558 1490	65	462 2403 2402 1256 1257

Table 3 :

 3 Natural frequencies in the Truss found by optimization methods GA and CE in Hz.

	Method ω 1	ω 2	ω 3
	GA	7.0 16.6 20.0
	CE	7.0 16.2 20.0

Table 4 :

 4 Comparison between the results obtained by CE, HS and FA optimizing the area of each bar in Truss.

	Method mass (kg)
	CE	531
	HS	535
	FA	531

Table 5 :

 5 Natural frequencies in the Truss found by optimization methods CE, HS and FA in Hz.

	Method	ω1	ω2	ω3
	CE	7.0 16.2 20.0
	HS	7.0 16.7 20.1
	FA	7.0 16.1 20.0

Table 6 :

 6 Values of cross-sectional area in the Truss found by optimization methods CE, HS and FA in mm 2 .

	Method	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
	CE	3558 1490 3558 1490	65	462 2403 2402 1256 1257
	HS	3428 1565 3764 1606 107 474 2250 2460 1287 1210
	FA	3620 1403 3475 1490	65	467 2347 2551 1271 1235

Table 7 :

 7 Illustration of the areas obtained by CE, HS and FA considering natural frequencies constraint in Truss
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