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Résumé :
Cet article aborde les aspects numériques d’une nouvelle méthode développée pour accélérer les calculs
sur des structures poreuses à comportement non linéaire. L’hypothèse de proportionnalité est utilisée
en conjonction avec une méthode de Neuber modifiée afin de réduire la complexité dimensionnelle ty-
pique des méthodes de Neuber multiaxiales. Cette méthode est utilisée afin d’intégrer numériquement
les lois matérielles non linéaires en fonction de la réponse élastique EF de la structure, pour obtenir la
dissipation intrinsèque en champ complet via les composantes déviatoriques élasto-plastiques appro-
chées de contrainte et de déformation. Les erreurs generés en utilisant de cette méthode sont illustrées.
Cette méthode permet la génération rapide de grands ensembles de données de la réponse thermique des
structures avec des populations de pores variables ayant un comportement non linéaire. Des approches
d’apprentissage automatique basées sur ces données pour lier la réponse thermique des structures à
leur durée de vie en fatigue sont donc rendues possibles.

Abstract :

This paper addresses the numerical aspects of a new method developed to accelerate calculations on
porous structures with non-linear material behavior. The hypothesis of proportionality is used in conjuc-
tion with a modified Neuber method in order to reduce the dimensional complexity that the multi-axial
Neuber methods intrinsically have. This method is used in order to numerically integrate the non-linear
material laws as a function of the FE elastic response of the structure, to obtain the full-field intrinsic
dissipation via the approximated elasto-plastic deviatoric components of stress and strain. The errors
generated by using this method are illustrated. This method enables rapid generation of large data-sets
of the thermal response of structures with varying pore populations having a non-linear behavior. Data-
driven deep-learning approaches for linking the thermal response of structures to their fatigue life are
therefore made possible.

Keywords : Model Reduction, Neuber’s rule, Finite Element Method, Acce-
lerated Calculations
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Nomenclature
σ̂˜d, ϵ̂˜d Approximated total deviatoric stress and strain tensors

σ̂˜d,o, ϵ̂˜d,o Approximated total deviatoric stress and strain tensors at the last peak of cyclic
loading

σ̄˜d, ϵ̄˜d Finite-Element elastic stress and strain deviatoric tensors for a point at a fixed global
loading

σ̄˜ed, ϵ̄˜ed Elastic deviatoric stress and strain tensors

σ̄˜ed,o, ϵ̄˜ed,o Elastic deviatoric stress and strain tensors at the last peak of cyclic loading

σ˜d, ϵ˜d Reference total deviatoric stress and strain tensors

e Proportionality ratio of the approximated total deviatoric strain tensor to the elastic
deviatoric strain tensor

eo Proportionality ratio of the approximated total deviatoric strain tensor to the elastic
deviatoric strain tensor at the last peak of cyclic loading

f Loading function

fo Loading function at the last peak of cyclic loading

s Proportionality ratio of the approximated total deviatoric stress tensor to the elastic
deviatoric stress tensor

so Proportionality ratio of the approximated total deviatoric stress tensor to the elastic
deviatoric stress tensor at the last peak of cyclic loading

1 Introduction
Fatigue life characterization of industrial components has traditionally required a large number of ex-
periments, in depth investigation by SEM and more recently tomographic analysis to understand the
mechanisms of damage especially in presence of defects, to identify a fatigue lifetime law based on a
criterion and to describe the scatter in lifetimes [1], [2]. This approach is both costly and time consu-
ming, therefore, a new method of fatigue lifetime characterization is to be developed, consisting of a
threefold approach, including experiments, simulations and machine learning. The main objective is
to reach a real-time criterion from measurements to assess residual lifetime of a material subjected to
fatigue loading in presence of defects.

A deep-learning based tool will be developed that can be used in real-time to aid in the decision making
regarding the service life of structures bearing fatigue loading in presence of a population of defects.
The fatigue lifetime will be predicted based on image data that can be easily and inexpensively acquired
via non contact measurement techniques. The study is based around laboratory specimens made from
cast aluminium alloys, manufactured by the lost foam method, that is commonly used in the automotive
industry. The manufacturing method causes formation of pores and defects in the material, which adds to
the uncertainty in the fatigue lifetime characterization [1], [4]. The proposed approach aims to exploit the
thermal response of these porous specimens under cyclic mechanical solicitation in order to predict their
fatigue lifetime. The thermal response includes thermoelastic coupling as well as intrinsic dissipation
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in the structures, which causes a temperature change in the structures identifiable via IR thermography
that reduces the ill-posedness of the inverse problem to be solved.

Deep-learning approaches require a large and representative data-set for learning the parameters res-
ponsible for failure. As experiments remain scarce, simulations will form a large part of the data-set.
A Monte-Carlo approach is adopted to simulate varying pore populations. Nevertheless, nonlinear FE
calculations on structures with pores remain computationally expensive and highly time consuming and
are not feasible in large quantities. Thus, a method of acceleration is needed.

In this paper, a modified Neuber type method is developed and solved in conjunction with an elasto-
plastic model [8] to accelerate the calculation by using inexpensive elastic finite element calculations.
This permits fast calculation of internal plastic variables like the intrinsic dissipation for a range of
structures with varying pore populations.

2 Literature

2.1 Neuber-Type methods
Neuber [9] originally derived a way to approximate the unidimensional plastic stress and strain at a notch
root under monotonic loading from an elastic calculation. The Neuber rule states that the Hookian or
elastic stress concentration factor kt is the geometric mean of the plastic stress and strain concentration
factors kσ and kϵ, i.e.

kt = (kσkϵ)
1
2 (1)

which can also be written as

σϵ = σeϵe (2)

where σe and ϵe are the elastic stress and strain at the notch and σ and ϵ are the approximated real stress
and strain at the notch. This equation represents the equality of the total work at the notch tip.

This concept was extended for cyclic uni-axial loading by assuming a zero mean stress at the notch root
and relating the elastic local stress and strain ranges∆σe and∆ϵe to the real local stress and strain ranges
∆σ and ∆ϵ [10] :

∆σ∆ϵ = ∆σe∆ϵe (3)

The authors in [11] suggest taking into account the mean stress by including a change of origin every
time a peak in the uni-axial cycling loading is reached :

(σ − σo) : (ϵ− ϵo) = (σ̄e − σ̄e
o) : (ϵ̄

e − ϵ̄eo) (4)

The Neuber method has been generalized for proportional multi-axial loadings, with the extension being
[13] :
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σijϵij = σe
ijϵ

e
ij (5)

Where i,j = 1,2,3 and summation of the components is applied. The authors note that this formulation
applies when the deviatoric stresses of the notch tip are proportional during loading. The authors also
assume that the fractional contribution of the largest principal notch tip stress and strain to the total notch
tip strain energy density is virtually equal to the corresponding fraction calculated elastically. Together
with the material constitutive equations, the stresses and strains at the notch tip are thereby calculated.

The investigations in [14] report that the estimated elastic-plastic solution seems insensitive to the as-
sumed path for proportional nominal loadings, but becomes very sensitive to the assumed path for non-
proportional nominal loadings. Thus, an incremental version of the Neuber method has been developed
to account for non-proportional cyclic loading via the application of incremental plasticity. The authors
in [15] suggest that in order to formulate the set of necessary equations for a multiaxial non-proportional
analysis of elastic-plastic stresses and strains at the notch tip, increments of the total distortional strain
energy density contributed by each pair of stress and strain components are equal :

σdij∆ϵdij +∆σdij ϵdij = σe
dij

∆ϵedij +∆σe
dij

ϵedij (6)

Therefore, the incremental deviatoric elastoplastic stress and strain components at the notch tip are
therefore calculated via increments of the hypothetical linear elastic stresses and strains due to non-
proportional loading and the material constitutive equations (the authors use the Prandtl-Reuss flow
rule).

3 Methodology

3.1 Modified Neuber hypothesis
The Neuber-type hypothesis used for our case considers the deviatoric parts of the stress and strain
tensors :

(σ̂˜d − σ̂˜d,o) : (ϵ̂˜d − ϵ̂˜d,o) = (σ̄˜ed − σ̄˜ed,o) : (ϵ̄˜ed − ϵ̄˜ed,o) (7)

Where σ̂˜d, ϵ̂˜d stand for the approximated total deviatoric stress and strain tensors and σ̂˜d,o, ϵ̂˜d,o stand for
the approximated total deviatoric stress and strain tensors at the last peak. Similarly, σ̄˜ed, ϵ̄˜ed stand for the
hypothetical elastic deviatoric stress and strain tensors and σ̄˜ed,o, σ̄˜ed,o stand for the hypothetical elastic
deviatoric stress and strain tensors at the last peak. The hydrostatic part of the total stress and strain
tensors is assumed to be directly equal to the elastic hydrostatic stress and strain.

It is important to note that stresses and strains in a structure depend on its geometry, the material behavior
and the external loading applied. When there is a change in the direction or ratio of the stresses developed
in the material, these local stresses are said to be non-proportional. If there is plastic flow anywhere in
the structure, local non-proportionality can appear even if the external loading is proportional.

We assume a hypothesis of proportionality, that is, while the local evolution of the actual deviatoric stress
and strain tensors at a point can be arbitrarily complex, it stays in the direction of the elastic deviatoric
stress and strain, i.e. there is no shift in the direction in which plasticity develops. All the components of
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Table 1 – Parameters of the elasto-plastic model

Parameter E σy b Q C D
MPa MPa MPa MPa MPa

Value 200000 100 10 100 40000 400

the total deviatoric stress have the same ratio s with the respective components of the elastic deviatoric
stress that does not change in direction or magnitude over the loading history. Similarly, the ratio between
the total and elastic components of the deviatoric strain is defined as e. According to this hypothesis :

σ̂˜d = sσ̄˜d (8)

ϵ̂˜d = eϵ̄˜d (9)

where s and e are scalar functions of time.

The elastic tensors vary linearly with respect to the loading, and therefore, if an elastic calculation via
the finite-element method for a point at a fixed global loading is denoted by σ̄˜ and ϵ̄˜, then the following
holds true :

σ̄˜ed = fσ̄˜d (10)

ϵ̄˜ed = f ϵ̄˜d (11)

where the loading function f is chosen to be a sawtooth function to represent cyclic loading.

The main advantage of this hypothesis allows for a reduction in the number of dimensions that the Neuber
equation needs to be solved in, i.e. the number of equations is reduced from six to one :

(sσ̄˜d − soσ̄˜d) : (eϵ̄˜d − eoϵ̄˜d) = (fσ̄˜d − foσ̄˜d) : (f ϵ̄˜d − foϵ̄˜d) (12)

σ̄˜d : ϵ̄˜d(s− so)(e− eo) = σ̄˜d : ϵ̄˜d(f − fo)(f − fo) (13)

(s− so)(e− eo) = (f − fo)
2 (14)

This equation is now scalar as there is only one component to solve for. The evolution of this component
is shown in Figure 1.

3.2 Material law
While any model of plasticity can be used to solve the modified Neuber equations, the following elasto-
plastic Chaboche model with kinematic and isotropic hardening [8] is used in our case :
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Figure 1 – An illustration of the modified Neuber method during the (a) first branch of loading (b)
second branch of loading, with so and eo updated to their respective values at the last peak

The total strain tensor is the sum of the elastic and plastic strain tensors :

ϵ˜= ϵ˜e + ϵ˜p (15)

The stress tensor is given by :
σ˜ = 2µ(ϵ˜− ϵ˜p) + λtr(ϵ˜− ϵ˜p) (16)

The total stress tensor can be split into its deviatoric and hydrostatic parts :

σ˜ = σ˜d + σ˜h (17)

The deviatoric stress tensor is given by :

σ˜d = 2µ(ϵ˜d − ϵ˜pd) (18)

The total hydrostatic stress tensor is assumed to be equal to the elastic hydrostatic stress, as they are
close [12] :

σ˜h =
1

3
tr(σ˜e) (19)

The Von-Mises stress is :

σVM =

√
3

2
σ˜d : σ˜d (20)

Kinematic hardening :
Ẋ˜ =

2

3
Cϵ̇˜p −DX˜ ṗ (21)

Isotropic hardening :
R = Q(1− e−bp) (22)

The accumulated plastic strain depends only on the deviator of the plastic strain :
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ṗ =

√
2

3
ϵ̇˜pd : ϵ̇˜pd (23)

where ϵ̇˜pd is the time derivative of the deviatoric plastic strain tensor.

The yield surface is defined by :

f (σ;X, p) = σeq(σ;X)− σy −R

where f (σ;X, p) <= 0
(24)

With the hypothesis of proportionality, these equations change accordingly from six components to one
component. The system of equations can thus be solved for the scalar functions s and e. Together with
the modified equations describing the material behavior and the modified Neuber equation, s and e are
calculated, which result in a full approximate mechanical solution of the non-linear structural problem.
This can be used to calculate the intrinsic dissipation over a cycle [16] :

ϕ1 = (f (σ;X, p) + σy +
R2

2Q
+

D

2C
J2(X˜ ))ṗ (25)

This equation is suitably simplified to a variant containing scalar functions that arise from the hypothesis
of proportionality. The parameters chosen for this study are summarized in table 1.

3.3 Finite Element simulator and interpretability
The previous section focused on obtaining the intrinsic dissipation, a value that depends heavily on the
form of the non-linear stress-strain curves, from elastic calculations at a cyclically loaded point under-
going multi-axial stress. It is desired to apply this approach to not just a point, but all points within a
larger domain of interest, for example, all points within a geometry with an explicitly modelled distri-
bution of defects, while also keeping the calculation time short.

To make interpretation of developing plasticity easier in the reduced dimensions, some steps are needed :
A structure without pores with elastic behavior is modelled, and the global loading is chosen such that
the Von-Mises stress at all the points in the region of interest is equal to the yield stress of the material.

Next, this global loading is applied to the same geometry, with the same elastic behavior, but this time
with explicitly modelled spherical pores. Due to the elastic behavior, the points near the pores develop
a Von-Mises stress higher than the yield stress, and are therefore hypothetically elastic. The plasticity at
these points will be approximated via the modified Neuber method. The quantities σ̄˜ and ϵ̄˜ are therefore
obtained for all the points in the material, and the quantity σ̄˜ : ϵ̄˜ captures the elastic information for all
the points in the structure, including hypothetically elastic points near the pores.

The loading function f defined earlier captures the extent of loading of the structure. As σ̄˜ and ϵ̄˜ represent
a calculation at the yield limit, the function f will vary between 0 and 1 for a load that is below the yield
limit of the material, and be exactly 1 when the yield limit of the material is reached. Therefore, choosing
the amplitude of f to be 0.8 would be equivalent to loading the material to 80% of its yield limit. Locally,
due to explicitly modelled pores, some points would cross the yield limit due to localized stresses, i.e.
plasticity occurs when σVM > σy.

Information about these variably stressed local points is extracted in the form of σ̄˜ : ϵ̄˜ from the elastic
FE calculation. This quantity, which captures the elastic stress and strain values at these points, are used
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Figure 2 – (a) Elastic FE calculation at the yield limit without pores, with σVM = σy (b) Loading
function as a proportion of the yield limit (c) The Von-Mises stress obtained by applying the loading
function to the elastic FE calculation, shown for a peak (d) The Gaussian process to predict the dissipation
given by the modified Neuber method for the chosen load cycle (e) Full-field dissipation calculated via
the modified Neuber method, sampled from the Gaussian process for all the points in the structure

by the modified Neuber equations and material laws to solve for the scalar functions representing the
actual stress and strain evolution, and thereby the intrinsic dissipation.

Next, a 1-D Gaussian process is fitted on this range of variably stressed points and their corresponding
intrinsic dissipation. This allows for rapid sampling - the entirety of the elastic field of the porous struc-
ture is given as an input, the full-field intrinsic dissipation is directly sampled as the output. Instead of
doing a lengthy cyclic non-linear FE calculation on a structure to obtain the dissipation, the FE simulator
thus created needs only a call to an elastic FE calculation of the structure to predict the full-field intrinsic
dissipation in a cycle for a given loading sequence (illustrated in Figure 2).

4 Results

4.1 Full-field intrinsic dissipation
Part of the full-field dissipation obtained by the modified Neuber approach and the reference dissipation
obtained by a full elasto-plastic FE calculation is shown in Figure 3(a). A comparison of all the points
is shown in Figure 4(c). A good overall match is found in the values of the dissipation obtained by
the modified Neuber method and the reference dissipation. However, there exists some scatter, which
is expected due to the cumulative errors of the assumptions of the modified Neuber method. The next
section aims to go in depth of the nature of these errors.
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Figure 3 – (a) Full-field dissipation using the modified Neuber approach, with the highlighted purple
cell showing the point of comparison of the curves (b) Full-field reference dissipation as a result of a
complete nonlinear FE calculation in the Z-Set [17] software (c) The evolution of the proportionality
ratios evaluated by the modified Neuber method at the highlighted cell (d) Comparison between the
cumulative dissipation obtained by the two methods at the same point, showing an under-estimation of
the dissipation at this cell via the modified Neuber method
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o

Figure 4 – (a) Dissipation using the modified Neuber approach, with purple cells showing examples of
some outlier points where the method over-estimates (b) Reference dissipation as a result of a complete
nonlinear FE calculation in the Z-Set [17] software (c) Comparison between the modified Neuber and
reference values ; the outlier points corresponding to the cells are circled in purple.
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Figure 5 – (a) Relative error and cumulated plastic strain of an element near a pore, over time (b)
Percentage of elements in the FE calculation below 15% relative error, over time, alongside the loading
history

4.2 Errors due to the hypothesis of proportionality
The relative error ξrel between the approximated deviatoric stress tensor using the hypothesis of propor-
tionality and the reference deviatoric stress tensor, calculated via a full non-linear FE calculation can be
calculated :

Error, ξ = σ˜d − σ̂˜d (26)

σ̂˜d = sσ̄˜d (27)

(σ̄˜d : σ̂˜d)− s(σ̄˜d : σ̄˜d) = 0 (28)

Combining equations 26 and 28 :

ξ = σ˜d − [(σ̄˜d : σ̂˜d)/(σ̄˜d : σ̄˜d)]σ̄˜d (29)

ξrel =
∥ξ∥F
∥σ˜d∥F (30)

The relative error ξrel is calculated for all the loading history. Figure 5(a) shows the evolution of the
relative error of an element near a pore (shown in Figure 3), alongside the accumulated plastic strain.
The load reversal naturally causes the error due to the hypothesis of proportionality to skyrocket, but due
to elasticity during reversal, the accumulated plastic strain is zero and thereby there is no accumulated
dissipation during load reversal. In other words, the error during load reversal does not contribute to the
error in plasticity or dissipation calculations.

5 Conclusion
Neuber’s rule was modified to obtain the full-field intrinsic dissipation of structures with non-linear
behavior subjected to cyclic loading. The modifications to the Neuber method consist of :
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⋄ Equivalency between the deviatoric stress-strain tensors
⋄ Incorporation of full load reversal, and
⋄ A hypothesis of proportionality

These assumptions lead to certain errors, which are non-negligible during load reversal due to the hy-
pothesis of proportionality. However, as demonstrated, the bulk of the errors occur when there is no
accumulating plasticity, therefore the dissipation is reasonably well estimated. While the overall match
between the dissipation calculated via this method and the reference dissipation from a complete non-
linear FE calculation is rather good, certain points remain over and under-estimated. The main advantage
in using this method is in its speed : the calculation time is accelerated manifold by using this method,
as the modified Neuber method relies on cheap elastic calculations at a fixed global loading. Thus, the
developed finite element simulator allows generation of big data-sets within a reasonable time.
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