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1 Introduction

Knowledge Graphs (KGs) [112] are graph-structured representations intended to capture the
semantics about how entities relate to each other, used as a general tool for the symbolic
representation and integration of knowledge in a structured manner. The actual semantics or
schema of such graphs can be formally described using expressive logic-based languages such as
the Web Ontology Language (OWL) [101], as well as in terms of constraint languages such as the
Shapes Constraint Language (SHACL) [135] or Shape Expressions (ShEx) [195]. Thanks to the
expressivity provided by such formalisations, KGs have become a de-facto standard data model
for integrating information across organisations and public institutions. It also facilitates the
collaborative construction of structured knowledge on the Web by dispersed communities. In other
words, KGs serve as intermediate layers of abstraction between raw data and decision support
systems. Raising the level of abstraction has allowed us to ask more sophisticated questions,
integrate data from heterogeneous sources, and spark collaborations between groups with different
perspectives and views on business problems.

As a result of their function as a basis for knowledge integration, KGs are rarely produced in
a single one-shot process. Instead, KGs are often collaboratively built and accessed over time.
As such, KGs have become a significant driver for the collaborative management of evolving
knowledge, integrating knowledge provided by different actors and multiple stakeholders: use
cases range from the collaborative collection of factual base knowledge in general-purpose Open
KGs such as Wikidata [242] to capturing specialised collaborative knowledge about engineering
processes in manufacturing [110].

However, the sheer scale of — in particular — openly available, collaborative KGs has exacerbated
the challenge of managing their evolution, be it in terms of (i) the size and temporal nature of
the data, (ii) heterogeneity and evolution of the communities of their contributors, or (iii) the
development of information, knowledge, and semantics captured within these graphs over time.

Even though analysis of the content, nature, and quality of KGs has already attracted a vast
amount of research (i.e. [192, 104, 202] and references therein), these works focus less on how
their structure and contents change over time, indeed how these systems evolve.

With the present article, we aim to shift the focus on precisely this matter. In particular, we
try to answer the following main questions:

RQ1 Which publicly accessible, open KGs are observable in a manner that would allow a longitudinal
analysis of their evolution and how? That is, how could we obtain historical data about
their development, or which infrastructures and techniques would we need to monitor their
growth and changes in the future?

RQ2 Which metrics could be used to compare the evolution and structure over time, and how
could existing static metrics be adapted accordingly? Here, we are particularly interested
in approaches from other adjacent fields, such as network science, and how those could be
adapted and applied to specifically analyse the evolution of knowledge graphs.
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(single edge, node changes)
Continuous Change
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Dynamic KG
Temporal KG

Versioned KG

"Time as data"
(valid time)

"Time as metadata/log data"
(transaction time)

<
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(full graph snapshots/dumps)

Figure 1 Perspectives on evolving knowledge graphs. We distinguish between considering time as
data or metadata (x-axis) vs. at which “granularity” changes range from full static “bulk” snapshots at
different points in time to continuous reporting of changes at the level of single edges or nodes (y-axis).
We explicitly note that these perspectives are not mutually exclusive: the visualisation does not capture
the possible overlaps of these perspectives, nor the nature of how changes are produced and captured, e.g.
in terms of underlying collaborative processes.

RQ3 Finally, do we have the right techniques to process evolving KGs, both in terms of scaling
monitoring and computing the necessary metrics, but also in terms of enabling longitudinal
queries, or other downstream tasks such as reasoning and learning in the context of change —
facing the rapid growth and evolution of existing KGs?

To approach these questions, the remainder of this article surveys existing approaches and
works and raises open questions in four directions: observing, studying, managing and spreading
KG evolution. Before elaborating on these directions, we first discuss the different dimensions of
evolution in Section 2, introducing relevant terminology. In Section 3, we discuss to what extent
data about the evolution of open KGs (like Wikidata or DBpedia) is available and what evolution
trends have been observed so far in prior literature. In Section 4, we discuss different types of
metrics to study evolving KGs; starting from state-of-the-art graph and ontology metrics, we
also discuss metrics related to quality and consistency, as well as potentially valuable works and
metrics from the area from network science. In Section 5, we discuss data management problems
for evolving knowledge graphs, i.e. data models that capture temporality as well as storage
approaches and schema mappings for versioned and dynamic KGs. In Section 6, we focus on
downstream tasks on KGs in the specific context of evolution. More precisely, we discuss how
querying, reasoning, and learning approaches can be tailored for evolving KGs. We also address
the exploration of KGs, an essential aspect of evolving KGs. We conclude with a summary of the
main research challenges we currently see unaddressed (or only partially addressed) in Section 7.

2 Dimensions of Evolution

The temporal evolution of graphs, knowledge graphs (KGs), and collaboratively edited KGs has
multiple dimensions that we outline in this section, along with relevant terminology. That is to say,
there are multiple coherent perspectives we can use to talk about the “evolution” of KGs, ranging
from considering time and evolution as being part of the data itself to considering evolution and
change over time on a meta-level. We illustrate these perspectives in Figure 1.

11:3
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Temporal KGs: Time as data

The first perspective considers time, or — more concretely, the temporal validity of information in
a KG — as part of the KG itself; we call this the “Temporal KG” perspective. In this context,
the evolution depicted by the data pertains to the changes in the “world” it represents, not the
evolution of the data itself. Following database terminology, this temporal validity of information
in a KG is typically referred to as valid time; see, for instance, [103]. A very simple example
of a temporal KG is illustrated in Figure 2, which contains the year of production of Picasso’s
“Guernica”, as a slightly simplified subgraph DBpedia [146].}

Guernica

] Pablo Picasso

Figure 2 A simple KG containing temporal information as data (literal).

Time and temporality may be represented with a single temporal literal — as illustrated here
a year or a timestamp, or likewise an interval: for instance, the production of “Guernica” itself
was not a one-shot process, but its painting took place over a longer period. For instance, the
production period of “Guernica” was carried out between 1937-05-01 and 1937-06-04, as illustrated
in Figure 3, a simplified graph inspired by the Linked Art project.?

We note here that capturing intervals typically requires extensions of the “flat” directed
labelled graph model used to represent simple knowledge graphs, as shown in Figure 3: contextual
information about simple statements (such as in this case, the start and end time of a production
interval), can be modelled in various ways, either
1. in terms of adding intermediate nodes to a flat graph model, also often referred to as “reification”,

or alternatively
2. in terms of bespoke, extended graph models such as so-called property graphs
Let us refer to Section 5.1 for a more in-depth discussion of different data models to capture time
and temporality in KGs.

Time-varying KGs: Time as meta-data

The second perspective on evolution is scoped by the time granularity of change in the KG itself;
in other words, by how the temporal aspect of the data, i.e. nodes, edges, and structure, of
the KG is evolving. We call this the “Time-varying KG” perspective. Again, using database
terminology, such changes in data are typically referred to as transaction time [103].

! https://www.dbpedia.org/
2 https://linked.art/model/
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Pablo Picasso

Figure 3 A KG containing temporal information in terms of intervals using a simple form of reification.

We present an example from the arts. Paintings like “Guernica” and information about their
artists and other attributes have been added dynamically to Knowledge Graphs like Wikidata over
time. The entry for “Guernica” (Q175036) in the Wikidata [242] KG was created on 28 November
2012,% while its creator “Pablo Picasso” (Q5593) was added on 1 November 2012%. Of course, both
of these dates are independent of the birth or production dates of the referred entities themselves.
As we will further discuss in Section 3 and also Section 5 below, the granularity and manner of
how such changes are stored affect the observability and analysis of a KG’s evolution.

In terms of granularity, we can differentiate between two types of knowledge graphs based on
how they are stored:
= Dynamic KGs - which allow access to all observable atomic changes in the knowledge graph.
= Versioned KGs - which provide static snapshots of the materialised state of the knowledge graph

at specific points in time.

These represent opposite ends of the granularity spectrum. Figures 4 and 5 show two examples of
how the changing information regarding the location of “Guernica” over time® could be represented
in terms of versions or dynamic changes, respectively.

For instance, as discussed above, Wikidata embodies continuous change, accessible through
the entities’ edit histories at the level of real-time modifications. At the same time, DBpedia
represents both the spectrum’s discrete end, releasing snapshot updates,® as well as offering
small-scale releases with DBpedia Live” on minute level. Observe that in both cases, the temporal
information about neither the materialisation time of a DBpedia snapshot or the edits of single
statement claims on Wikidata are available in terms of the (RDF) graph materialisations of these
KGs themselves, but only in terms of the publication metadata or edit histories, which is why we
may also speak of “time as meta-data”.

We note that this distinction is hardly clear-cut. The difference between dynamic and versioned
temporalities is marked by the technical means by which particular KGs evolve. In particular,
this boundary is shaped by differences in technical infrastructures supporting these evolutionary
processes rather than general characteristics of the KG and the kind of knowledge it captures.

https://www.wikidata.org/w/index.php?title=Q175036&action=history&dir=prev
https://www.wikidata.org/w/index.php?title=Q5593&action=history&dir=prev

The painting was first exhibited in Paris in 1937, and moved to an exhibition in New York in 1939. Since
1992 “Guernica” is displayed in Museo Reina Sofia in Madrid.
https://www.dbpedia.org/resources/snapshot-release/

https://www.dbpedia.org/resources/live/

TGDK
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Figure 4 Representation of Dynamic Knowledge Graph, with updates at edge level, i. e. deletions (left)
and future additions (right).

Guemica | | Guemica
|

Figure 5 Representation of Versioned Knowledge Graph, with snapshots sorted by time.

For example, on the one hand, while changes in Wikidata may be recorded down to the level
of single statements, Wikibase® also supports interfaces for bulk updates. Likewise, each single
statement change in Wikidata’s overall edit history may be theoretically materialised in terms of
sequential snapshots. On the other hand, DBpedia’s extraction framework constructing a KG
from Wikipedia may be analogously applied to any materialised point in time of the fine-granular
page edit history of Wikipedia, or even per page [80]. DBpedia’s model has also changed over the
past years from irregular, approximately annual, snapshots published in its beginnings, to enable
more dynamic publishing (monthly) cycles [111] through the DBpedia Databus.?

Lastly, we note that analogously to the examples in Figures 2 and 3 both timestamps and time
intervals can be used to represent not only validity but also transaction and versions, i.e. snapshots
of the entire graph in the context of KGs. However, depending on which dimension is considered,
it will have an impact on how data should be managed, whether evolution is observable, and how
the information about evolution is spread into downstream tasks, see the further discussions in
Sections 5 and 6 below.

8 https://wikiba.se, Wikidata’s underlying software framework.
9 https://www.dbpedia.org/resources/databus/
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Both of the aforementioned perspectives can serve the purpose of monitoring the evolution
of KGs along different yet interrelated (sub-)dimensions. We outline these dimensions in the
following subsections. First, according to Section 2.1, the structural evolution of KGs can be
observed through the temporal information captured in them; here, KGs present a distinction
between changes on the data and schema levels. Second, one can analyse the dynamics or velocity
of evolution in KG over time, see Section 2.1. Finally, when considering the collaborative processes
involved in KG editing and evolution, one can analyse the structure and dynamics of these
collaborations, see Section 2.2. After exploring these dimensions in detail, we then discuss
concrete metrics in Section 4.

2.1 Structural Evolution, Dynamics, Timeliness, and Monotonicity

In the context of evolving KGs (hereafter EKGs), we may consider different forms of change
related to the graph structure, dynamics of change or its nature (monotonic or with deletions),
and alternative notions of time. The following will briefly elaborate on our running example in
Figure 6.

produced by

Figure 6 A sample KG containing temporal information about the production (static) and exhibitions
(dynamic) of paintings.

Structural Evolution

The first dimension to measure on a graph is essentially related to its structure: descriptive
statistics about nodes and edge distributions, centrality, connectedness, density, and modularity.
In KGs, similar static metrics can also be observed concerning the schema, typically the node
and edge types, and — if additionally axiomatic knowledge on the schema-level is considered — the
complexity of this schema.

For all of these structural properties (both on the instance-level and schema-level), we may
also be interested in their development over time, i.e. in quantifying their changes. The existing
concrete metrics for this dimension will be discussed in more detail in Section 4 below.

11:7
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Notably, longitudinal investigations of structural properties are not restricted to the time-
varying KG perspective: depending on whether temporal information is present in the KG itself,
one may also be interested in analysing and comparing structural evolution in terms of “temporal
slices”.

Dynamics

Dynamics for KGs refers to characteristics such as growth and change frequencies over time and
per time interval). These may be observed overall but also in terms of subgraphs or topic-wise
components of a KG. For instance, one may consider comparing the change dynamics of entities
related to different topic areas, such as “arts” and “sports” within a particular KGs like Wikidata.
Again, these dynamics may be observed concerning the KG schema. Referring to a concrete
elaboration of our running example in Figure 6, we can derive that properties related to the
production of paintings evolve more slowly than properties relating to exhibitions. Notably,
dynamics and temporal granularity may again be compared and analysed both from secular and
time-varying perspectives.

Timeliness

Timeliness, from a data quality perspective, refers to the “freshness” of the data concerning the
occurrence of change, the current time, or the time of processing. Timeliness directly links to query
answering (or processing in general), as it establishes the value of the retrieved answer considering
some requirements. More specifically, the timeliness of data in a KG can be interpreted as
“out-of-date” or “stale” information: i.e. in terms of recency of temporal information concerning
the current time;
“out-of-sync” or “delayed” information, i.e. in terms of the difference between valid times
and transaction times of items in the KG, i.e. the interplay between these temporal and
time-varying perspectives.

Regarding the former case, considering Figure 6, the question “Where is Guernica currently?”
obtains a different answer at different times. While historical events such as the creation of
“Guernica” lie far in the past, even far before Wikidata was founded, the location of paintings is an
important dimension to analyse over time as it changes with exhibitions or purchases. If neglecting
such variations is an issue for the users, e.g. when an accurate current location is needed to
recommend a museum visit, then we witness a data quality problem related to timeliness.

A “drastic” example of the latter, i.e. extended out-of-sync information from the art domain
is documented in Rembrandt’s “Portrait of a Young Woman” (Q85523581 in Wikidata) from 1632,
which was added to Wikidata only in February 2020, after it was recently confirmed to be an
authentic Rembrandt.'® Users who have asked for the number of Rembrandt paintings before
2020 would have received a stale answer.

Monotonicity

Monotonicity refers to the nature of changes, i.e. if they are positive changes only augmenting
the content of the graphs, or if they take the form of an update which may include deletions of
past information.

Continuing our examples in the domain of painting, we consider rectifying a painting’s
attribution to its artist, which happens repeatedly in arts. A documented case is the painting
“Girl with a Flute” (Q3739200) in Wikidata, originally attributed to the Dutch painter Vermeer

Onttps://news.artnet.com/art-world/pennsylvania-museum-rembrandt-discovery-1773954
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but later confirmed to be the work of another painter.'’ Similar, non-monotonic changes may
arise when temporal information itself changes in the KG: imagine, following our running example,
that subsequent research may reveal Guernica was actually created in 1936, not 1937.

From this combination of dynamics (i.e. the study of changes), timeliness, and monotonicity
(i.e. the frequency of deletions and, therefore, errors and rectifications of incorrect information
in a KG), it is also possible to estimate the frequency of future transactions. Together they
form an essential dimension of evolving KGs, both in the context of the ability to process
evolution technically but in terms of its impact on the validity of updated results of downstream
tasks Section 6: as KGs are meant to support sophisticated decision-making tasks, it is often
paramount to guarantee up-to-date information and provide answers before they become obsolete.

2.2 Evolution in Collaboration

Knowledge evolution is driven by different types of collaborations [190, 5]. As described by Piscopo
et al. [190], collaborative KGs rely on experts for specific types of activities, defining rules and
processes for how and by whom some activities should be carried out, or provide tools to facilitate
such collaboration.

In the context of KG evolution, we may thus want to analyse the behaviours of single users or
user groups over time. To classify the collaboration types, we can distinguish the following roles
of users/agents:

Anonymous users: These are Users who do not have a registered account or a consistent

identity within a project (e.g. anonymous Wikibase users)

Registered users: similarly, these are Users who have a registered account or a consistent

identity within a project (e. g. registered Wikibase users), ideally also combined with additional

information or characteristics which allow to classify such users (e.g. country of origin or other
demographic attributes)

Authoritative users: These are Users characterised by in-depth domain knowledge or

knowledge engineering expertise. This group represents vetted knowledge engineers, domain

experts, and moderators.

Bots: These are automated agents performing recurring tasks (e.g. Wikibase bot accounts).

Longitudinal analyses of the contributions of such users may include changes in their behaviours
(e.g. in terms of edit frequencies), interests (e.g. in terms of editing particular parts or topics
of KGs), or role changes. Additionally, based on the aforementioned roles, various collaboration
types can be potentially recognised when analysing the evolution of edits in collaboratively edited
KGs [191]:

Expert-driven collaboration: this type of collaboration involves Authoritative users devel-

oping schemas or editing data on the instance-level (creating mapping rules, as in the case of

DBpedia, would be an example of such schema-level expert collaboration, whereas the instance

data, origins from Wikipedia, thus following another collaboration model).

Crowd-sourced collaboration: this type of collaboration involves many Users not considered

Authoritative users performing basic editing tasks which neither requires in-depth domain or

knowledge engineering expertise nor coordination between the editors (for instance, any users

being allowed to edit Wikipedia could be understood as such a crowd-sourced collaboration
model, if a more moderated process did not govern it, see below).

" https://www.wikidata.org/w/index . php?title=Q3739200&01did=803621750
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Table 1 Types of Collaboration in Open-domain Knowledge Graphs.

KG Expert-driven  Crowd- Resource- Community- Bot-assisted
sourced dependent driven

Wikidata [242] v v v

DBpedia [146] | v/ v )

YAGO [153] v

Resource-dependent collaboration: This type of collaboration is based on integrating
information from external resources, potentially governed by different heterogeneous collabora-
tion models (indeed, DBpedia’s extraction of instance data from Wikipedia may be understood
as such a resource-dependent “collaboration”).

Community-driven collaboration: this type of collaboration relies on self-moderating
communities of Users characterised by deep involvement in the project, collective discussion,
and decision making (e.g. Item/Property discussions characteristic for Wikidata, but also
characteristic for the curation process in Wikipedia).

Bot-assisted collaboration: this type of collaboration is characterised by Bots performing
repetitive tasks alongside Users (i.e. curation tasks, e.g. checking property constraints on
Wikidata, but also, indirectly in DBpedia, via bot interactions in Wikipedia, cf. [254, 50]).

Table 1 describes the common collaboration models of some existing, collaboratively maintained
open general-purpose KGs, according to the literature. We note that the list of KGs shown here is
not meant to be exhaustive and that such metrics could be further extended and refined in more
fine-grained longitudinal analyses. As described in Section 4.4, for example, topologically identified
groups of collaborators could be used to predict outcomes. A concrete methodology to analyse
the composition of the collaborators within the KG and assess their effects on quality has been
suggested in [189]. Further investigation can also include the different evolution and collaboration
approaches and how these influence the possibility of analysing evolution. For example: does the
relatively small DBpedia ontology and the limited frequency of updates via mapping changes
make the analysis of the evolution of its ontology easier than the direct ontology editing model of
Wikidata? Does the extraction and mapping mechanism and changes to the rules that drive them
make ontology evolution in turn less flexible for the community in DBpedia? Likewise, does the
free-for-all collaboration approach in Wikidata render a structured analysis of ontology evolution
impossible, or what are the methods to handle this challenge? For instance (i) can one define
“checkpoints” of limited changes that can be used as anchor points to produce useful analyses, or
(ii) does it make sense to investigate the evolution of vocabularies specifically scoped to editors’
sub-communities? Another avenue for investigation is a more effective utilisation of machine
learning in supporting the collaborative evolution of KGs and their schemas. Specifically, it would
be interesting to learn how this evolution is affected and affects the interaction of automated
extraction (DBpedia), extraction by statistical learning (YAGO), or in leveraging or improving
bots (Wikidata): that is, can ontology extraction rules or curation pipelines be improved by
observing and learning from the collaboration and evolution processes over time?

2.3 Semantic Drift

Semantic drift is a crucial concept of evolution in language. It refers to the change in meaning
of a concept over time [246, 218] independently from the downstream tasks like querying or
reasoning. Before detecting semantic drift, one needs to identify the two concepts to compare
between versions. Although early work on identifying semantic drift focused on the definition of the
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identity of a concept [246], when a concept changes meaning, it might also change its identifying
information. Therefore, it is not always possible to rely only on identity-based approaches to

understand semantic drift. In such cases, morphing chain-based strategies are more suitable [90].

The morphing chain approach presents the user with a comparison of a concept to all the concepts
between the versions of an ontology and lets the user choose or chooses heuristically which is the
most likely concept that a previous one evolved into.

For KGs, Merofio-Petiuela et al. [158] studied semantic drift in DBpedia concepts, while
Stavropoulous et al. [219] studied semantic drift in the context of the Dutch Historical Consensus
and the BBC Sports Ontology. SemaDrift [218] takes a morphing-chain approach, where three
aspects are used to identify concepts that have potentially evolved from another: label, intention,
and extension. The advantage of this approach is that every concept in a new version will have
evolved from some previous concept. Unfortunately, the identity of concepts, such as URI, is not
used in SemaDrift. OntoDrift [44] uses a hybrid approach and can be considered an extension
of SemaDrift [218]. Additionally to using the label, intention, and extension aspects of concepts,
it also considers the subclass relations. The drawback of this approach is that rules need to be
defined for every type of predicate, as demonstrated by OntoDrift.

The notion of logical difference [136] between KGs can also be used to evaluate the semantic
drift of the KG concepts. The logical difference focuses on the entailments or facts that follow from
one KG but not from the other, and vice versa. Jiménez-Ruiz et al. [126] proposed an approach
to evaluate the logical difference among different versions of the same ontology. Considering the
new logical entailments/axioms involving a given entity, one could define a metric. The entity’s
role within the entailment (i.e. the entity is being defined vs. the entity referenced) may also
impact the metric.

Potential approaches in the future could make additional use of embeddings, representing
concepts in vector space and assessing their neighbourhoods. Pernisch et al. [181] showed that

comparing two embeddings to each other is complex, and the similarity between concepts is, e. g.

around 0.5 for FB15k-237 with TransE; Verkijk et al. [240] further discuss the difficulties with
this approach, especially comparing it to concept shift in natural language. Finally, the lack of
domain-specific benchmarks for semantic drift makes comparing methods difficult. For instance,
OntoDrift and SemaDrift return very different numbers when detecting drift, but we cannot tell
which ones are closer to the truth. Also, the number of studies that look at semantic drift is
limited. Not many KGs have been studied, and even though the phenomenon is known, it has not
been investigated extensively so far [158, 219].

3 Observe and Analyse the Evolution

This section discusses how far evolution can be observed and analysed along the dimensions
defined above in various existing KGs. KGs come in very different flavours and structures, and in
particular, we may also assume that their evolution shows very diverse characteristics.

Below, we first characterise different kinds of graphs. In Section 3.1, we discuss tools to observe
the historical longitudinal data on the evolution of the most important existing KGs. Section 3.2
provides a respective overview of available studies to analyse and track the dynamics of some
of these KGs. We consider both monitoring and analysing the evolution of the instance-level of
graph data as well as the schema-level.

Without claiming completeness, we distinguish the following kinds of KGs:

General-purpose Open Knowledge Graphs: publicly available open-domain (or, resp.,

cross-domain) KGs such as DPpedia [146] and Wikidata [242] as two of the most prominent KGs

have been developed since more than a decade by now, covering a wide range of comprehensive
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knowledge. Yet, they differ fundamentally in the process in which knowledge is maintained
and developed within the KG: whereas DBpedia relies on extractors to collect data from
Wikipedia’s infoboxes regularly, Wikidata comprises a completely collaboratively evolving
schema and factbases that, by themselves, feed back into Wikipedia. In particular, we observed
significant growth and dynamics in both the instance-level and schema-level of Wikidata over
the past years. Collections of structured RDF data and microdata (e.g. schema.org [102]
metadata) from Web pages through openly available Web crawls, such as made available
regularly by the Webdatacommons'? project [159], may indeed also be perceived as evolving,
general purpose, real-world Knowledge Graphs.

Domain-specific Special-purpose Open Knowledge Graphs: Many open knowledge
graphs available to the public are often overlooked. These graphs are collaboratively developed
and serve narrow, special-purpose topics or use cases. An example is Semantic MediaWiki
(SMW)[138], which has been around for almost 20 years and is still actively developed and
used in various community projects. SMW can be considered a predecessor of Wikibase, the
underlying platform for Wikidata. Wikibase is increasingly being used in separate, special-
purpose community projects. Other examples of domain-specific knowledge graphs include
the UMLS Metathesaurus [34], as well as the ontologies in the OBO Foundry [121], and
BioPortal [248]. These graphs focus on the schema and are assumed to have significantly
different evolution characteristics [182].

Task-specific Knowledge Graphs: One category of Knowledge Graphs that some authors
identify is task-specific Knowledge Graphs [122]. These graphs, often used in benchmarks,
are typically subsets of larger KGs created to support a specific application or may result
from a downstream application (e.g. DBP15K as a subset of DBpedia for cross-lingual entity
alignment). However, since these KGs are usually artificially limited and static (i.e. subset of
specific snapshots), compared to real-world evolving KGs, we will not discuss them separately
in this paper. We note, however, that principled approaches to create evolving subsets of
KGs for specific benchmarking tasks are sorely needed to better understand these tasks “in
evolution”.

Large (and Small) Enterprise Knowledge Graphs Lastly, we see many companies
reportedly using and adopting Knowledge Graph technologies in their operations and businesses
over the past years, including large firms like Google, Amazon, Facebook, and Apple, as well as
many other smaller examples. What these KGs typically have in common is that due to their
commercial value, they are non-observable to the community and we may only speculate about
their sizes and structures using white papers [170, 209, 117], high-level announcements, and
to some extent through industry track reports in conference series such as ISWC (e. g. [97]),
SEMANTICS (e.g. [204]), or recently the Knowledge Graph conference series. Given these
limitations, we exclude enterprise KGs from the scope of the present paper.

Except for the latter two cases then, it appears that the research community has built up a
large number of publicly accessible and observable KGs that vary in characteristics, and purpose,
with unique communities of maintainers that seek to capture a rich variety of knowledge artefacts
in evolving graph-like structures. In the remainder of this section, we specifically focus on Open
General-purpose KGs rather than attempt to cover all types of KGs.
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Table 2 Availability of Open KG Versions (V), Schema (S), and Change logs (CL).
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3.1 Availability of Graph Data

In the following, we start by assessing how and where historical longitudinal data about existing
open KGs and their evolution can be found. We specifically focus on KGs that are still available
and, therefore, do not include KGs like Freebase [36] and OpenCyc [156]. These two KGs are no
longer maintained but are considered pioneering work and predecessors of the KGs investigated in
this subsection. Therefore, it is generally possible for KGs to go dark, e.g. through neglect or
malign actions.

Here, we give an overview of the datasets regarding the availability of their versions, their
schema, and their changelogs in Table 2. The table captures if the versions, schema, or changelogs
are queryable and collaborative. Queryable in this context captures if the KG answers queries in
any way or form specifically over (historical) versions, schema as well as change logs, for which we
then further specify the protocol (HTTP, SPARQL, etc.); for possible temporal queries over RDF
archives that should be enabled over evolving KGs, we refer to, for instance, the categorisation
in [84, Section 3.2]. Collaborativeness in Table 2 refers to the possibility of reconstructing user
information on the different levels. For example, on the changelog level, a “yes” refers to having
user information for individual changes. Wikidata and DBpedia allow anonymous edits, which
potentially limits a reconstruction of the editing history, indicated with “Partial” in the table.

2nttp://webdatacommons . org/
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Further information on formats (RDF, JSON, etc.) is given. Temporality refers to the ability
of the KG to capture temporal information for example through reification or other means. With
“Event TS”, we indicate that the KG allows for events to be timestamped, whereas with “Graph
TS”, we refer to the whole graph having timestamps. Lastly, timeliness refers to how often the
part of the KG is updated.

Wikidata is an open KG read and edited by humans and machines and is hosted by the Wikimedia
Foundation. Intuitively, the considerable level of automation and collaboration on Wikidata, and
its scale' present significant challenges in Wikidata evolution maintenance.

As for direct queryability, Wikidata’s public SPARQL endpoint'* provides query access to the
current, regularly synced snapshot; it is undisputed that due to its scale, querying Wikidata in
the light of its rapid growth — even on static snapshots — is currently reaching its limits in terms
of regular SPARQL engines, as well documented for instance in [13]. Yet, there are various ways
to access and potentially — given the respective infrastructure — query the historic versions and
change data about Wikidata: Wikidata Entities dumps are available in JSON in a single JSON
array, or RDF (using Turtle and N-triples) with Full RDF dumps are available for download!®
every 2-3 days, and historically for approximately a month. Schema.org metadata is used to
describe the dump that contains additional helpful metadata such as the entity revision counter
(schema:version), last modification time (schema:dateModified), and the link to the entity node
with (schema:about).

As a subset, also truthy dumps are provided, which are limited to direct, truthy statements
— since Wikidata offers (validTime) temporal annotations for statements, as well as provenance
annotated statements, this “truthy” subset contains only currently valid or preferred ranked
statements, where however additional metadata such as qualifiers, ranks, and references are
consequently left out. The truthy dump could, therefore, be perceived as a “current truth”
snapshot of Wikidata. In contrast, the entire dump also contains outdated (valid time) or disputed
(in terms of being lower-ranked alternative statements by particular contributors).

RDF HDT!6 hosts roughly annual HDT [83] snapshots of Wikidata’s complete dumps. In
addition to these hosted RDF dumps, obtaining the statement-level change log from Wikidata’s
aggregated entity and editing history, which are also available via respective APIs, would be
possible.

Finally, Wikimedia offers changes (of both Wikipedia and Wikidata) through the Wikimedia
Event Streams'” Web service that exposes continuous streams of JSON event data. It uses
chunked transfer encoding following the Server-Sent Events protocol (SSE) and emits changes
events, including Wikidata entity creations, updates, page moves, etc. The usage of edit history
and event stream data, apart from RDF dumps, also has the advantage of making (where available)
user/contributor information visible, which is helpful for collaboration analyses. Pelisser and
Suchanek [225] have presented a prototype to provide this additional information in RDF via a
SPARQL interface.

Wikidata Schema/Ontology. Wikidata does not follow a pre-defined formal ontology,
meaning it does not formally differentiate between classes and instances. Instead, the terminology
is derived from the relationships between the items in the graph and is collectively created by
the editors. In other words, Wikidata (deliberately) does not make a formal commitment to the
logical meaning of its properties and classes, which could be, for instance, roughly defined as the
objects of the P31 (instance of) property.

13 with over 15B triples at the time of writing: https://w.wiki/7iez.
14 query.wikidata.org

Y https://dumps . wikimedia.org/wikidatawiki/entities/

S https://www.rdfhdt.org/datasets/

7 https://stream.wikimedia.org/
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As a consequence, Wikidata’s schema is evolving entirely in parallel with its data — and
analogous considerations for the availability of data about its historic evolution apply as mentioned
above. This has been reported to pose significant data quality challenges [190]; moreover, as a
primary consequence of such an informal, collaborative process, Wikidata’s ontology may change
quickly. In practice, this does not impact the evolution of the graph itself, but it poses an
obstacle to downstream tasks and analyses. We note that prior attempts to map the user-defined
terminological vocabulary of Wikidata to RDFS and OWL, such as [105], could be used to partially
map Wikidata to more standard ontology languages and conduct (approximate) analyses on a
logical level. In contrast, we should note that theoretically, OWL/RDFS “mappable” properties
could evolve independently in Wikidata.

DBpedia is an openly available KG encoded in RDF, which evolves alongside Wikipedia. It has
four releases per year (approximately the 15th of January, April, June, and September, with a
five-day tolerance), named using the same date convention as the Wikipedia Dumps that served
as the basis for the release.!® DBpedia Latest Core Releases!'? are published separately as
small subsets of the total DBpedia release. Its extraction is fully automated using MARVIN [111]
and then catalogued. The standard release is available on the 15th of each month, five days
after Wikimedia releases Wikipedia dumps. DBpedia Databus?’ is a platform designed for
data developers and consumers to catalogue and version data, not only restricted to DBpedia
alone. It enables the smooth release of new data versions and promotes a shift towards more
frequent and regular releases. DBpedia takes advantage of this functionality to promptly publish
the most up-to-date DBpedia datasets, generating approximately 5,500 triples per second and
21 billion triples per release every month. DBpedia Live?! is a changelog stream accessible in
a pull manner. DBpedia Live monitors edits on Wikipedia and extracts the information of an
article after it was changed. A synchronisation API is available to transfer updates to a dedicated
online SPARQL endpoint, whereas temporal evolution as such is not directly queryable from that
endpoint.

DBpedia Ontology (DBO), the core schema of DBpedia, is currently crowd-sourced by its
community: DBpedia mappings are contributed and made automatically available daily, where
DBO is generated every time changes in the mappings Wiki have been made. Notably, DBpedia
Latest Core and DBpedia Live are based on the latest DBO snapshot available at the point of
generation, i.e. one should consider the evolutions of data (Wikipedia edits), schema (mappings),
and also the various releases of the actual DBpedia KG, separately.

Finally, we note that a fine-grained historical development, in terms of reproducing any DBpe-
dia page at any point in time in the past, and thereby reconstructing a fine-grained RDF “history”
would be theoretically possible by combining DBpedia’s mappings with the Wikipedia edit history
API. A prototypical implementation of this approach, the “DBpedia Wayback Machine” — inspired
by the Web Archive’s Wayback machine — has been presented by Fernandez et al. [80].

YAGO is a large multilingual KG with general knowledge about people, cities, countries, movies,
and organisations [220]. At the time of writing, there are six versions of YAGO. In its latest
version, 4.5, YAGO combines Wikidata and Schema.org. Older versions integrate different sources
such as Wikipedia, WordNet, and GeoNames but are independent of the most recent ones. YAGO
places a strong emphasis on data extraction quality, achieving a precision rate of 95% through
manual evaluation [198]. One of YAGO’s unique features is its inclusion of spatial and temporal

B https://www.dbpedia.org/resources/snapshot-release/
YO nttps://www.dbpedia.org/resources/latest-core/
https://databus.dbpedia.org/

2 https://www.dbpedia.org/resources/live/

11:15

TGDK


https://www.dbpedia.org/resources/snapshot-release/
https://www.dbpedia.org/resources/latest-core/
https://databus.dbpedia.org/
https://www.dbpedia.org/resources/live/

11:16 How Does Knowledge Evolve in Open Knowledge Graphs?

information for many facts, enabling users to query the data across different locations and time
periods. Since version 4, YAGO combines Schema.org’s structured typing and constraints with
Wikidata’s rich instance data. It contains 2 billion type-consistent triples for 64 million entities,
providing a consistent ontology for semantic reasoning with OWL 2 description logics. Temporal
information in YAGO 4 is sourced from Wikidata qualifiers, which annotate facts with validity
periods and other metadata. YAGO 4 adopts the RDF* model for representing temporal scopes,
enabling precise assertions about facts within specific timeframes. This approach ensures accurate
temporal modelling without implying current states [180]. YAGO can be accessed in different
RDF formats, but little information is provided on its evolution or the changes in its schema.

The LOD Cloud,?? is, although regularly re-published and maintained since 2007, a collec-
tion/catalogue of (interlinked) Knowledge Graphs, rather than a KG on its own. Due to its
decentralised nature, anyone can submit a dataset, and the evolution of the respective constituent
KGs is not observable from this source directly. While many of its catalogues KGs are accessible
via dumps or even SPARQL endpoints, at the same time, many of its datasets have disappeared
over time and are no longer (or irregularly available).

As for queryability, the LOD-a-LOT dataset,?® which has been created as an attempt to clean
and crawl all accessible datasets of the LOD cloud and make it available in HDT [83] compressed
form [82] — to the best of our knowledge this remains to date a static, once-off effort. While
this dataset has also been re-used in other works, for instance, to analyse cross-linkage and
ontology-reuse within the LOD Cloud [104], such investigations are lacking a longitudinal analysis
of development over time. Likewise, little is known about the evolution of its schema expressivity:
a once-off study from 2012 on the Billion Triple Challenge sample from different LOD Cloud
datasets has found for instance that hardly any OWL2 constructs had been used at the time [95],
and most of the ontologies in Linked Data had used only a moderately expressive fragment of
OWL, which had been called OWL LD in this study. A subsequent or even continuous assessment
over time with respect to changes or uptake of OWL constructs in LOD over time is to the best of
our knowledge still missing. We note that, while the evolution of the LOD Cloud schema itself
was partially studied, e.g. the changes and interlinkage of the RDF vocabularies [1, 2], this study
did not include expressivity as such.

Unfortunately, such longitudinal analyses over the LOD cloud’s evolution as a whole are hardly
reproducible or observable a posteriori, since, by its nature, availability of versions, separate
schemata and change logs, as well as information about temporality and timeliness is highly
heterogeneous across the LOD Cloud datasets. Only summary statistics about the individual
states of available datasets at the time of updates are available; i.e. the LOD Cloud service as
such does not capture the LOD’s historical development itself and older versions of the data itself
are typically not provided. External initiatives have attempted to address this problem:

the Billion Triples Challenge (BTC)?* initiative that, starting from a certain set of seeds,

collected billions of triples on the LOD using the popular LDspider [118] framework. The first

BTC snapshot of the LOD Cloud from 2009 contained about 1B triples. The crawls have been

repeated in irregular year-based intervals. The largest version is from 2014, with about 4B

triples.

The Dynamic Linked Data Observatory (DyLDO) [140]2%, initiated in 2012, partially overcomes

this limitation by providing weekly snapshots of about 90,000 URIs using the same crawler as

the BTC dataset, resembling about 150 to 205 million triples per week. Key characteristics

2https://lod-cloud.net/

2 http://lod-a-lot.lod.labs.vu.nl/

2 https://www.aifb.kit.edu/web/BTC
Zhttp://km.aifb.kit.edu/projects/dyldo/
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of the dataset are that the weekly crawls are stored as so-called snapshots using the N-Quad
format [45]. This means that the full graph data collected per week is available in a single
data dump. The variance of the collected data reflects the changes in the LOD Cloud. The
main drawback of this approach in evolution analysis is that the seed URLs have not changed
since the start of the data collection; this initiative is apparently the longest-running collection
of a subset of the LOD Cloud.

While well-known, publicly available Knowledge Graphs (KGs) such as DBpedia and Wikidata
play a significant role in the realm of structured knowledge, there are other, perhaps less widely
recognised, but equally substantial KGs that deal with highly dynamic data. Two notable examples
are the GDELT Global Knowledge Graph?® and Diffbot.

The GDELT project has been providing an integrated event stream for media news events since
2013, and it has evolved into a comprehensive event KG. It separates events and associated
entities such as individuals, organisations, locations, emotions, themes, and event counts into a
continuously updating KG. The GDELT 1.0 Global Knowledge Graph, initiated on April 1, 2013,
consisted of two data streams — one encoding the complete KG and the other focusing on counts
of predefined categories (e.g. protester numbers, casualties). GDELT 2.0’s Global Knowledge
Graph (GKG)?" enhances this with additional features, incorporates 65 translated languages, and
updates every 15 minutes. Notably, mappings of GDELT into RDF stream were proposed, yet it
is limited to only the event graphs and the GKG [235, 236].

As for queryability, GDELT can be accessed via Google’s BigQuery?® in its current state [235],
updated every 15 minutes in real-time with temporal information available at the event level at
different granularities, with a fixed schema.

Being updated in an automated manner from news sources, this stream KG is not in the same
sense collaboratively evolving as Wikidata or DBpedia, in the sense of individual users contributing
changes by their edits, but rather from curated news sources. While, to some extent, these sources
could also be interpreted as “collaborative” agents contributing to the KG on the one hand, on
the other hand, the act of changes has not collaborative nature in the sense that one of these
actors could overwrite or undo others’ additions.

Similar to GDELT, Diffbot offers a commercially available Knowledge Graph?® that combines
dynamic event data with information about products, events, and organisations. This Knowledge
Graph is only available as a commercial service, wherefore we do not discuss it here in more detail.

3.2 Monitoring Trends

The LOD cloud can be seen as a network of open interconnected KGs, the most prominent of
which are Wikidata, DBpedia, DBLP and YAGO. As such, a key part of its evolution has been the
open community’s continuous maintenance of these KGs. Indeed, their growth has been central to
the expansion of the LOD cloud from =2 6.7B triples and 90 RDF datasets [20], in 2009, to ~ 28
B triples and more than 1,200 datasets [177], by 2020.

With the growth of the LOD cloud comes the desire to analyse its temporal changes and
track trends and evolution. Below, we first discuss approaches to analyse at the instance-level the
changes in the LOD cloud. Subsequently, we take the perspective of the schema-level and consider
methods and works analysing the changes of the LOD cloud in terms of the vocabulary.

Zhttps://blog.gdeltproject.org/gdelt-global-knowledge-graph/
Thitps://www.gdeltproject.org/data.html

Zhttps://console.cloud.google. com/marketplace/product/the-gdelt-project/gdelt-2-events
2 https://www.diffbot . com/products/knowledge-graph/
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3.2.1 Instance-level Monitoring

Several works have sought to capture and understand the nature of KG evolution. One such
seminal initiative is DyLDO (see Section 3.1), which has been monitoring Linked Data on the
Web since 2012, by collecting continuous LOD snapshots and examining them in terms of their
document-level and RDF-level dynamics. The original paper [139] is based on the analysis of
86,696 Linked Data documents for 29 weeks and reveals that ~ 62% of the documents available
during that time were, in fact, unchanged. In the remaining, the changes occurred mainly very
infrequently, =~ 23%, or very frequently, ~ 8%, with very few documents reporting changes in
between. The same polarising trend is recorded for very static domains, ~ 44%, change very
infrequently, ~ 28%, or very frequently, &~ 25%. The study also reveals that data changes occurred
most frequently at the level of object literals, while schema changes (involving predicates and
rdf:type values) were very infrequent, often related to time stamps, and very rarely involved the
creation of fresh links.

Analyses of the DyLDO dataset include the work of Nishioka and Scherp [166] who applied
time-series clustering over the temporal changes of the DyLDO snapshots and determined the most
likely periodicities of the changes using an algorithm from Elfeky et al. [75]. This resulted in the
finding of patterns in the evolution of the graph data. Although 78% of the first three considered
years of DyLDO snapshots do not change at all, the remaining nodes could be organised into seven
clusters of various sizes and periodicity. The latter ranges from periodicity prediction every week
to once every half a year or year. Information-theoretic analyses have also been applied to analyse
pairwise changes in graph snapshots of the DyLDO dataset [167]. Time-series clustering allowed
us to organise the evolution into segments of similar behaviour. The study reveals that nodes
of the same type show a similar evolution, even if these nodes are defined in different pay-level
domains, i.e., different organisations. Finally, Gottron and Gottron analysed the same dataset
but applied perplexity to explain the evolution of graph data [98].

At the level of the individual LOD cloud KGs, Wikidata is an especially interesting
example of an evolving KG, having 90M entities and 1.4B revisions by more than 20K users.?°
The recent Wikidated 1.0 dataset [208] records the fine-grained organic evolution of Wikidata
from its inception in 2012 until June 2021. The statistical characteristics of Wikidated 1.0 reveal
a linear growth in the number of entities, which has been slightly accentuated after the Freebase
integration in 2015. Also, almost all entities have less than 100 revisions, with half having
less than 10. In terms of revision speed, the analysis highlights that most entities are edited
frequently. Specifically, 60% of the revisions of a given entity occurred less than a month after a
previous revision of the same entity. Inspecting the types of revisions, the paper indicates that
most revisions consist of atomic changes, with approximately 90% containing less than 10 triple
additions; moreover, 80% of revisions do not feature triple deletions. Another interesting trend
indicates that half of the triples are added less than a day after the creation of their entity, while
deletions take much longer, with over half involving triples that are deleted more than 6 months
after they have been added. Although the vast majority of Wikidata triples are never deleted, ~
10% are deleted only once and less than ~ 1% are deleted repeatedly after being added again.
The CorHist dataset [224] is also built from Wikidata’s edit histories, although with a focus on
constraint violations and their corrections. The study shows that users are more likely to accept
corrections for familiar constraints and certain types of constraints favour over-represented entities,
highlighting the impact of biases. The evolution of Wikidata has also been studied in terms of
editor engagement [207] and impact [191], as well as the quality of provenance information [188].

30 According to https://www.wikidata.org/wiki/Wikidata:Statistics.
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The work in [169] analyses the changes in Wikidata KG from a topological perspective. As such,
it establishes that the evolution of the number of nodes and edges resembles a power law [147],
similar to those commonly observed in social network graphs; based on this, it proposes classifiers
that verify whether changes are correct.

Levels of Granularity. Alloatti et al. [10] propose to analyse KG evolution trends by
capturing their changes across different snapshots at three levels of granularity: atomic focuses on
operations at the resource level, local targets the evolution of a resource within its community,
and global detects communities at the level of the entire graph. At the level of atomic evolutions,
given a set of atomic updates performed between two snapshots, the authors distinguish between
statistical changes, quantifiable in terms of the mean and variance with respect to a normal
distribution, and so-called noteworthy ones, which capture snapshot features that diverge from the
expected KG evolution with respect to a given threshold that is dataset-specific. An example of
the former type would be quantifying the number of citations of a paper, while an exceptionally
high number of new citations would illustrate the latter. Local evolution would also account for
community-level features, such as graph density. As such, a publication may be noteworthy only at
the level of its community, and communities themselves may be identified as noteworthy based on
specific features, such as topological ones. At the global level, community detection methods can
provide insights into the general behaviour of the different entities in the KG. When considering
KGs as multi-community networks, various detection algorithms can be applied using custom
network metrics, as reviewed in [193, 87]. When it comes to investigating KG evolution at a global
level, studies have applied metrics transferred from different disciplines, such as databases [70],
information theory [167, 98], web data crawling [68] and machine learning [168, 169].

Future Directions

Even with the large number of analyses already done in the past, there are many avenues to
investigate further when it comes to monitoring, but especially analysing evolving KGs at instance-
level. One such direction involves exploring the commonality of data sources across different open
KGs. For example, knowledge graphs like YAGO3 and Wikidata draw extensively from various
language editions of Wikipedia. Investigating the extent of shared data sources and how this
commonality has evolved can provide valuable insights into the collaborative dynamics of KG
development. By understanding the overlaps and changes in data sources, researchers can gain a
more comprehensive understanding of how this influences evolution; for example, an investigation
of link evolution and cross-references between KGs over time could deliver new insights here.

Another compelling area for analysis pertains to the role of programmatic intervention in the
development of knowledge bases. Many knowledge graphs, including YAGO and DBpedia, rely
on automated processes for data extraction and transformation, including, in the case of YAGO,
statistical learning. Likewise, Wikidata’s data generation, while predominantly carried out by its
users, also relies partially on programs that extract information from external sources through
bots. Delving into the balance between manual curation and automated data extraction and its
impact on KG growth and quality can offer valuable insights into the mechanisms that drive their
evolution.

These future directions in KG analysis provide exciting opportunities to deepen our under-
standing of how these structures evolve, the factors influencing their development, and their crucial
role in the dissemination of structured knowledge. Addressing these challenges will contribute to
the ongoing advancement of knowledge representation and dissemination in the digital age.
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3.2.2 Schema-level Monitoring

All the aforementioned studies of the evolution of Web graphs focused on the instance-level of the
graph data, i.e., the nodes modelling the entities in the domain. Only a few works also considered
analysing the evolution of the schema-level of the graph. An early study by Dividino et
al. [70] shows that indeed, the schema of a node changes over time when one considers how the
available RDF properties and RDF types are combined to a set of edge labels and node types to
model a node. We call this set of properties and types the schematic structure of a node. Over
one year in the DyLDO dataset, the authors analysed the schema structures of the nodes in terms
of both the outgoing properties as well as types. They found that in each snapshot between 20%
and 90% of the schema structures change from one version to the next. This means that more or
fewer nodes have the same schema structures, nodes with new schema structures are observed, and
some schema structures are not used anymore. There are also some combinations of properties
and types where the schema structure of the nodes is very stable, i.e. the set of nodes with that
specific schema structure did not change for one year [166, 70].

Just like new data nodes appear and change in the Web graph, the vocabularies used to model
such data also change, but at a much slower speed. New vocabulary terms are coined to cover
additional requirements or reflect changes in the domain. Other existing terms are modified or
even deprecated. Previous work analysed the amount and frequency of changes in vocabularies
based on different snapshots of the Billion Triples Challenge, DyLDO and Wikidata datasets [1].
Although the evolution of vocabularies is slow [1, 140], i.e., they happen on average a few changes
every year only, a change may still have a significant impact due to the large amount of distributed
graph data on the Web.

Another insight is that, in the course of an evolving vocabulary, the update of new terms from
released vocabulary versions varies greatly and ranges from a few days to years. It is not surprising
that even deprecated terms are still used by data publishers. Moreover, it is important to analyse
both the change in the vocabulary, as well as how the various terms are used in combination. This
can be seen at the schema-level: one can observe changes in the node and property shapes (e. g.
SHACL shapes), as well as in their prevalence. For example, a recent study [196] compared the
property shapes extracted from two Wikidata snapshots (one from 2015 and one from 2021). The
analysis reported that the number of RDF classes increased from 13K to 82K and the number of
predicates from 4,906 to 9,017, while the number of distinct property shapes increased from 202K
to more than 2M. This calls for an in-depth study of how the different elements of the vocabulary
evolve, not only in isolation but also together at the schema-level.

Finally, similar to the LOD Cloud showing the dependencies of different Web graph datasets,
one may also consider the Network of Linked Vocabularies (NeLLO) where the nodes are the
vocabularies and the edges model vocabulary reuse [2]. Vocabulary reuse is generally encouraged,
as it improves the interoperability of data, but at the same time, it also introduces dependencies
between vocabularies that are to be resolved when vocabulary terms in the network change, are
deprecated, or deleted. The NeLO network has been analysed over a history of 17 years based on
the data from the Linked Open Vocabulary (LOV) service®! with respect to standard network
metrics, such as size, density, degree and importance [2]. LOV collects the temporal information
from hundreds of RDF vocabularies added to the service through a review-based process. The
evolution of this schema-level graph has been analysed with respect to the impact of vocabulary
term changes, term reuse and vocabulary importance [1, 2].

31 https://lov.linkeddata.es/dataset/lov/
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Future Directions

Exploring the schema-level dynamics of open KGs reveals several promising avenues for future
research and analysis. These areas of inquiry offer valuable insights into the evolving nature of
knowledge graphs and their impact on knowledge representation.

One important aspect of KG analysis pertains to understanding how schemas are structured
and evolve within graphs, but also how re-use between graphs evolves. Many open KGs, including
Wikidata and DBpedia, make use of RDFS and OWL to organise their ontologies. However, the
specific integration of schemas into the data varies. For instance, some graphs incorporate their
ontologies directly into the data, while others maintain separate ontology files. Investigating the
consequences of these schema design choices on knowledge graph evolution is another possible
research direction. Additionally, assessing how expressive power and intended meaning in these
schemas evolve and potentially influence KG development is of strong interest.

KGs exhibit varying degrees of semantic underpinnings, ranging from basic RDFS to more
complex representations like OWL. Some, like Wikidata, may have intricate intended meanings
and collaboratively evolving schema constructs that go beyond OWL’s expressivity, which may
necessitate advanced logics for interpretation (for instance the constantly evolving set of Wikidata’s
property constraints). Analysing the gap between intended, implied and supported semantics in
KGs and its implications for their evolution is a further promising area of investigation. Overall
debates within the Semantic Web and Knowledge Graph communities, about additional complex
ontology features and the evolution of ontology languages as such, may also raise questions about
the role of evolving ontology expressiveness in shaping knowledge graph structures over time.

Comparing the rates of schema/ontology evolution vs instance/data evolution in different
knowledge graphs in depth is another potential future direction: preliminary observations may
suggest that in some cases, the evolution of ontology structures lags behind changes in the data.
Such temporal misalignment raises questions about how it affects the overall coherence and
semantics of knowledge graphs over time; as a concrete example, let us again name constraints in
Wikidata, which partially become outdated (and even explicitly deprecated) by their actual use —
which could indeed be understood as a form of semantic drift.

Comparative analyses between knowledge graphs, especially those with similar characteristics
or shared data sources, can provide valuable insights into ontology evolution, schema design
and knowledge representation choices. By examining similarities and differences in their evolu-
tion processes, researchers can identify best practices and challenges in crowd-sourced ontology
development.

These future directions in schema-level analysis offer opportunities to gain a deeper under-
standing of how knowledge graphs evolve structurally and semantically. By addressing these
challenges, researchers can contribute to advancing our knowledge of knowledge representation
dynamics and the evolving landscape of open KGs.

4  Study the Evolution

In this section, we discuss methods for studying the evolution of KGs. First, we introduce some
relevant static graphs and KG metrics, as they have been defined to inform KG quality and are
sometimes used to analyse KG evolution. Second, we address measures that concern consistency
and quality specifically using constraints, as opposed to the simple metrics introduced first. In the
third part, we discuss measures specifically developed to capture and quantify evolution, and we
finish this section with a focus on how network science approaches could be used in the future for
the study of KG evolution.
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4.1 Basic Graph and Knowledge Graph Metrics

This section introduces metrics designed initially to study the properties of graphs and specifically
knowledge graphs, which have been used to assess ontology quality [11, 142, 91, 37, 213, 227, 205]
and that has also been used to study KG evolution [250, 252, 73, 71, 172]. Table 3 summarises
such metrics, which — however — do not take an evolving KG as input for their calculation as they
consider only one graph at a time. We can broadly group these static metrics into two groups:
graph metrics and knowledge graph metrics.

Graph metrics are applied to a graph version of the KG or adapted to work on the
KG. Examples of these metrics include average depth [71, 73, 91, 142], number of paths [142],
tangledness [11, 91, 142] and absolute leaf cardinality [11, 91, 142]. In the work of Alm et al. [11],
Gangemi et al. [91] and Lantow et al. [142], the metrics are applied only to the isA graph,
whereas Djedidi et al. [71] apply the average depth on the OWL graph, the same as Duque-Ramos
et al. [73].

Knowledge Graph metrics can be distinguished from graph metrics based on the idea
of taking semantics into account. However, each approach, metric or paper specifies what type
of semantics (RDF, RDFS, OWL or other) are considered and if the metrics are applied to
materialised KGs or not. We do not make this specification here but leave it up to the interested
reader to follow the cited sources. While instance-level analyses focus on the data graph, schema-
level analyses focus on the semantic information [33]. Therefore, we divide the metrics into three
groups:

Primitive metrics focus on a single aspect of the KG; for instance, they are used to

characterise the number of entities of a KG [37, 142]

Schema metrics focus on the schema or T-Box of the KG. Examples of such metrics

include Property Class Ratio [250, 252, 172, 73], Depth of Inheritance Tree [250, 172, 73] and

Inheritance Richness [71, 73]. For example, most of these metrics are used in the OQuaRE

quality assessment by Duque-Ramos [73] to inform about varying quality (sub-)characteristics.

Data metrics or A-Box metrics mostly combine an aspect of the A-Box with one from the

T-Box. Examples of such metrics include Average Population [73] and Instance Comprehen-

sion [71]. Due to their simplicity, data metrics give only a partial view of KG quality and

often need to be contextualised for a complete evaluation [73].

In summary, KGs have been analysed by calculating static metrics like the ones in Table 3 on
linear /nonlinear series of consecutive snapshots: by combining these measures over some time, as
done for instance in [73, 33, 182, 71, 172], one obtains time series data (a versioned or dynamic
KG) that allows (and is currently primarily used) for calculating descriptive statistics (e. g. central
tendencies, dispersion, distribution) that partially describe the KG evolution over time.

Future Directions

While static metrics can provide valuable insights at little cost, we argue that designing specific
metrics and combining those with more sophisticated time-series analyses can lead to more precise
monitoring of KG evolution. In particular — for any of the above-mentioned static metrics —
investigating time-series trends in metrics variations such as seasonality or stationarity or even
more complex models [214] can provide further insights about the KG evolution. We illustrate
some ideas for such future metrics by the example questions listed below:

Trends: How has the average degree of nodes or centrality developed in KGs such as Wikidata

over the past N years? How interconnected is the KG becoming over time?

Seasonality: Are there recurring periods of increased or decreased growth in the size (number

of nodes or edges)? Is there any correlation with specific events?
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Table 3 Overview of general graph metrics and specific Knowledge Graph metrics from the literature:

metrics are only included if there are at least 3 papers (graph metrics) using and defining a measure

(excluded 98 metrics). We excluded some of the graph metrics cited by the same three papers (5 metrics);

for knowledge graph data metrics we also included those with 2 citations — any of these static metrics and
changes would seem worthwhile to be also investigated in a longitudinal manner over time.

Metric

Description

Used /Defined in

Absolute depth

Average depth

de = sum over the cardinality
of each path in a set of paths in
graph

do / |paths|

IsA graph [11, 91, 142, 250]

IsA graph [11, 91, 142, 250],
graph [37, 71], OWL schema
73, 71]

= Maximal depth longest path IsA graph [11, 91, 142], graph
2 37)
U Number of paths |paths| DAG [142, 250, 252]
Tengledness & ng = cardinality of G, t = IsA graph [11, 91, 142]
cardinality of the set of nodes
with more than one ingoing IsA
arc in G
Degree Distribution mean-square deviation of the de- graph [37, 67, 142]
gree of graph nodes
Entities number of entities, classes and  graph [37, 142], IsA graph [91],
instances OWL [213], DAG [250]
w Properties number of unique properties or  OWL schema [172], OWL [227,
3 relations 229, 231], DAG [252]
'*é Classes |C| = number of classes (con- OWL [227,231], DAG [250, 252]
0 cepts)
A Instances |I| = number of individuals OWL [227, 229, 231]
i Object properties P, = number of object proper- Schema [142], OWL [213, 229]
g ties (non-inheritancE)
O « Depth of Inheritance Tree Tree [172], OWL [73, 205, 227],
& § DAG [250)
E = Property Class Ratio % OWL [229, 172, 73], DAG [250]
% Q Inheritance Richness %, H = inheritance relations ~ OWL [71, 73, 205, 227], Schema
v é [142]
) Attribute Richness %, P; = datatype properties ~OWL [71, 227], Schema [142]
Class Property Ratio il Onto [11, 91, 142]
..g Average Population % OWL [73, 227], Onto [91]
Q Cohesion number of connected compon- OWL [71, 227]
é ents
M Average Class Connectiv- mean(|(cl,p, c2|) where c1 and OWL [205, 227]
<:1 ity c2 are instances of classes

Moving Averages: How does the moving average of additions (new triples) or deletions (removed

triples) over 12 months compare to the monthly new triples values? Are there evolutionary

anomalies?

Autocorrelation: Is there autocorrelation in the time series data of a given ratio metric (e. g.

Property Class ratio, etc.) in the KG?
Stationarity: Do structural changes in the KG (for instance, lengths of certain paths or other
structural metrics) follow a stationary process?
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So far, time series analyses with static metrics for LOD characterisation have been traditionally
restricted to descriptive statistics, e.g. in [129, 182, 73]. We argue that this is an opportunity
for the Semantic Web and Knowledge Graph research community to rethink more sophisticated
metrics designed to precisely measure KG dynamics and change overall and in a modular fashion
(e.g. instance data vs. schema dynamics, etc.). Likewise, we see a lack of tools and calculation
frameworks geared specifically towards running such more complex time series analytics on evolving
KGs at scale.

4.2 Consistency-Based Quality Metrics

Assessing data quality within a KG presents significant challenges that worsen if the aim extends
to monitoring, ensuring, or improving such quality over time. Consistency-based quality metrics
play a crucial role in assessing many dimensions of data quality, for example, measuring the
integrity, coherence and general consistency of KGs [245]. Paulheim and Gangemi [176] estimated
inconsistency in DBpedia by clustering conflicting statements; they limit their evaluation to a
given snapshot, neglecting the evolution of these inconsistencies.

Various languages have been developed to express and represent constraints in KGs, yet not all
are equally suited to “measure” consistency and quality. That is, while formal ontology languages
such as OWL [101] and the respective underlying Description Logics [21] allow one to determine
inconsistency of the whole KG, typically, due to their expressivity, they suffer from ambiguity
between pinpointing and counting violations. Earlier work has used rule-based fragments of OWL,
OWL RL to — again statically — quantify and repair inconsistencies [113].

More recent specific standards for KG constraint languages have revived the research on
quantifying constraint violations. Specifically, the relatively new W3C standard SHACL [135], and
similarly ShEx [195], allows validation and counting violations in a KG, w.r.t. a set of (integrity)
constraints and target node/edge definitions. Yet, we only see both formal ontology languages
such as OWL, e.g. [95], and these novel constraint languages being only slowly, if ever, adopted in
(openly available) KGs.

In the following, we dive deeper into the measurability of quality metrics, focusing on consistency.
Consistency metrics evaluate the coherence and absence of contradictions within a KG. Constraints
can be used to specify rules regarding relationships between entities, ensuring that the graph
remains internally consistent. Inconsistencies, such as conflicting assertions or logical contradictions,
can be identified with these metrics. There is a trade-off between measuring consistency and
simply measuring missing information. However, this trade-off will be explored as part of defining
assessment frameworks.

As a first approach towards monitoring consistency w.r.t. constraints over time, Wikidata
has leveraged constraint modelling to enhance data quality and usability. Within the Wikidata
ecosystem, the Schemas project®? uses ShEx to define schemas for modelling various Wikidata
classes. Additionally, Wikidata uses its own representation model to define constraints on its
properties, known as Wikidata property constraints.?® These property constraints serve as valuable
guidelines for the community of users, aiding in maintaining data integrity and the development
of violations is documented over time in Wikidata’s own published database reports.®* In a recent
work, Ferranti et al. [86] have attempted to formalise the respective constraints in SHACL and
SPARQL, in order to enable generating such violation reports in a standardised manner, on the
fly, which may be viewed as a starting point to enable monitoring constraint violation over time.

32https://wuw.wikidata.org/wiki/Wikidata:WikiProject_Schemas
33https://www.wikidata.org/wiki/Help:Property_constraints_portal
34 https://www.wikidata.org/wiki/Wikidata:Database_reports/Constraint_violations/Summary
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An alternative approach to quantify violations is to attach the number of violations (ng,) for
each violated denial constraint (C;) to nodes and edges in the KG. The counting can be done in a
bag or set semantics by considering the duplicates in the constraint violations or not. Provenance
polynomials can be built by summing the monomials given by C;nc,. The obtained polynomials
and corresponding degrees of quality can be leveraged during query evaluation to characterise
the quality of the query results further. Although this approach has been conceived for static
relational data [119, 120], the temporal aspects of inconsistency are still largely unexplored.

Despite these starting points, the question of how to measure and monitor quality in terms
of consistency in a systematic manner for particular KGs over time seems to be still an open
question that opens up engaging scenarios. For example, the presence of time in evolving KGs
adds a dynamic perspective to constraint enforcement, facilitating ongoing improvements in the
KG through data repairs, as proposed by [57]. Moreover, the analysis of constraints over time can
also provide significant insights into the occurrence of semantic drift (see Section 2.3) within the
schema layer of a KG. When historical constraint definitions are compared with the current state,
it becomes possible to identify schema modifications, shifts in the focus of the schema layer and
potential mismatches between the evolving semantics and the intended scope.

Future Directions

As outlined above, consistency is a big factor when assessing the quality of KGs. Hence, we see
several potential directions of analyses in the future using constraints to learn more about knowledge
evolution concerning quality. For example, before even analysing evolution, an investigation into
which KGs use RDFS, SHACL and ShEX but also how expressive their ontologies are and which
are entirely based on external data sources. Such questions directly tie into an investigation of
quality based on consistency and constraints and how these evolve. First, measures and frameworks

must be developed to support these kinds of investigations as they require handling KGs at scale.

At the same time, the tradeoff between measuring quality and consistency vs. measuring missing
information must be considered in greater detail before applying such approaches to any open
general-purpose KGs, as these KGs operate with an open-world assumption.

The analysis directions align well with the dimensions of evolution (dynamics, timeliness and
monotonicity), but each requires different approaches or solutions. Thus, we urge the community
to use constraint-based metrics to analyse the consistency of the evolution of KGs, the change

(trends, seasonality, etc.) of completeness, data freshness, data recency and temporal completeness.

Precisely, the last three need to regard time as data rather than meta-data.

4.3 Methods for Quantifying Evolution

In this section, we want to give space to metrics specifically introduced to capture the evolution of
a KG, which require pairs of (consecutive) graphs as input in the form of a versioned or dynamic
KG, according to the classification presented in Figure 1. Most of the works introduced below
study the changes between two (consecutive) versions of a graph, that is, two snapshots, such
as [69, 177, 182, 181], making them specifically applicable to versioned KGs rather than dynamic
ones. Pernisch et al. [182] propose several metrics to capture evolution on the materialisation and
also provide their implementation in a Protégé plugin [183]. The evolution metrics capture the

amount of change between two snapshots using simple counts of deltas between the snapshots.

Pelgrin et al. [177] developed a framework to analyse various properties of versioned KGs based on
changesets computed over pairwise versions of DBpedia, YAGO and Wikidata. Their framework
consists of multiple evolution metrics such as growth rate and dynamicity. The authors also
measure high-level changes, such as the number of entities changed between a pair of versions,
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using the metrics we discussed in Section 4.1, but relating them directly to the evolution. The
metrics capture the changes between a pair of snapshots but do not directly reflect KG evolution
over multiple snapshots, i.e. a sequence of snapshots. Instead, pairwise comparison sequences can
be considered to identify trends in evolution. Lastly, Dividino et al. [69] developed a monotonic
measure for KG evolution that aggregates the amount of data changes over a sequence of snapshots.
This results in a function measuring the evolution of the graph by approximating the actual
evolution with an aggregation of absolute infinitesimal changes. When a KG evolves, such as
Wikidata, most of the additions and deletions may be valid changes reflecting the nature of the
entities modelled. However, collaborative KGs can also receive erroneous changes, be it due to
vandalism or carelessness. Evolution information is exploited to assess which changes in a KG
are correct [169]. Based on the features for Web data caching [168], several triple features are
employed on the subject, predicate and object URIs, including additional information about the
age and last edit. Notably, this improvement is achieved by purely employing information about
KG evolution and not requiring historical information about the editors who perform changes on
the collaborative graph.

Future Directions

As is evident from the studies mentioned above, there are not many metrics specifically developed
for the study of KG evolution. This, we identify as a research gap as it is necessary to introduce
measures capturing different dimensions and aspects of KG evolution. Following the examples
above, measures need to capture the different aspects of evolution while at the same time being
outlier-resistant. Approaches from time series analysis can be fruitful to kick-start this future
direction and enable the further development of methods and metrics to study KG evolution.
In the future, it is important to move from snapshot analysis to more continuous approaches
capturing fine-grained evolution at the time of individual edits. We can also potentially borrow
approaches from network science, as they also analyse the evolution of networks, even though the
networks have a simpler representation than KGs.

4.4 Metrics and Methods from Network Science

Network science has developed tools to map and analyse complex systems, suggesting the possibility
of adopting them to study the structural properties of KGs. Researchers have discovered that
regularities in domains such as transportation systems, scientific communities, economic sectors,
or communication systems can be fruitfully represented and studied as networks. Indeed, there
are remarkable regularities in such domains that play an important role in how these systems
function and evolve. For example, networks tend to have very heterogeneous degree distributions,
which means there are “hub” nodes with orders of magnitude more connectivity than the typical
node [7]. Social networks tend to have many triangles, as suggested by the saying that a friend of
a friend is likely to be a friend. Scientific community networks often have modular structures [87],
reflecting coherent subcommunities of nodes in a larger system. Empirical networks tend to be
sparse (i.e. given a network on n nodes, there are far fewer than the possible n(n — 1)/2 edges).
But they also have short paths connecting all pairs of nodes (i. e., low diameters) [247].
Although recent work on multiplex or multi-layer networks considers data with multiple kinds
of objects or links between them, most networks studied are generally simpler than those observed
in the Semantic Web community. For instance, ordinary networks usually consist of a homogeneous
set of nodes (i. e. airports) and relationships between them (i.e. direct flights between airports).
Multilayer networks consist of the same nodes and different kinds of relationships they might
have. For example, people who may communicate via email and telephone. Studies using this
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kind of multi-layer data tend rather to just generalise the methods applied to ordinary networks
described in this section than to invent new ones [26, 25]. On the other hand, knowledge graphs
are multi-dimensional by design. Although undoubtedly useful, such complexity presents an
obstacle to studying their evolution using methods from network science. Therefore, to apply
these methods to study the evolution of KGs, we must first simplify the data. However, any
simplification must be driven by a substantive question to make it meaningful, and it must be
significant in the sense that it discards a significant amount of data, to be tractable.

Once a simple network has been constructed, the temporal dimension of the data can be
integrated by slicing data into time periods (for instance, as in [143]). Measures of the network,
for instance, its diameter, the mean and variance of its degree distribution, the modularity of
a community detection exercise, or the prevalence of clustering can be calculated for each slice
and then plotted over time. However, the choice of the width of the time slice can have major
implications for subsequent analyses [211].

The stylized facts about networks described above have important implications for things that
happen to them or to them. They predict the robustness of a network, i.e. how well it holds

when its nodes are removed. They predict how quickly things like information or diseases spread.

Network structure plays an important role in its navigability: if you do not have a map of the
network, can you still find your way from a node you know to another specific node in a reasonably
short amount of steps [134, 215]?7 Network scientists are naturally interested in how changes in
a network are captured by these measures and, in turn, how they influence things that happen
within networks [165].

Network scientists have two broad solutions for the comparability issue between networks of
different sizes. The first is to propose a generative model that captures many of the key properties
of the network in question [38, 39], and to instantiate random graphs from this model. Next, one
calculates the same statistics on this randomised version of the graph and uses it as a kind of
benchmark or normalisation factor. The most simple generative model is the Erdés-Rényi model,
in which edges are randomly added between nodes with a fixed probability p. Given two empirical
networks of different sizes, one can create corresponding random networks with the same number
of nodes and edges for each. Calculating the clustering on these random networks allows us to scale
or normalise the clustering observed in the corresponding empirical networks, which then become
more comparable. More sophisticated models like the Barabasi-Albert model [7] (which generates
networks with heterogeneous degree distributions, i.e. hubs) and the Watts-Strogatz model [247]
(which generates “small world networks” that have both short paths and high clustering) can also
be used in this way, depending on the research question.

The second way to make network measures comparable between networks of different sizes
and over time is to create randomised versions of empirical networks, sometimes called null
models [128, 206]. Such randomisation typically takes place among the edges, which are randomly
rewired or shuffled subject to constraints depending on context. For example, a randomization
of links between Wikipedia editors and the articles they touch creates a “random” version of
Wikipedia preserving editor activity counts and article edit counts. Such randomisations are
similar to statistical Monte Carlo simulations and can be computationally intensive, but the
resulting randomised versions of the empirical graph can provide a useful benchmark to compare
against the original graph. Although these methods require both a drastic simplification of the
data contained in KGs and the deployment of complicated methods such as generative models or
null models, they present a significant opportunity to create more robust estimates of the dynamics
of KGs. Given the degree of simplification this process requires, a clear research question about
the structure and dynamics of KGs is an essential first step.
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Future directions

We see the potential of using network science to investigate the collaborative nature of many open
general-purpose knowledge graphs. Not only does knowledge evolve, but the way it evolves is
intertwined with the editing network, for which network science and its approaches to analysing
its changes over time would be beneficial. For example, if one wanted to study whether Wikidata
editors were becoming more or less collaborative over time, how could one define a reasonable
notion of collaborative behaviour? Could one define collaboration between two editors as a function
of their using the same properties or working on the same entities? Should a pair of editors both
using the most widely used property be as thickly connected as two editors using a more rarely
used property? Network science offers tools to carry out such an analysis, but the researcher must
make choices in pursuit of a question. Question-driven modelling of KGs as simplified “networks”
can move us beyond a descriptive analysis of KG evolution.

5 Manage the Evolution

Although dynamic/versioned and temporal KGs can be considered as two alternative approaches,
they introduce different challenges in their management. In the case of temporal KGs, the main
challenges lie in how the temporal information is captured and represented. We discuss different
approaches in Section 5.1. Although, when time is not part of the data, the KGs do not require
specific data models. The temporal information lies in the updating process itself; they often
publish complementary changelog streams that may or may not be represented in RDF. However,
time as metadata raises a different set of challenges for KGs, including the representation of the
evolution and storage options, discussed in Sections 5.1, 5.2, respectively.

5.1 Data Models for Temporal Knowledge Graphs

The two main approaches for implementing KGs are RDF and labelled property graphs (LPG). In
the rest of this section, we describe how researchers and practitioners modelled temporal KGs in
these two approaches. In the last part, we elaborate on open challenges with regard to capturing
and then analysing the evolution of knowledge in Temporal KGs.

Temporality in RDF

The problem of how to model time-related information has been intensively studied. Amongst the
multitude of proposed solutions, a broad distinction can be made by representing time in the data
vs. in the metadata.

In the former case, entities can be part of statements together with their temporal proper-
ties. The Time Ontology and the Sensor, Observation, Sample, and Actuator (SOSA) ontology
implements this idea, e.g. an observation can have a relation sosa:phenomenonTime with a
time:TemporalEntity individual.

In the latter case, the temporal annotation applies to RDF statements (or graphs). A common
method to implement it is reification, which involves annotating triples. In [109], various reification
schemes were examined:

Standard Reification uses a resource to represent a statement, such that it can be used in other

RDF statements to add annotations (including temporal ones).

N-ary Relations represent relationships using resources, stating subject involvement, value,

and qualifiers. Instead of stating that a subject has a given value, it states that the subject is

involved in a relationship that has a value and qualifiers.
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The Singleton Properties approach involves creating a property that is only used for a single
statement. The resource representing the statement is annotated with this property to add
more information.

RDF 1.1 introduced the notion of Named Graphs, which can, for example, be serialised in
N-Quads. One can annotate the named graphs, e.g. associating the same temporal annotation
to all the statements contained in the graph.

RDF-star [107] extends RDF through embedded triples, i.e., an RDF statement can be the
subject or object in another RDF statement. Just as standard RDF can be queried via the
SPARQL query language, RDF-star can be queried using SPARQL-star (formerly SPARQL*),
allowing users to query both standard and nested triples.

There is no single way to represent contextual information in RDF graphs, and the different
mechanisms have advantages and disadvantages. Reification and n-ary relationships model complex
facts in RDF. However, adding reification triples for each reified triple increases the data volume,
making metadata queries cumbersome due to the need for additional subexpressions to match
the corresponding reification triples. Other methods, such as singleton properties and named
graphs, reduce the number of extra triples. However, these approaches require verbose constructs
in queries, introducing artefacts to associate triples with their metadata [171]. RDF-star is more
compact and adds facilities to the query language via SPARQL-star but does not achieve the
levels of flexibility as some previous approaches. Of the strategies presented, named graphs are
the most flexible since they allow assigning one annotation to sets of statements; RDF-star is the
least flexible option since it cannot capture different sets of contextual values on an edge [112].

Temporality in Labelled Property Graphs

Labelled Property Graphs (LPGs) are another popular solution to represent KGs. The problem
of the representation of evolution, particularly temporality, has also been addressed in their
context. However, while in principle LPGs allow direct attachment of temporal information to
edges in the graph, there is no consensus on a single approach for temporal LPGs. Similar to core
RDF approaches, works in LPG in the literature differ in supported time dimensions (valid time,
transaction time or both/bitemporal), types of possible changes to graph structure and properties,
and representation as either a series of graph snapshots or a single graph reflecting changes over
time.

The Temporal Property Graph Model (TPGM) [201] extends the Extended Property Graph
Model (EPGM) to support analytical operators on directed graphs that evolve in Gradoop. TPGM
adds support for two different time dimensions, valid and transaction time, to differentiate between
the evolution of the graph data concerning the application and managing the data. This approach
offers a flexible representation of temporal graphs with bitemporal time semantics. TPGM expands
EPGM with four new time attributes as mandatory for vertices, edges, and logical graphs: two
for transaction time intervals and two for valid time intervals.

Debrouvier et al. [60] apply temporal database concepts to graph databases to model, store,
and query temporal graphs for historical data tracking. The focus is on the Interval-labelled
Property Graphs data model, which timestamps nodes, relationships, and node properties with
temporal validity intervals, allowing for heterogeneous graphs with different types of relationships.
This model enables richer queries and supports two path semantics: Continuous Path Semantics
and Consecutive Path Semantics.

Andriamampianina et al. [12] propose a conceptual model to represent temporal property
graphs and define a set of operators to perform queries on these. The model establishes various
concepts to represent objects, their relationships, and their evolution over time. It manages time

11:29

TGDK



11:30 How Does Knowledge Evolve in Open Knowledge Graphs?

through valid time intervals to track changes and occurrences in the real world. To describe an
object, the model introduces the notion of temporal entity, comprising a set of states to represent
different versions of the entity over time. Each state includes attributes, attribute values, and a
valid time interval. A temporal relationship, analogous to a temporal entity, describes the link
between two entity states.

Future Directions

Despite RDF and LPGs originating in different contexts, the two approaches are valid for
creating and representing KGs. Several graph database vendors support both approaches to offer
their customers flexibility and choice. In this context, an ongoing research direction lies in the
interoperability between the approaches. Despite the active research [4, 15, 144], to the best of our
knowledge, there is no study on the RDF-LGP interoperability in the context of temporal KGs.
The challenge lies in the way the time can be represented in both RDF and LPGs: the multitude of
different approaches leads to many possible conversion procedures. We argue that reference models
are needed to unify the existing approaches and to set the basis for standardisation initiatives that
will ease the creation, storage and processing of temporal knowledge graphs in different engines.

Another direction relates to query languages for temporal KGs. SPARQL and the LGP query
languages consider temporal annotations as any other type of annotations. As such, query writers
need to understand how time is represented in the graph and write the query accordingly. However,
temporal annotations enable specific time-related operations, such as creating selection criteria
based on Allen’s relations [9]. Encoding such relations in the queries is not trivial and often error-
prone. Treating time as a first-class citizen in the data models can lead to query languages with
specific time-related operators, simplifying the query writing process and constructing dedicated
query engines that can efficiently evaluate such operators. While this idea has been investigated
in the context of continuous query processing over RDF streams (see section 6.2), it has not yet
been deeply investigated for temporal knowledge graphs.

Interoperability between the two models would also further enable the possible application
of analysis frameworks, existing and future ones. The same can also be said about SPARQL
integrations, as in the past analyses have made use of SPARQL. Therefore, a SPARQL extension
for temporality (of any dimensions) would further support efforts into KG evolution analysis.

5.2 Storage Methods

Since in temporal KGs the time dimension is managed as part of the data, temporal information
integrates naturally in the data model and can therefore be captured using standard methods
as outlined in Section 5.1. In the case of dynamic and versioned KGs (Figure 1), alternative
approaches have been proposed capturing temporal information outside the data model itself.

An intuitive way of storing versioned KGs is to store each complete version of the KG as a
new copy, often referred to as the Independent Copies approach [81]. While this can even be
implemented using standard triple stores with named graphs, it has scalability issues regarding
the number of named graphs (one for each version) and the required storage space for larger KGs.
An advantage of this approach is that all queries to be executed on a single full version of a KG
can be executed very efficiently since no additional computation (see below) is needed to retrieve
the complete version of a graph to execute the query on. IC approaches are generally very useful
for small knowledge graphs [177].

To reduce the storage overhead, Change-Based approaches store several full versions of the
KG as snapshots but only sets of changes (deltas) for the versions in between. This makes
them a hybrid solution between versioned and dynamic KGs. In this setup, querying versions
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that correspond to snapshots is again very efficient since the full KG is readily available. The
disadvantage of this approach is that for the versions between snapshots, chains of deltas have to
be applied on the preceding snapshot to recreate full intermediate versions [222, 19, 5, 179, 178].
An important aspect is then to identify which versions to materialise as snapshots and which ones
to capture as deltas.

Instead of capturing entire versions of complete KGs, dynamic KGs annotate individual triples
with timestamps, so-called Timestamp-Based approaches. In such a setting, it is then of course
expensive to recreate particular versions of a KG since this requires filtering all triples based on
their temporal validity. On the other hand, it becomes efficient to look up the temporal validity
of each triple.

Future Directions

While most systems implement only one of the above-mentioned storage methods [223], there are
hybrid approaches that can be configured to resemble one or the other. In this sense, one direction
of future work is to investigate how to exploit the strengths of different storage techniques for
certain use cases and develop adaptive approaches that choose and adjust the storage layout based
on how the data is used.

Building upon existing approaches for the above-mentioned storage models, one of the main
challenges is scalability. On the one hand, we need to develop more efficient storage methods to
reduce the storage overhead of capturing information about versions and temporal validity. On
the other hand — and this is very much determined and influenced by how the data is stored —
future work needs to develop efficient methods for querying that can not only retrieve complete
versions of a KG but also allow efficient query processing over certain versions of a graph (see also
Section 6.1).

Finally, it is worth noting that the way the data is stored affects the type of possible analyses on
KG evolution. For example, if one wants to run time-series analyses (as described in Section 4.1),
change-based approaches are ideal due to their focus on changes. Independent copies may not
contain enough fine-grained information to perform such analysis. However, metrics based on
consistency metrics (as described in Section 4.2) may not work in change-based approaches as
some intermediate changes may affect the consistency of the KG. Therefore, we envision storage
solutions able to store KGs following different approaches, with the ability to perform a wide
range of analytics tasks on KG evolution in efficient ways.

5.3 Mapping Schemas

Supporting KG versions is a key approach to ensure the stability of downstream applications for
KGs. Therefore, it is essential to capture the evolution on the schema-level by sets of schema
changes that typically occur in collaborative and decentralised processes.

Schema evolution requirements have been discussed in the past, in particular with respect to
ontology evolution [28]. The availability of expressive and declarative mappings specifying the
evolution between an original version of a schema S and an evolved version S’ makes it possible
to cater for the automatic propagation of the changes on the corresponding instances.

There exist two inherent problems with mappings between schemas. The first problem
corresponds to the (semi-)automatic computation of the schema mappings by leveraging schema
matchings and Diff(erence) computation [197]. Schema matchings can be defined as one-to-one
correspondences between two different versions of a schema, and they can be coupled with a
confidence value. On the other hand, schema mappings are declarative specifications, typically
expressed in a subset of First-Order logic, representing the transformation between two different
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versions of the underlying data. Schema mappings are typically expressed as source-to-target tuple
generating dependencies (s-t tgds), whose left-hand side is a conjunctive query and right-hand
side is a conjunctive query enhanced with existential variables, which lead to value creation. In
the case of schema evolution, schema mappings are adapted after schema changes and meta
modelling abstractions serve the need of providing high-level programming interfaces than other
techniques [31].

The second problem concerning mappings between schemas is the so-called schema mapping
or data exchange problem [78, 28], consisting of computing the transformed target instance (also
called target solution) by applying the source-to-target tuple-generating dependencies between
source and target schemas. In the case of schema evolution, the target schema might undergo
some changes, thus entailing the propagation of these changes to both the mappings (s-t tgds)
and the corresponding target solution.

The most expressive schemas for KGs are ontologies, which allow conceptualising a domain.
They provide a steerable vocabulary for a given domain of interest, defining the ontology concepts
as well as the properties and relationship between these concepts. Several research approaches
study collaborative ontology evolution and ontology matching, as surveyed in [108, 77]. Without
going into the details of these approaches, we point out that in the last decade after the above
approaches, schemas for graphs have profoundly evolved, thus bringing more open challenges for
KG mappings and transformations.

Finally, often KGs originate from external databases that can contain graph data in different
formats or even other data models, such as relational or document databases. There are approaches,
such as R2RML [55], to facilitate the latter, but the mappings from relational data to RDF have
to be (manually) adapted whenever the native (or the integrated) schema changes.

Future Directions

Recent schemas for KGs range from RDFS [42], SHACL [135], and ShEX [22] to PG-Schema [14]
and their evolution, as well as the mapping problems related to computation of schema mappings
and computation of the target solution, are not yet studied. The first three schemas are applicable
to mapping RDF data, while the latter is applicable to mapping property graphs [38]. One relevant
future direction consists of studying the automatic generation of schema mapping transformations
and the data exchange problem for the above models in a time-varying context thus exploring
schema evolution and versioning for evolving knowledge graphs under recent schema languages.

Another important direction concerns the mappings from RDF to property graphs or the other
way round [132, 15] in order to pay attention to producing incremental or comparable schemas
in comparison to previous versions. Especially complex constructs have alternative translations
into the other model. Hence, small changes can have big structural impacts on the integrated
result. It therefore remains mostly unclear how to appropriately capture and measure schema
evolution caused by schema changes in the input data. Although some proposals, such as the
OneGraph vision [144], propose to achieve graph interoperability by allowing users to use Cypher
or SPARQL independently from whether RDF or property graphs were chosen as the data model,
this only means that users are free to choose the query language that they prefer or that is more
appropriate for a different use case; the underlying challenges of how to capture evolution in the
underlying graph model remain the same.
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6 Spread the Evolution

Typical tasks to process KGs include querying, reasoning, and machine learning. When we move
from static to evolving KGs, one should consider the temporal dimension. In Sections 6.1 and
6.2, we discuss two classical operations on knowledge graphs: querying and reasoning. Next, we
discuss learning techniques in Section 6.3. We conclude by discussing evolving KG exploration in
Section 6.4.

6.1 Query Processing

We introduced data models for temporal KGs in Section 5.1. As the temporal information can be
modelled in standard RDF (e.g. through named graphs or reification), in RDF-star and LPG,
it follows that their relative query languages, such as SPARQL (or SPARQL-star), can be used
to retrieve data from them. However, as we explain in Section 6.1, several researchers proposed
ad-hoc query languages where time is a first-class citizen. Next, we discuss querying for versioned
KGs in Section 6.1, focusing on the solutions to extract and query a specific KG version. Finally,
we introduce continuous queries in Section 6.1 to monitor changes and to evaluate a query on
evolving data continuously.

Temporal Querying

Temporal queries refer to languages and operators that offer native support for retrieving and
manipulating time-referenced data. The semantics of a temporal query language are usually closely
coupled to a temporal data model that defines the underlying data abstractions (see Section 5.1).

Despite the growing popularity of temporal data in KGs, this research area is still in its
infancy. Exciting proposals (with a few exceptions) represent the graphs using either RDF or
LPG and approaching change as a snapshot sequence. Thus, their query-answering capabilities
are limited to those possible under the snapshot reproducibility principles, i.e. answering a
temporal query over a database is equivalent to taking the union of all the answers obtained by
evaluating the non-temporal variants of the query for each database state [35]. For example, 7-
SPARQL [226], SPARQLT[251] propose syntactic extension meant to access RDF triples annotated
with a timestamp. Zhang et al. [253] went one step further with their proposal, SPARQL][t],
extending the annotation with an interval-based validity time. Raising the expressivity bar, Arenas
et al. [18] studied Temporal Regular Path Queries (TRPQ) to interrogate reachability over time
over property graphs extended with time intervals of validity. Intervals of validity represent
consecutive time points during which no change occurred for a node or an edge in terms of its
existence or property values. Their approach, similar to T-GQL [61] and the Temporal Graph
Algebra [161], is designed for Labelled Property Graphs. The main drawback of such a query
model is the lack of support for operations that explicitly reference temporal information [18].
Therefore, an extension of this query model that propagates temporal information across snapshots
has been proposed [66].

Querying Versions

Querying archives is not straightforward; since there is no well-defined or commonly accep-
ted standard, archiving engines typically propose customised solutions for querying their data.
AnQL [256] and SPARQL-T [92], for instance, are SPARQL extensions based on quad patterns —
where the fourth component indicates the version over which the given query should be executed.
T-SPARQL [100] instead is a SPARQL extension where groups of triple patterns are annotated
with constraints regarding temporal validity supporting time ranges and timestamps. Other
extensions go beyond the temporal dimension and include geospatial constraints [30, 185]. Some
archiving engines [178, 179] also use the GRAPH clause of SPARQL to denote specific versions.
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Apart from different approaches on how to formulate queries syntactically, one can distinguish
different types of queries over archives based on the way they access the available versions of the
knowledge graph [81, 177]. Two basic retrieval tasks are to extract a specific full version of a
KG from storage (Version Materialisation) and to extract deltas (changesets) between pairs of
versions (Delta Materialisation). In addition, we can distinguish different types of queries; the
most commonly supported type of queries on evolving KGs are those where a SPARQL query is to
be evaluated over a specified full version of the KG (Single Version). Another type of query aims
at comparing answers to full SPARQL queries on different versions of a KG (Cross Version, e. g.
which of the current countries was not in the original list of UN members. Instead of retrieving
the answers to a SPARQL query, one can also aim to retrieve the specific versions in which a
given SPARQL query yields (specific) results ( Version), e.g. in which revisions did the USA and
Cuba have a diplomatic relationship?

While the literature also introduces queries on deltas (single delta and cross delta), where
queries can be evaluated on the changesets only, we argue that these types of queries can be
considered subsumed by the above-mentioned types on full versions of a KG and assume that
the archiving engine will detect during query optimization whether a complete version of the KG
needs to be retrieved of a retrieving a changeset is sufficient.

Continuous Querying

Continuous queries (CQs), also known as standing queries, differ from other query processing
tasks due to their never-ending nature. Indeed, they are typically used to analyse evolving data,
including evolving KGs, to identify patterns, trends and outliers. With respect to the running
example, one may write a query to monitor the movements of artworks between galleries. While
the artwork is displayed in New York, the continuous query returns New York when specifically
queried for the “current location”. When the artwork is moved to Madrid and consequently the
KG is updated, the query’s result changes to Madrid as soon as the information changes.

The most relevant trait of CQs is the time-varying nature of the answers. Indeed, a query
evaluated under continuous semantics produces a series of responses as if it was evaluated for
every time instant. In practice, continuous-query evaluation is either periodic or based on custom
conditions, e.g. the occurrence of an event or data change. Although several proposals exist
for relational data [237], their potential in the Knowledge Graph world remains substantially
unexpressed.

The Semantic Web literature has explored continuous queries for Streaming Linked Data [41]
proposing several SPARQL extensions, e.g. C-SPARQL, CQELS, SPARQLs¢ream, including some
able to combine different modalities [184]. Such languages have been reconciled by Dell’Aglio et
al. [64], who explained their continuous query semantics using three families of operators adapted
to RDF from [17]. RSP-QL describes how, despite syntactical differences, the existing languages
all use window operators to cope with the infinite nature of the input data, usually modelled
as a partially ordered sequence of timestamped RDF graphs. On a parallel line of research,
EP-SPARQL [16], DOTR [155], and OBEP [233] have explored the approach for detecting event
patterns in RDF streams. Such languages leverage time-aware operators and can be evaluated
using regular expressions. Although the SPARQL query is entirely supported semantically, such
proposals have given little attention to subgraph matching and navigational /exploratory continuous
queries. Notably, queries involving (regular) path expressions that cover more than 99% of all
recursive queries found in massive Wikidata query logs [40].

Regarding navigational continuous queries, Pacaci et al. [174, 175] modelled the graph as an
ever-growing sequence of timestamped edges. Moreover, they studied two query models, Regular
Path Queries (RQP) and Union of Conjunctive RPQs. Such query models are analysed with and
without explicit deletions as a form of the materialised view.
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Finally, continuous subgraph-matching (CSM) is a particular case of the foundational subgraph-
matching problem, where the target graph is subject to updating (either append-only or with
explicit deletions). Sun et al. [221] recently surveyed the existing exact approaches, modelling the
CSM problem as incremental view maintenance.

Future Directions

Besides an investigation of which approaches have been applied to which general-purpose open KGs
and how they perform, we distinguish two main directions for what concerns querying evolving
knowledge graphs, i.e. addressing the open challenges related to each query model and a more
general challenge that goes in the direction of a unified query model.

Temporal Querying for EKG has built upon the adoption of a single temporal model and snap-
shot reducibility. Future work requires relaxing such assumptions. The simultaneous application
of multiple temporal models relates to the heterogeneous nature of graph data. Indeed, KGs are
often referred to as a way to address data variety and perform data integration. However, such
variety is not allowed within the temporal model, given an entailed complexity exposition. Going
beyond the snapshot reducibility means allowing explicit temporal reference within the query
settings. Such an approach reduces the temporal-navigational mismatch in the query language,
allowing for posing complex questions over hybrid graph data models.

As explained above, querying versions of a KG often entails evaluating queries on a specific
version of a KG or multiple ones. Naturally, the storage layout and available indexes determine
how efficiently a query can be answered. Hence, developing appropriate indexing, storage layout,
and efficient query optimisation techniques exploiting them are important aspects of future work.

The challenge related to continuous queries over EKGs relates to the central role of windowing
in Streaming Linked Data, which poses serious limitations to the adoption and the optimisation
of continuous queries. Users must know the temporal context of the interested phenomenon to
choose an appropriate windowing policy. Moreover, aggregation-optimised windowing, which
is well-known for relational data, was not studied for graphs. On the other hand, navigational
continuous queries, and in general continuous subgraph matching, were little studied. Their
relationship with knowledge evolution is noticeable and further investigation is required.

Finally, searching for a unifying query model that could make the best of the existing one is
open and motivated by the specific need to migrate from one model to another when necessary.
Currently, the users must pick one data and query model, and thus, their query ability is limited
by the design choice of such languages. Instead, a formally verified language for EKG data that
can express queries about time, through time, and in time is still missing.

6.2 Reasoning

Reasoning over large KGs layered with an OWL ontology to describe their schema may be
prohibitive when using the full power of OWL. However, reasoning within the OWL 2 profiles [137]
brings very interesting computational properties. Indeed, state-of-the-art reasoners over KGs
typically focus on fragments of OWL (e.g. [164, 46, 238, 29]). For example, OWL 2 RL axioms
can directly be translated into Datalog rules [162] enabling the use of efficient Datalog engines
(e.g. [164]) that will expand the KG with implicit facts following from the OWL ontology and
the KG data. Reasoning also enables the use of the notion of logical difference [136], which can
be essential to understanding the evolution of a KG in terms of new entailed facts. For example,
diff (XG, KG’) represents the (entailed) facts in KG’ not present in KG.
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Reasoning in Evolving Knowledge Graphs

Rule-based systems typically perform materialisation (i.e. precomputation of the consequences
after reasoning) before queries over the KG are evaluated. Changes in the KG require recomputing
the materialisation so that query results are up-to-date concerning the changes. This process
may be expensive for very large KGs and rule sets, especially if they constantly evolve. Most
systems adopt Incremental materialisation when changes are to be reflected as soon as they occur
(e.g. [241, 163]). These systems focus only on the part of the KG affected by the changes and
implement optimised solutions to perform efficient incremental reasoning. In addition, there
have been efforts in the literature to enhance incremental reasoning via modular materialisation
(e.g. [114]) and enable distributed materialisation via data partitioning (e.g. [6]).

The evolution of a KG may also require the integration with other KGs as described in
Section 5.3. The compatibility of integrating multiple KGs has been extensively evaluated from
the ontology alignment perspective. In the literature, several approaches aim at identifying logical
errors and unintended logical consequences derived from the alignment of the KGs (e.g. [157, 79,
216]). To the best of our knowledge, at the moment, no studies are focusing on how KG evolution
affects consistency in alignment tasks. We believe that this is an important future direction
because the effect of changes on reasoning can be substantial [182] and can also unexpectedly
impact alignment tasks [183].

Reasoning for Studying Evolution

Logic-based reasoning, as discussed in previous sections, can play a key role in conducting
constraint validation and can contribute to the definition of robust metrics to measure KG
evolution. For example, the semantic drift described in Section 2.3 can be tackled via the logical
difference [136] between two versions of a KG after materialisation. diff (KG;, KG;y1) represents
the new (materialised) facts in KG;41 not present in KG;, while diff (KG;;+1, KG;) represents the
facts that were lost in the new version of the KG KG;;1. An analysis of the impact of changes
on the materialisation in the case of ££71 ontologies in the biomedical domain was analysed in
previous work [182], where the authors quantified the change in the materialisation to learn how
ontologies evolve over time.

Efficient rule-based reasoning can also be leveraged to evaluate the evolution of the knowledge
graph in terms of the conformance of the data with respect to the ontology and available constraints.
This conformance evaluation can complement the related quality metrics (see Section 4.2). For
example, Kharlamov et al. [131] interpreted some OWL 2 axioms involving cardinalities and
ranges as integrity constraints and represented them as Datalog rules to identify violations of
those constraints. For example, the following OWL axiom («):

MasterPiece SUBCLASSOF (carried_out__by SOME Artist) (1)
is transformed into the following Datalog rules:

Art_ pieces_carried out by artists(?x) < carried out by(?x, ?p) A Artist(?p) (2)
Violation(?p, &) <— MasterPiece(?p) A mnot Art_ piece_carried_out_by_ artists(?p) (3)

In the example above, it is expected that MasterPiece in the KG have at least an explicitly
associated Artist.



A. Polleres et al.

Stream Reasoning

When the KGs evolve at a high pace, and the information needs to focus on extracting novel
and recent information, we enter the realm of stream reasoning [62]. Stream reasoning combines
knowledge representation with stream processing techniques [52] to process evolving ontologies
and KGs in a continuous and responsive fashion[64]. Stream reasoning cases relate to Timeliness
(Section 2.1), i.e. the inference is needed before data are no longer useful.

Firstly, several research groups worked on defining data models and vocabularies to capture
data streams through KGs and ontologies. Zhang and Stuckenschmidt [115] introduce the notion
of linear version space to define a sequence of ontologies. Such a notion was later adapted by Ren
and Pan [199] to define ontology streams as a sequence of timestamped ontologies. An alternative
model for data streams is RDF streams, defined as a sequence of timestamped statements (as in
[24, 186]) or graphs (as in [63]).

Reasoning task extensions over streams, such as consistency check and closure, were first studied
with a focus on adapting reasoning algorithms to the streaming settings. For example, Barbieri
et al. [24] extend the incremental reasoning algorithms DReD for stream reasoning with sliding
windows. The authors exploit the knowledge derived from the sliding window operator to calculate
when assertions must be deleted and use such information to improve the performance of the
materialisation algorithm. Ren and Pan [199] propose a truth maintenance system implemented
in the TrOWL reasoner that builds a graph to track the derivations. When the assertion changes,
the system incrementally maintains the graph and consequently updates the materialisation.

Over time, the focus moved to the application of temporal logic for stream reasoning: here,
Beck et al. proposed the Logic-based framework for Analysing Reasoning over Streams (LARS)
[27]. LARS combines temporal logic operators with specific operators to reason over streams,
such as the window operator. Tiger and Heintz [230] propose P-MTL, an extension of the Metric
Temporal Logic with probabilities to model the state uncertainty. P-MTL allows the use of
probabilities in the logic formulas and to use them in the inference process. One of the most
recent studies is from Walega et al. [243], who researched DatalogMTL in the context of stream
reasoning. They study the conditions to guarantee that no infinite materialisation occurs and
show that reasoning over the fragment of DatalogMTL that satisfies such conditions is not more
complicated than reasoning over Datalog, i.e. ExpTime-complete for combined complexity.

Lastly, several researchers and practitioners studied stream reasoning applications. One area
where stream reasoning found considerable interest is smart cities and traffic management. Lecue
et al. propose STAR-CITY [152], a system to analyse streaming heterogeneous data by combining
ontological reasoning, rule-based reasoning, and machine learning. Eiter et al. [74] designed a
stream reasoning solution based on Answer Set Programming (ASP) to optimise traffic control
systems. Le Phuoc, Eiter, and Le-Tuan [187] use stream reasoning to integrate streams of images
from car cameras and data streams to reason over them.

Stream reasoning has also found application in other domains. For example, Barbieri et al. [23]
applied stream reasoning techniques to social media streams for personalised recommendations;
Kharlamov et al. [130] propose stream reasoning in the context of monitoring failures in an
industrial setting; De Leng and Heintz [59] integrated stream reasoning techniques in the Robot
Operating System (ROS) to reason on the input IoT data and determine the most appropriate
configuration. A recent survey discusses the maturity level of knowledge representation and
reasoning within the lifecycle of existing stream reasoning applications [41]
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Future Directions

Much attention is still required concerning logical reasoning to analyse and spread the evolution
in state-of-the-art open knowledge graphs. As discussed, performing reasoning may be prohibitive
in modern knowledge graphs if the full expressiveness of the underlying ontology is used. State-of-
the-art solutions focus on tractable fragments (e.g. OWL 2 profiles) to scale with large knowledge
graphs and ontologies; however, coping with these KGs still poses essential challenges in terms of
scale completeness and errors in the data. To assess how far the current approaches can take us, a
comprehensive analysis of reasoning methods with a combination of general-purpose open KGs is
necessary to understand the limitations in real-world settings. The combination of deductive and
inductive techniques [65], as discussed in Section 6.3, is key to tackling these challenges as it leads
to data and knowledge-driven techniques to, e.g., complement the evolving knowledge graph and
to identify and correct potentially wrong new facts [48].

Stream reasoning is a candidate to have a central role in making sense of evolving knowledge
graphs. In particular, expressive stream reasoners like Laser and LARS are candidates as formalisms
to capture the complex interrelations between dynamic, versioned, and temporal KGs (cf Section 1).
Similarly, it needs to be verified if existing languages like RSP-QL [63] are adequate for defining
transformation across EKG types. Moreover, as we envision a more prominent role for events [99],
agent-based reasoning methods are an important direction towards efficient methods to spread
and handle the evolution [234]. Finally, from an application/engineering standpoint, different
reasoning tasks may benefit from alternative KG encoding. Therefore, solutions like RSP4J [232],
ChImp [183], or the SR PlayGround [210] need to evolve to welcome EKGs as first-class citizens.

6.3 Learning

In machine learning, KGs or ontologies are often transformed into vector space known as embeddings
before use. KG embeddings are low-dimensional vector representations of entities and relationships
within a KG. Typical tasks over such embeddings are link prediction, KG completion, node
classification, query answering and data integration. Overall, we can distinguish two main families
of graph embedding approaches: transductive and inductive. In transductive approaches, all nodes
and relations are seen during training while new edges among seen nodes can be predicted at
inference time. Inductive approaches instead allow to train on one version of the graph and then
perform inference even with new nodes and edges introduced at testing time [8]. Therefore, when
dealing with evolving KGs, we can distinguish between approaches that try to adapt transductive
embedding methods to the case of dynamic or evolving graphs [43, 228, 249] and inductive methods
that try to learn from contextual information and metadata, e. g. attributes or recurrent structures,
high-level patterns that should allow inference even when the underlying data changes [89, 255, 58].

In the following, we first discuss existing continual learning approaches for embeddings of
time-varying KGs, which could potentially be used to analyse the evolution of KGs in the future.

Next, we discuss temporal embeddings, where instead of embedding changes to the KG, the
objective is to embed temporal information in vector space as well, therefore having a temporal KG
as input. This type of method inherently requires a different KG, one with temporal information.
Lastly, we discuss some applications of learning for KGs with the evolving nature in mind.

We aim to provide a high-level overview of learning with regard to evolving KGs but do not
claim to provide an in-depth survey of approaches. We specifically want to highlight known open
challenges at the end of this section.
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Continuous Embedding Learning

PuTransE provides a self-contained model, based on TransE, which builds on a metaphor of
“parallel universes” [228]. It trains several parallel embedding spaces using different subgraphs.
The retraining is then limited to some of the parallel universes instead of relearning the entire
representation. DKGE is another self-contained model [249]. In this approach, the embedding of
an entity consists of two parts, the embedding of the entity itself and its context embedding. Both
puTranskE and DKGE deal with the changing graph as a whole, but their scalability to larger
graphs is limited. Song et al. [217] was one the first efforts regarding dynamic KG embeddings,
focusing on the addition of new triples on translation-based models, which the authors refer to
as enrichment. Cui et al. [53] present a transfer-based strategy for embedding generation for
newly introduced entities. This self-contained model is based on auto-encoders and scales well
with large graphs. Daruna et al. [54] extends and reformulates the principles of five main types
of continual learning methods not specific to KGs. These criteria are applied to KG embedding
models, each requiring a different kind of adjustment to fit the continual learning problem. All
three methods [217, 53, 54] can only deal with additions and not with deletions or modifications.
Lastly, the objective of Hamaguchi et al. [106] is slightly different. They rely on GNNs to generate
embeddings for unseen entities at testing time but do not update and reuse the embedding for
subsequent use.

All the methods above have drawbacks and there does not exist a go-to method so far to
embed KGs continuously. The big challenges are (1) deterioration of the task performance as the
embedding is updated and (2) dealing with deletions of triples or nodes.

Temporal Knowledge Graph Embeddings

The goal of temporal KG embeddings is to represent a time-annotated KG in a vector space. As
such, these methods are completely different from the methods dealing with evolving snapshots
of a KG. Many methods have been proposed for embedding temporal KGs and can be roughly
separated into four categories: geometric, matrix factorisation, deep learning, and model-agnostic
methods. There are some methods that are meant for dynamic temporal knowledge graphs;
however, they only consider additions, arguing that deletions are not necessary for temporal
knowledge graphs [148].

Geometric methods use geometrical transformations, such as translations and rotations, to
represent the KG elements, e.g. HyTE [56] as an extension of TransE for temporal knowledge
graphs: it incorporating time in the entity-relation space through a hyper-plane for each timestamp.
TeRo [125] and ChronoR [203] use rotation transformations by creating multiple representations
over time and creating time-dependent embeddings for relations respectively.

Matrix factorisation methods produce embeddings by decomposition tensors representing
the KG. While a KG is usually represented in a 3rd-order tensor, a temporal KG can be
represented in a 4th-order tensor, with the additional dimension representing time. For example,
TNTComplEx [141] extends ComplEx. One of the main peculiarities of the method is that it
distinguishes between non-temporal predicates and temporal facts.

Deep-learning methods exploit neural networks to learn the embeddings. For example, RE-
Net [127] learns temporal KG embeddings using a recurrent neural network, while [151] uses
convolutional neural networks to capture the time interaction between facts.

Finally, model-agnostic methods can be applied to time-agnostic KG embedding methods to
add the temporal dimension. For example, the Diachronic Embeddings [96] represent the entity
as a function of time and entity, while [145] provides a framework to extend methods to deal with
arbitrary time granularities.
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Applications of Learning on Evolving Knowledge Graphs

Learning on evolving KGs has been extensively used for completion and data integration tasks.
Here, we aim to present some examples, not a complete overview.

Completion. Completion is the problem of inferring missing links in a knowledge graph. In
recent years, many approaches have been proposed to address completion through KG embeddings.
There, the completion problem can be targeted through the link prediction task, i.e. finding a
missing element of a statement given the other two, or question answering, i.e. discovering unseen
links through approximate query answering. However, KG completion also includes other tasks,
namely triple completion, node classification, and relation prediction [212]. Many of the methods
presented above have been proposed for the purpose of KG completion and also tested with that
task specifically. Shen et al. [212] provide an up-to-date overview of approaches in this area
without considering KG evolution. They divide the existing approaches into those only relying on
structural information (the knowledge graph) and those that also make use of additional resources.
Additionally, some more specialised approaches deal with temporal KGs and their embeddings,
commonsense KG, and hyper-relational KGs. Since our goal is not to provide such an overview, we
refer to the work of Shen et al. [212]. Other surveys, which might not cover all of KG completion
like Rossi et al. [200] who only focus on link prediction or Wang et al. [244] who focus more
on the embedding methods and their application. Lastly, Gesese et al. [94] gave an overview of
approaches which specifically deal with literals.

Question answering. Then there are the approaches that are more specific for approximate
query answering, though they can also be seen as KG completion approaches. When not using
the graph information directly, it is possible to answer queries approximately by making use of
implicit information, the same as with KG completion. These can be presented in a transductive
[160, 49] or inductive setting [88]. There are emerging question-answering systems that target
time-related questions. For example, Jia et al. [123] propose TEQUILA, a system that enriches
question-answering systems with temporal question-answer capabilities. Three years later, Jia et
al. [124] created EXAQT, which answers questions using graph convolutional networks enhanced
with time-aware entity embeddings. Otte et al. [173] propose a question-answering system that
exploits an ensemble of diachronic temporal KG embeddings.

Data integration. An important practical application of graph embeddings lies in their usage
for data integration tasks on KGs. This has been particularly impactful in bio-medicine, where
data has been accumulating at an unprecedented rate and where efficient solutions for uniformly
integrating and processing them are particularly needed. The work in [72] introduces a semantic
KG embedding approach for biomedical data. As such, the authors focus on integrating biomedical
literature, e.g. MedLine and PubMed, with ontologies used to contextualise KG entities. At a
larger scale, a case in point of KG data integration with embeddings is the Bioteque knowledge
graph [85]. This integrates data from 150 sources and comprises 450K biological entities and 30M
relationships. To reduce dimensionality, while still capturing the various types of relationships
between entities, specific node embeddings are defined.

Future Directions

When it comes to continuous learning of KG embeddings, in light of an evolving KG as input,
there are three main challenges still open. From previously published approaches, the deterioration
of task performance is a known problem when continuously learning as new information arrives.
Here we can also draw parallels to catastrophic forgetting in other continual learning tasks without
KGs. Additionally, most approaches currently available for the continuous learning of embeddings,
do not consider deletions but only additions. Therefore, being able to handle all manners of
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changes when embedding evolving KGs is an open challenge. Lastly, studies presented often only
deal with a small number of updates to a KG, and hence, investigations are limited and need to
be investigated at scale.

Embedding temporal knowledge graphs gained attention in recent years, and it is not at the
same level of maturity of embedding techniques for knowledge graphs. One challenge lies in the
definition of temporal knowledge graph, which is not standardised. Existing studies on the topic
consider knowledge graphs where the temporal information is represented differently (see Section
5.1) and can have different semantics, e.g. time intervals where the fact is true or time instant
where an event starts. Moreover, there is no set of well-defined and shared tasks, e.g. most
studies focus on slightly different variations of the completion tasks, where time can or cannot
be predicted. As a consequence, the existing methods are hardly comparable. Therefore, we
envision the creation of de-facto standard datasets and tasks, which can help consolidate existing
techniques and drive this research trend.

In parallel, as also mentioned in Section 6.2, there is an opportunity to enrich temporal
knowledge graph embedding methods with deductive techniques. Specifically, in future, we
expect novel research that combines embeddings, which are effective in capturing the structural
information stored in a knowledge graph, with temporal logics, which have proven a robust solution
to manage and reason on the temporal information.

By embedding a KG into a vector representation, we can potentially learn more about the
evolution of the KG and conduct longitudinal analyses, e.g. of concept drift. However, due to the
stochastic nature of the learning process, this remains a large open challenge, until the stochasticity
problem is resolved to some extent [181]. We see a large number of open challenges when it
comes to applications relying on embeddings of evolving KGs. Currently, we lack techniques and
approaches for embedding-dependent tasks to be able to handle the changing KG without losing
in performance or requiring complete recalculations. We can, however, also look at this from a
slightly different perspective, that of the impact of evolution on these applications. When these
applications first involve the learning of an embedding, it becomes extremely difficult to judge
and capture the impact of evolution [181]. However, judging impact should not only be based on
benchmark performance but rather the real impact in terms of changes to predictions. Therefore,
we see an open challenge in analysing the performance of evolving tasks not in terms of metrics like
mean-reciprocal-rank or accuracy, but rather the changes to the individual predictions. Approaches
like inter-rater agreements may be useful for analysing localised changes in predictions [93].

6.4 Exploring Evolving Knowledge Graphs

When it comes to managing and analysing KGs, their heterogeneity constitutes both a defining
characteristic and a challenge. In particular, both the contents and the schemas of these graphs
have become less and less familiar even to domain experts and almost impenetrable to first-time
users, leading to a rising need for exploratory methods for knowledge graphs [149, 150]. Knowledge
graph ezxploration [149] is the machine-assisted and progressive process of analysis of a KG leading
to (1) the understanding of the structure and nature of the graph, (2) the identification of which
portion of the KG can satisfy the current information need, and (3) the extraction of insights that
enable the formulation of novel research questions and hypotheses. These goals translate to three
main tasks: (i) summarization and profiling, (ii) exploratory data analytics, and (iii) exploratory
search. Looking at the dimension of evolution (Figure 1), we see that time adds a new dimension
to the data to be explored and becomes a subject of exploration by itself when we explore how
the structure (and not only the content) of the KG evolves and can provide new information that
can then in turn guide the exploration.
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Data profiling is the simplest form of exploration providing descriptive statistics and analysis
about a given dataset. Typically, profiling tasks include counting the number of classes and their
instances, summarising value distributions for specific (numerical) attributes, and they also identify
important descriptors of the structure of the graph, e.g. node degree distribution [154]. There are
also structural summarization [47) and pattern mining tasks [257, 194] to facilitate understanding
the structure of the graph and to obtain concise representations of the most salient features of
their contents. Profiling an evolving KG will provide insights into its structural changes through
time, yet, only a few works scratch the surface of profiling KG evolution [76, 32]. They focus on
analysing the statistical dataset characteristics at different snapshots [76], while more recent work
started proposing algorithms to incrementally compute and update structural graph summaries
defined as equivalence relations [32]. Therefore, to date, how to extend existing methods to
tackle the challenges of scalable and continuous profiling of evolving KGs is still an open question.
Moreover, as described above (Section 4.1), we are missing methods that can concisely summarise
the results of a longitudinal analysis of the evolution of the schema and main characteristics of
the dataset.

Ezxploratory analytics, is similar to data profiling since it is an iterative process of extracting
aggregate information from portions of the graph, similar to a localised data profiling task [3,
51, 116]. The typical focus is to provide functionalities equivalent to those of multi-dimensional
analysis that exist for relational data. Here, we see the need for analytical methods that can
effectively include the temporal dimension in exploratory analytics, both when time is part of the
data, as well as when time is treated as metadata. In this regard, we have recently witnessed a
proposal to allow aggregation both at the attribute and at the time dimension [133, 239]. This
is especially relevant since it offers the opportunity to employ exploration strategies that can
guide the user through the evolution of the graph based on the identification of time intervals of
significant growth, shrinkage, or stability of certain attribute values.

Finally, Fxploratory search supports information needs that can be answered by retrieving
specific entities, relationships, or paths. Exploratory queries change the traditional semantics
of the search input: instead of strictly prescribing the conditions that the desired result set must
satisfy, they provide a hint of what is relevant [149]. In these cases, the system should become an
active agent able to suggest or infer query reformulations, refinements, and suggestions to help
the user in their navigation. On the one hand, we see the need to help users explore the evolution
of a given entity, e.g. identifying the most relevant changes w.r.t. a given stable state. On the
other hand, the question is whether tapping into the analysis of the evolution of the KG, this
information could be used to provide better suggestions or refinements. Overall, the methods
designed to allow for query processing over evolving graphs (see Section 6.1) can still be used
under the hood to enable exploratory search. Yet, to date, no method actively accounts for the
rate and evolution of given entities and substructures when computing query suggestions to help
the user in their exploration.

Future Directions

In summary, we identify both the need for new exploratory techniques that take into account the
temporal dimension, and at the same time we highlight how existing techniques need to face the
computational challenges posed by a KG that is not static anymore but dynamic. In particular,
we postulate the need for new KG profiling techniques that apply longitudinal analysis to the
data model in the KG through its lifespan. Furthermore, they see the need for methods that
can understand trends in graph-centric measures and can efficiently compute and measure their
evolution over time while the graph evolves. Finally, we ask which signals can be extracted from
the observation of the evolution of the graph that can be exploited as a signal to help users identify
interesting information and to identify methods to assist users in navigating more easily through
an unfamiliar KG.
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7 Summary and Conclusions

While KGs are gaining attention overall, the analysis and management of their evolution is still
a “less conquered” territory in research. The present paper encourages us to look closely at
KG evolution and make it a more prominent subject in our research. After emphasising that
different types of KGs likely have very different change and evolution characteristics, we motivated
various dimensions of looking at the evolution of KGs. We started investigating how known static
structural analyses of KGs can be considered in a dynamic context, exploring the evolution of
quality and consistency over time, to specific aspects related to dynamic collaboration processes of
KG contributors, and finally, semantic drift in KGs. We provided an overview of publicly available
KGs and, specifically, the availability of historical longitudinal data about their evolution that
could serve as a starting point for analyses, as well as an overview of already existing studies.

We identified a research gap in terms of specific metrics for studying KG evolution in different
dimensions; here, in the future, we will need to address concerns regarding the application and
adaption of static metrics for longitudinal and time-series analyses on KGs. In particular, regarding
the analysis of KG consistency over time, we have sketched viable approaches in Section 4.2;
however, these have not yet been applied in an analysis of KG evolution, presenting a notable
research gap.

Finally, we had a detailed discussion about the metrics and techniques that can be applied to
analyse KGs. We suggested exploring more methods not commonly used in our community but
well-established in other fields, such as network science. This field has a long-standing tradition of
analysing large-scale networks’ structural and dynamic aspects. Given the extensive reach and
rapid growth of KGs, it is imperative to implement similar methods in our field. However, we
should remember that these methods may require adaptations due to the “multi-level” network
characteristic of KGs, as they can be viewed as overlaid networks encompassing all their properties.

We further discussed challenges related to different graph representation models and storage
strategies for the extraction/construction of dynamic KGs. They focus mainly on the interoperab-
ility of the different ways time is captured in evolving KGs, different schemas and their mapping
to each other, and how these could be integrated in the future, for instance in standardised ways
to query evolving KGs. Regarding storage, currently, different storage solutions facilitate different
types of analyses. Still, in the future, we hope to see storage solutions enabling the storage of
dynamic and versioned graphs to enable all kinds of analyses.

The popular downstream tasks when using knowledge graphs, such as querying, reasoning, and
learning, can benefit from considering the evolution of knowledge more explicitly. Considering
the temporal dimension as a first-class citizen at the query level opens the possibility to specific
operators for retrieving data about time, through time, and in time. In the future, we can
expect further extensions of SPARQL and other LPG-specific query languages to support these
operators, ideally combining temporal, versioned, and continuous flavours in more comprehensive
query languages. Similarly, reasoning is affected by evolving knowledge. On the one hand,
there are new algorithmic challenges, e.g. how to maintain a materialisation incrementally and
reactively (on time). On the other hand, considering temporal logics at a fundamental level could
enhance reasoning over evolving KGs and their schemas over time. KG evolution can also provide
additional signals for training machine learning models, capturing dynamic processes. However,
respective approaches that for instance capture updates in learned embeddings, are still lacking in
performance and scalability to be helpful in practical analytical use cases. Finally, we envision
querying, reasoning, and learning to be fruitfully combined to overcome individual weaknesses
for managing, processing and analysing evolving KGs, eventually creating new applications and
services. While such combinations have been studied for static KGs, we expect and hope to see
more studies in the future that consider the evolving knowledge case.
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In the following list, we summarise the most important future directions and open challenges,
in particular about learning more about and understanding how knowledge evolves in open,
general-purpose KGs:

Systematic analysis of open general-purpose KGs along various dimensions of evolution such as

dynamics, timeliness and monotonicity, but also structural, semantic and collaborative aspects

making use of approaches such as time-series analysis and network science.

Principled approaches to create evolving subsets of KGs in evolution for specific benchmarking

tasks would be dearly needed to better understand these tasks “in evolution”.

Further development of metrics for measuring and understanding knowledge evolution in KGs,

specifically capable of handling outliers and the complexity and size of the known KGs.

Interoperability between different KG models, mainly RDF and LPG, and query languages that

support these to enable better and complementary analyses of temporal KGs.

Development of adaptive approaches and respective querying capabilities to store dynamic

and versioned KGs simultaneously, making it possible to apply any analysis (time-series and

constraint-based) on the evolving KGs.

The combination of deductive and inductive techniques [65] is necessary to tackle challenges

with reasoning (scale, completeness, errors) as it leads to data and knowledge-driven techniques.

For example, one may complement the evolving knowledge graph and identify and correct

potentially wrong new facts.

Development of novel continuous embedding approaches and methods for embedding temporal

KGs, i.e., the study of concept drift with large evolving KGs from different perspectives

becomes a new open challenge.

Tackling the computational challenges of existing exploratory techniques and the development

of new ones specifically facilitating longitudinal analysis through, e.g. graph-centric measures

to help navigate the evolution of an unfamiliar KG.

In summary, we have performed an extensive survey of evolution in KGs - significantly
more extensive than initially expected. From this survey we conclude that KG’s evolution is
apparently a field that — while having already attracted a lot of attention — remains to have
various open questions. The authors hope we motivated the readers to work jointly on more
in-depth investigations and more standardised, agreed-upon methods of capturing and dealing
with Knowledge (Graph) Evolution as well as newer methods for analysis as identified in this
work.
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