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Abstract
While Knowledge Graphs (KGs) have long been
used as valuable sources of structured knowledge,
in recent years, KG embeddings have become a
popular way of deriving numeric vector representa-
tions from them, for instance, to support knowledge
graph completion and similarity search. This study
surveys advances as well as open challenges and
opportunities in this area. For instance, the most
prominent embedding models focus primarily on
structural information. However, there has been
notable progress in incorporating further aspects,
such as semantics, multi-modal, temporal, and mul-

tilingual features. Most embedding techniques are
assessed using human-curated benchmark datasets
for the task of link prediction, neglecting other
important real-world KG applications. Many ap-
proaches assume a static knowledge graph and are
unable to account for dynamic changes. Addition-
ally, KG embeddings may encode data biases and
lack interpretability. Overall, this study provides
an overview of promising research avenues to learn
improved KG embeddings that can address a more
diverse range of use cases.
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Figure 1 Excerpt from DBpedia, with red dashed lines representing possible inferred relations.

1 Introduction

A Knowledge Graph (KG) is a semantic network that organises knowledge in a graph using
entities, relations, and attributes. It captures semantic relationships and connections between
entities, allowing for rapid searching, reasoning, and analysis. KGs are directed labelled graphs
that can represent a variety of structured knowledge across a wide range of domains including
e-commerce [97, 130], media [137], and life science [24], to name a few. They enable the integration
of structured knowledge from diverse sources, laying the groundwork for applications such as
question-answering systems, recommender systems, semantic search, and information retrieval.
Google [155], eBay [130], Amazon [97], and Uber [59] are examples of companies that have
developed in-house enterprise KGs for commercial purposes, which are not publicly available. The
term “Knowledge Graph” was first used in the literature in 1972 [149] and later revived by Google
in 2012 with the introduction of the Google KG. Broad-coverage open KGs, such as DBpedia [11],
Freebase [20], YAGO [158], and Wikidata [173], are either developed using heuristics, manually
curated, or automatically or semi-automatically extracted from structured data.

While the structured knowledge in KGs can readily be used in many applications, KG
embeddings open up new possibilities. A KG embedding encodes semantic information and
structural relationships by representing entities and relations in a KG as dense, low-dimensional
numeric vectors. This entails developing a mapping between entities and relations and vector
representations that accurately capture their characteristics and relationships.

KG embeddings allow for effective computation, reasoning, and analysis while maintaining
semantics and structural patterns. Link prediction and KG completion are perhaps the most
well-known uses of KG embeddings. Although KGs store vast amounts of data, they are often
incomplete. For instance, given the KG in Figure 1, which is an excerpt from DBpedia, it will not
be possible to answer the following questions:

Q1: Where is Berkshire located?, and
Q2: What is the nationality of Daniel Craig?
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Responding to Q1 requires the prediction of the missing entity in the triple <dbr:Berkshire1,
dbo:locatedIn, ?>. Similarly, for Q2, one would need to infer the nationality of Daniel Craig
from the information available in the KG. The effectiveness of KG-based question-answering
applications may therefore be enhanced by using embeddings to predict the missing links in a KG.
This is referred to as KG completion.

Other applications of KG embeddings include similarity search, entity classification, recom-
mender systems, semantic search, and question answering. Additionally, an embedding converts
symbolic knowledge into numerical representations, making it possible to incorporate structured
knowledge into machine learning and AI models, enabling reasoning across KGs.

Although prominent KG embedding models are widely used across diverse applications, there
is potential to learn improved embeddings addressing an even broader range of input information
and opening up new opportunities. For instance, one can account for additional signals in the
KG beyond the structural information, such as multi-modal and hierarchical information, as well
as external textual data, or information related to a certain domain or context. Some models
struggle to adequately represent rare or long-tail entities, while others are unable to cope with
little or no training data. Additionally, there is potential to design models that better account for
dynamic and temporal information in the KG. Likewise, KGs are often multilingual, which may
enable improved representations. Some models have trouble capturing asymmetric links as well as
complex relationships such as hierarchical, compositional, or multi-hop relationships. The bias
in KGs may also be reflected in the corresponding embeddings. Most models also lack explicit
interpretability or explainability. This paper focuses on describing the relevant research addressing
the aforementioned KG embedding models’ inadequacies and then discussing the untapped areas
for future research.

The rest of the paper is organised as: Section 2 gives an overview of the definitions and
notations related to KGs, followed by Section 3 summarising mainstream KG embedding models.
Next, Section 4 provides an overview of models that exploit additional kinds of information
often neglected by traditional KG embedding models, along with a discussion of remaining open
challenges. Section 5 sheds some light on important application areas of KG embeddings. Finally,
Section 6 concludes the paper with a discussion and an outlook of future work.

2 Preliminaries

This section provides formal definitions and relevant notational conventions used in this paper.

▶ Definition 1 (Knowledge Graph). A KG G is a labelled directed graph, which can be viewed as a
set of knowledge triples T ⊆ E × R × (E ∪ L), where E is the set of nodes, corresponding to entities
(or resources), R is the set of relation types (or properties) of the entities, and L is the set of
literals. An entity represents a real-world object or an abstract concept. Often the labels of entities
and relations are chosen to be URIs or IRIs (Internationalised Resource Identifiers).

▶ Definition 2 (Triple). Given a KG G, we call (eh, r, et) ∈ T a triple, where eh ∈ E is the subject,
r ∈ R is the relation, and et ∈ E ∪ L is the object. The subject is also called the head entity, and
an object et ∈ E may be referred to as the tail entity. Triples with literals as objects, i.e., et ∈ L
are known as attributive triples. In this paper, we use the notation <eh,r,et>, with angle brackets,
to indicate a triple.

1 For example, we will often shorten the IRIs using prefixes. For example, in dbr:Berkshire, dbr: stands for
http://dbpedia.org/resource/, and hence the identifier is a shorthand for http://dbpedia.org/resource/
Berkshire. Similarly, dbo: stands for http://dbpedia.org/ontology/.
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Relations (or Properties). Depending on the nature of the objects in a triple, one may distinguish
two main kinds of relations:

Object Relation (or Property), in which an entity is linked to another entity. For instance, in the
triple <dbr:Daniel_Craig, dbo:birthPlace, dbr:Cheshire>, dbr:Daniel_Craig and dbr:Cheshire
are head and tail entities, respectively, and dbo:birthPlace is an Object Relation (or Property).
Data Type Relation (or Property), in which the entity is linked to a literal. For instance, we
find the date “1868-03-02” in the triple <dbr:Daniel_Craig, dbo:birthDate, “1868-03-02”>,
and therefore the relation dbo:birthDate is a Data Type Relation (or Property).

Additionally, an entity e can also be linked to classes or semantic types of the entity. For example,
DBpedia uses rdf:type as r, while Freebase uses isA. A triple of the form <e, rdf:type, Ck> hence
implies that e ∈ E is an entity, Ck ∈ C is a class, C is the set of semantic types or classes, and e is
an instance of Ck. Often, the semantic types or the classes in a KG are organised in a hierarchical
tree structure. An entity may belong to more than one class.

Literals. A KG can have many types of literal values and examples of common attribute types
are as follows:

Text literals: These store information in the form of free natural language text and are often
used for labels, entity descriptions, comments, titles, and so on.
Numeric literals: Dates, population sizes, and other data saved as integers, real numbers, etc.
provide valuable information about an entity in a KG.
Image literals: These literals can, for example, be used to store a visual representation of the
entity, but can also contain the outcome of a medical scan, or a chart.

It is also possible that there is additional information (such as video or audio) stored external
to the graph. The graph can then contain an IRI or other kind of identifier that references the
external resource, its location, or both.

3 Knowledge Graph Embeddings

KG embedding models represent entities and relationships in a KG in a low-dimensional vector
space for various downstream applications. A typical KG embedding model is characterised by
the following aspects, as detailed by Ji et al. [83]: (1) The Representation Space may be a single
standard Euclidean vector space, separate Euclidean vector spaces for entities and relations, or
matrices, tensors, multivariate Gaussian distributions, or mixtures of Gaussians. Some methods
also use complex vectors or hyperbolic space to better account for the properties of relationships.
(2) A scoring function serves to represent relationships by quantifying the plausibility of triples
in the KG, with higher scores for true triples and lower scores for false/negative/corrupted
ones. (3) Encoding models are responsible for learning the representations by capturing relational
interactions between entities. This is typically achieved by solving optimisation problems, often
using factorisation approaches or neural networks. (4) Auxiliary Information in the KG may be
incorporated, e.g., literals. This leads to enriched entity embeddings and relations, forming an
ad-hoc scoring function integrated into the general scoring function.

An overview of different types of KG embedding models is given in Table 1. In the following,
we explain each of these in more detail.

Translation-based models use distance-based scoring functions to measure the plausibility of a
fact as the distance between two entities. There are numerous variants. TransE [22] represents
entities and relations as vectors in the same space, while TransH [184] introduces relation-
specific hyperplanes. TransR [114] uses relation-specific spaces but requires a projection matrix
for each relation. TransD [81] simplifies TransR by using two vectors for each entity-relation pair.
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Table 1 Categorisation of classic Knowledge Graph Embedding Models.

Categories Models
Translational Models TransE [21] and its variants, RotatE [160], etc,
Gaussian Embeddings KG2E [67], TransG [192]

Semantic Matching Models RESCAL [124] and its extensions, DistMult [198],
HoIE [123], SME [22]

Neural Network Models NTN [156] , HypER [14], ConvE [38], ConvKB [32]

Graph Neural Networks GCN [93], R-GCN [148], GraphSAGE [61], GAT [172],
KGAT [179], ComplEx-KG [170], SimlE [91]

Path-based Models GAKE [44], PTransE [113], RSN,
PConvKB [84], RDF2vec [141]

TranSparse [82] employs two separate models, TranSparse(share) and TranSparse(separate),
to modify projection vectors or matrices without considering other aspects. TransA [85]
replaces the traditional Euclidean distance with the Mahalanobis distance, demonstrating
better adaptability and flexibility as an indicator for performance improvement.
Gaussian Embeddings: KG2E [67] and TransG [192] are probabilistic embedding models
that incorporate uncertainty into their representation. KG2E uses multi-Gaussian distributions
to embed entities and relations, representing the mean and covariance of each entity or relation
in a semantic feature space. TransG, in contrast, uses a Gaussian mixture model to represent
relations, addressing multiple relationship semantics and incorporating uncertainty. Both
models offer unique approaches to representing entities and relations.
Semantic Matching models rely on the notion of semantic similarity to define their scoring
function. These include tensor decomposition models such as RESCAL, a tensor factorisation
model that represents entities and relations as latent factors [124], capturing complex inter-
actions between them. DistMult [199] simplifies the scoring function of RESCAL by using
diagonal matrices, leading to more efficient computations. SimplIE [91] is a simpler model
that uses a rule-based approach to extract relations from sentences. RotatE [161] introduces
rotational transformations to model complex relationships in KGs. ComplEx [170] extends
DistMult by introducing complex-valued embeddings, enabling it to capture both symmetric
and antisymmetric relations. HolE [124] employs circular correlation to capture compositional
patterns in KGs. TuckER [15] is a linear model based on Tucker decomposition of the binary
tensor representation of triples.
Neural network based models draw on the powerful representation learning abilities of
modern deep learning. Neural Tensor Networks (NTN) [156] allow mediated interaction of
entity vectors via a tensor. ConvE [38] uses 2D convolutions over embeddings to predict
missing links in KGs. ConvKB [32] represents each triple as a 3-column matrix and applies
convolution filters to generate multiple feature maps, which are concatenated into a single
feature vector. This vector is multiplied with a weight vector to produce a score, used for
predicting the validity of the triple. HypER [14] generates convolutional filter weights for each
relation using a hyper-network approach.
Graph Neural Network models are neural networks that operate directly on the graph
structure, often with information propagation along edges. GCN [93] and GraphSAGE [61]
are graph convolutional techniques that combine information from neighbouring nodes in a
graph to enable efficient learning of node representations in large-scale graphs. R-GCN [148]
extends GCN to handle different relationships between entities in graph-structured data using
a CNN model to learn hidden layer representations that encode local network structure and
node attributes, growing linearly with the number of graph edges. GAT [172] employs an
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attention mechanism to dynamically allocate weights to neighbouring nodes, focusing on salient
neighbours and capturing expressive representations. KGAT [179] applies the concept of graph
attention networks to KG embeddings, taking into account entity and relation information, as
well as capturing complicated semantic linkages and structural patterns. ComplEx-KG [170] is
a complex-valued embedding-based extension of ComplEx, a bilinear model for KG embeddings.
SimplE [91] uses a scoring function for large KGs that is scalable and optimised for efficiency.
Path-based models such as PTransE [113] represents entities and relations in the KG as
vectors and learn embeddings based on relation-specific translation operations along edge paths.
RSN [204] models the KG as a recursive structure, aggregating embeddings of connected entities
and capturing structural information through recursive path-based reasoning. PConvKB [84]
extends the ConvKB model and uses an attention mechanism on the paths to measure the
local importance in relation paths. GAKE [44] is a graph-aware embedding model that takes
into consideration three forms of graph structure: neighbour context, path context, and edge
context. RDF2Vec [141] uses random walks over the graph structure to generate node and
edge sequences, which are then used as input for training word2vec skip-gram models, which
yield entity and relation embeddings.

Traditional KG embedding methods primarily take into account the triple information but
neglect other potentially valuable signals encountered in KGs, such as multimodality, temporality,
multilinguality, and many more. Additionally, these models often assume KGs are static in nature
and have cold-start problems when incorporating new entities and relations. Also, real-world KGs
often exhibit sparsity, noisiness, and bias, which may adversely affect embedding models.

4 Opportunities and Challenges

KG embeddings are widely used to capture semantic meaning and enable improved comprehension,
reasoning, and decision-making across a diverse range of applications. However, the traditional
KG embedding models described earlier neglect a series of important opportunities and aspects.
In the following, in Section 4.1, we consider auxiliary information that may be present in KGs
but is often neglected in KG embeddings, e.g., multimodal, multilingual, and dynamic knowledge.
Subsequently, in Section 4.2, we discuss further more general issues, such as bias and explainability.
Recent research has made notable progress in addressing these issues. The remainder of the section
summarises pertinent recent research along with a discussion of open research challenges.

4.1 Auxiliary Information
Prominent KG embedding models such as those enumerated in Section 3 focus primarily on the
structure of the KG, i.e., on structural information pertaining to entities and their relationships. To
improve the latent representations of entities and relations, new lines of research attempt to draw
on additional forms of information present in the KG. This section offers an overview of existing
research in this regard, along with discussions of relevant shortcomings and recommendations for
further research.

4.1.1 Multimodal KG Embeddings
Many approaches for representation learning on entities and relations ignore the variety of data
modalities in KGs. In a Multimodal KG (MKG), entities and attributes of these entities may have
different modalities, each providing additional information about the entity. An effective learned
representation captures correspondences between modalities for accurate predictions, as described
by Gesese et al. [54]. The used modalities depend on the application area but can include text,
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images, numerical, and categorical values. Inductive approaches are required for modelling MKGs
that encompass a variety of data modalities, as assuming that all entities have been observed
during training is impractical. Learning a distinct vector for each entity and using enumeration
for all possible attribute multimodal values to predict links is usually infeasible.

Text: One of the early approaches for text extends TransE by incorporating word2vec SkipGram
and training a probabilistic version in the same embedding space, anchoring via Freebase entities
and the word embedding model vocabulary [183]. This enables link prediction for previously
unknown entities. Relations are treated without differentiation of types. A combination of
DistMult and CNN [169] tackles this issue by modelling the textual relations via dependency
paths extracted from the text. Other models such as DKRL [194] and Jointly (BOW) [196]
use the word2vec Continuous Bag-Of-Words (CBOW) approach to encode keywords extracted
from textual entity descriptions, while Text Literals in KGloVe [31] uses these in combination
with the graph context to train a GloVe model. However, the alignment between KG and word
model is achieved using string matching and therefore struggles with ambiguous entity names.
Veira et al. [171] use Wikipedia articles to construct relation-specific weighted word vectors
(WWV). Convolutional models, such as DKRL (CNN) [194] and RTKRL [66], use word order to
represent relations, considering implicit relationships between entities. Multi-source Knowledge
Representation Learning (MKRL) [164] uses position embedding and attention in CNNs to
find the most important textual relations among entity pairs. STKRL [188] extracts reference
sentences for each entity and treats the entity representation as a multi-instance learning model.
Recurrent neural models such as Entity Descriptions-Guided Embedding (EDGE) [178] and
Jointly (ALSTM) [196] use attention-based LSTMs with a gating mechanism to encode entity
descriptions, capturing long-term relational dependencies. The LLM encoder BERT is used in
Pretrain-KGE [213] to generate initial entity embeddings from entity descriptions and relations,
and subsequently feed them into KG embedding models for final embeddings. Other research
uses LLMs [17, 181, 120, 3] to produce representations at the word, sentence, and document
levels, merging them with graph structure embeddings. KG-BERT [200] optimises the BERT
model on KGs, followed by KG-GPT2 [18] fine-tuning the GPT-2 model. MTL-KGC [92]
enhances the effectiveness of KG-BERT by combining prediction and relevance ranking tasks.
Saxena et al. [147] similarly transform the link prediction task into a sequence-to-sequence
problem by verbalising triplets into questions and answers, overcoming the scalability issues of
KG-BERT. Masked Language Modelling (MLM) has been introduced to encode KG text, with
MEMKGC [29] predicting masked entities using the MEM classification model. StAR [174] uses
bi-encoder-style textual encoders for text along with a scoring module, while SimKGC leverages
bi-encoding for the textual encoder. LP-BERT [105] is a hybrid method that combines MLM
Encoding for pre-training with LLM and Separated Encoding for fine-tuning.
Numeric literals are addressed by several prominent models. MT-KGNN [166] trains a
relational network for triple classification and an attribute network for attribute value regression,
focusing on data properties with non-discrete literal values. KBLRN [51] combines relational,
latent, and numerical features using a probabilistic PoE method. LiteralE [98] incorporates
literals into existing latent feature models for link prediction, modifying the scoring function
and using a learnable transformation function. TransEA [190] has two component models: a
new attribute embedding model and a translation-based structure embedding model, TransE.
These embedding approaches, however, fail to fully comprehend the semantics behind literal
and unit data types. Also, most models lack proper mechanisms to handle multi-valued literals.
Image and Video models account for multimedia content. There is a large body of work
on visual relationship detection, i.e., identifying triples portrayed in visual content, using
datasets such as VisualGenome [96] and methods such as VTransE [208]. IKLR [193] enriches
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KG embeddings by retrieving images for each entity from ImageNet. The respective set of
pre-trained image embeddings is subsequently combined by an attention-based multi-instance
learning method into a joint representation space of entities and relations. This additionally
enables identifying the most relevant images for each entity.
General multi-modal KG embedding models may be used both for better link prediction
between existing entities and to impute missing values. One approach [128] combines different
neural encoders to learn embeddings of entities and multimodal evidence types used to predict
links. Then, DistMult or ConvE is employed to produce a score reflecting the probability
that a triple is correct. In addition, neural decoders are applied over the learned embeddings
to generate missing multimodal attributes, such as numerical values, text and images, from
the information in the KG. Moreover, decoders can be invoked to generate entity names,
descriptions, and images for previously unknown entities. A blueprint for multimodal learning
from KGs is introduced by Ektefaie et al. [41]. Graph methods are employed to combine
different datasets and modalities while leveraging cross-modal dependencies through geometric
relationships. Graph Neural Networks (GNN) are used to capture interactions in multimodal
graphs and learn a representation of the nodes, edges, subgraphs, or entity graph, based on
message-passing strategies. Multimodal graphs find increasing application not only in computer
vision and language modelling but also in natural sciences and biomedical networks [106], as well
as in physics-informed GNNs that integrate multimodal data with mathematical models [154].

Limitations. Some of the key challenges reported in the literature that require further attention
include: (1) Utilising multimodal information and multimodal fusion (from two or more modalities)
to perform a prediction (e.g, classification, regression, or link prediction), even in the presence
of missing modalities [128, 101, 41, 34]. (2) Modality collapse, that is when only a subset of the
most helpful modalities dominates the training process. The model may overly rely on that subset
of modalities and disregard information from the others that may be informative. This can be
due to an imbalance in the learning process or insufficient data for one or more modalities and
it can lead to sub-optimal representations [41]. (3) Generalisation across domains, modalities,
and transfer learning of embeddings across different downstream tasks. In general, there is a
high variance in the performance of multimodal methods [128, 110]. (4) Developing multimodal
imputation models that are capable of generating missing multimodal values. While research
in MKGs has predominantly focused on language (text) and vision (images) modalities, there
is a need to explore multimodal research in other modalities and domains as well [128]. (5)
Robustness to noise and controlling the flow of information within MKGs from more accurate
predictions. While multimodal triples provide more information, not all parts of this additional
data are necessarily informative for all prediction downstream tasks [101, 71, 128]. (6) Efficient
and scalable frameworks that can handle the complexity during training and inference [34, 110].
Large KGs are challenging for all embedding-based link prediction techniques, and multimodal
embeddings are not significantly worse because they can be viewed as having additional triples.
However, multimodal encoders/decoders are more expensive to train [128] and techniques for
batching and sampling are usually required for training. By addressing these challenges, we can
unlock the full potential of MKGs and advance our understanding in various domains.

4.1.2 Schema/Ontology Insertion in KG Embeddings
While many real-world KGs come with schemas and ontologies, which may be rich and expressive,
this does not hold for many of the benchmark datasets used in the evaluation of KG embeddings,
in particular in the link prediction field. Therefore, the use of ontological knowledge for improving
embeddings has drawn comparatively little attention.
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In a very recent survey [209], the authors have reviewed approaches that combine ontological
knowledge with KG embeddings. The authors distinguish between pre methods (methods applied
before training the embedding), joint (during training of the embedding), and post (after training
the embedding) methods. In their survey, joint methods are the most common approaches, usually
incorporating the ontological knowledge in the loss function [10, 26, 40, 39, 52, 57, 99, 113, 143,
194, 206]. In such approaches, loss functions of existing KGE models are typically altered in a
way such that ontologically non-compliant predictions are penalised. This is in line with a recent
proposal of evaluation functions that not only take into account the ranking of correct triples
but also the ontological compliance of predictions [75]. Some approaches also foresee the parallel
training of class encoders [194] or class embeddings [65] to optimise the entity embeddings.

Pre methods observed in the literature come in two flavours. The first family of approaches
exploit ontologies by inferring implicit knowledge in a preprocessing step and embedding the
resulting graph enriched with inferred knowledge [76, 143]. The second family of approaches exploits
ontologies in the process of sampling negative triples, implementing a sampling strategy that has
a higher tendency to create ontologically compliant (and thus harder) negative examples [10, 58,
78, 99, 194], or builds upon adversarial training setups [116].

The post methods in the aforementioned survey are actually modifications of the downstream
task, not the embedding method, and thus do not affect the embedding method per se.

The fact that most approaches fall into the joint category also limits them by being bound
to one single embedding model, instead of being universally applicable. At the same time, most
approaches have a very limited set of schema or ontology constraints they support (e.g., only
domains and ranges of relations), while general approaches that are able to deal with the full
spectrum of ontological definitions, or even more complex expressions such as SHACL constraints,
remain very rare.

4.1.3 Relation Prediction Models
Relation prediction in KGs is a fundamental task that involves predicting missing or unobserved
relations (properties) between entities in a KG. For instance, in Figure 1, relation prediction aims
to predict the relation dbo:starring between entities dbr:Daniel_Craig and dbr:Skyfall.

Some of the classical KG embedding models such as translational models, and semantic
matching models are often also used to predict missing relations. However, one of the pioneer
models that focused on improving the relation prediction task is ProjE [153]. The model projected
entity candidates onto a target vector representing input data, using a learnable combination
operator to avoid transformation matrices followed by an optimised ranking loss of candidate
entities. CNN-based models, in contrast, are argued to obtain richer and more expressive feature
embeddings compared to traditional approaches. Attention-based embeddings enhance this
approach further by capturing both entity and relation features in any given context or multihop
neighbourhood [118]. Prior research on relation prediction, which was restricted to encyclopaedic
KGs alone, disregarded the rich semantic information offered by lexical KGs, which resulted in the
issue of shallow understanding and coarse-grained analysis for knowledge acquisition. HARP [182]
extends earlier work by proposing a hierarchical attention module that integrates multiple semantic
signals, combining structured semantics from encyclopaedic KGs and concept semantics from
lexical KGs to improve relation prediction accuracy.

Self-supervised training objectives for multi-relational graph representation have also given
promising results. This may be achieved using a simplistic approach by incorporating relation
prediction into the commonly used 1-vs-All objective [28]. The previously mentioned path-based
embedding models may also be used, but often overlook sequential information or limited-length
entity paths, leading to the potential loss of crucial information. GGAE [107] is a novel global
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graph attention embedding network model that incorporates long-distance information from
multi-hop paths and sequential path information for relation prediction. The effectiveness of KG
embedding models for relation prediction is typically assessed using rank-based metrics, which
evaluate the ability of models to give high scores to ground-truth entities.

Limitations. Although embedding-based models for relation prediction in KGs have advanced
significantly, they have several shortcomings. (1) Most of the models struggle to capture transitivity,
which is essential for understanding relations that change over time or apply in different contexts.
(2) They also struggle to handle rare relations, which can result in biased predictions. (3) Although
embedding techniques are intended to accommodate multi-relational data, capturing complex
interactions between numerous relations remains challenging. (4) KGs can contain relations with
different semantic heterogeneity. For example, imagine a KG with a relation called hasPartner that
represents any type of close partnership, such as business partners or friends. This relationship is
semantically different from hasSpouse. Relation prediction models are often unable to distinguish
between such relations with related but different meanings. (5) Relation prediction models provide
limited support for temporal and contextual information. Temporal information, however, is
handled by the temporal KG embedding models presented in Section 4.1.5.

4.1.4 Hierarchical and N -to-M Modelling in KG Embeddings
Crucial to the success of using KG embeddings for link prediction is their ability to model relation
connectivity patterns, such as symmetry, inversion, and composition. However, many existing
models make deterministic predictions for a given entity and relation and hence struggle to
adequately model N -to-M relationships, where a given entity can stand in the same relationship
to many other entities, as for instance for the hasFriend relationship [121].

A particularly important case is that of hierarchical patterns, which, albeit ubiquitous, still
pose significant challenges. Indeed, modelling them with knowledge embeddings often requires
additional information regarding the hierarchical typing structure of the data [194] or custom
techniques [212, 211], as discussed next.

Various approaches have been proposed for modelling hierarchical structures. Li et al. [108]
proposes a joint embedding of entities and categories into a semantic space, by integrating
structured knowledge and taxonomy hierarchies from large-scale knowledge bases, as well as
a Hierarchical Category Embedding (HCE) model for hierarchical classification. This model
additionally incorporates the ancestor categories of the target entity when predicting context
entities, to capture the semantics of hierarchical concept category structures.

Another method used for hierarchical modelling centres around the usage of clustering al-
gorithms [212]. The authors define a three-layer hierarchical relation structure (HRS) for KG
relation clusters, relations, and subrelations. Based on this, they extend classic translational
embedding models to learn better knowledge representations. Their model defines the embedding
of a knowledge triple based on the sum of the embedding vectors for each of the HRS layers.

The Type-embodied Knowledge Representation Learning (TKRL) [194] model uses entity-type
information in KG embeddings to model hierarchical relations. Following the TransE approach,
relations are translated between head and tail KG entities in the embedding space. For each
entity type, type-specific projection matrices are built using custom hierarchical type encoders,
projecting the heads and tails of entities into their type spaces.

Limitations. Although they intend to better represent the structure of a KG, the limitations of
such KG embeddings include: (1) It is challenging to model interactions that transcend numerous
hierarchy levels, resulting in a limited ability to capture cross-hierarchy linkages. For instance,
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Arnold Schwarzenegger is an actor, a film director as well as a politician, leading to the entity
belonging to different branches of the class hierarchy in the KG. (2) The depth of the hierarchy or
branching factor of an n-to-m relationship can affect how effective the embeddings are, e.g., in
very fine-grained or coarse-grained hierarchies, performance may suffer. (3) Training and inference
with hierarchical embeddings can be computationally intensive, particularly in ultrafine-grained
hierarchies.

4.1.5 Temporal KG Embeddings
Most KG completion methods assume KGs to be static, which can lead to inaccurate prediction
results due to the constant change of facts over time. For instance, neglecting the fact that <Barack
Obama, presidentOf, USA> only holds from 2009 to 2017 can become crucial for KG completion.
Emerging approaches for Temporal Knowledge Graph Completion (TKGC) incorporate timestamps
into facts to improve the result prediction. These methods consider the dynamic evolution of KGs
by adding timestamps to convert triples into quadruples using several strategies [23]:

Tensor Decomposition based models in KG completion transform a KG into a 3-dimensional
binary tensor, with three modes representing head, relation, and tail entities to learn their
corresponding representations by tensor decomposition. The addition of timestamps as an
additional mode of tensor (4-way tensor) for TKGC allows for low-dimensional representations
of timestamps for scoring functions. For TKGC, Canonical Polyadic (CP) decomposition
is used on quadruple facts [112]. The authors employ an imaginary timestamp for static
facts, while complex-valued representation vectors may be used for asymmetric relations
[100]. Temporal smoothness penalties are used to ensure that neighbouring timestamps obtain
similar representations. Multivector representations [195] are learned using CP decomposition,
allowing the model to adjust to both point timestamps and intervals. A temporal smoothness
penalty for timestamps is created and expanded to a more generic autoregressive model.
Tucker decomposition can be used for TKGC [151], treating KGs as 4-way tensors and scoring
functions that consider interactions among entities, relations, and timestamps, relaxing the
requirement for identical embedding dimensions of entities, relations, and timestamps.
Timestamp-based Transformation models involve generating synthetic time-dependent
relations by concatenating relations with timestamps (e.g., presidentOf:2009-2017 ), converting
<Barack Obama, presidentOf, USA> to <Barack Obama, presidentOf:2009-2017, USA> [102].
This however may lead to more synthetic relations than necessary. An improvement is to
derive optimal timestamps for concatenating relations by splitting or merging existing time
intervals [135]. The concatenation of relation and timestamp as a sequence of tokens is also
provided as an input making the synthetic relation adaptive to different formats like points,
intervals, or modifiers [50]. Others [177] argue that different relations rely on different time
resolutions, such as a life span in years or a birth date in days. Multi-head self-attention is
adopted on the timestamp-relation sequence to achieve adaptive time resolution. In the TKGC
model, timestamps are often considered linear transformations that map entities/relations to
corresponding representations. The timestamps are also treated as hyperplanes, dividing time
into discrete time zones [33]. An additional relational matrix is included to map entities to be
relation-specific to improve expressiveness for multi-relational facts [185]. To capture dynamics
between hyperplanes, a GRU may be applied to the sequence of hyperplanes [163]. Another
approach [103] encodes timestamps into a one-hot vector representing various time resolutions,
such as centuries or days to achieve time precision.
KG Snapshots can be considered as a series of snapshots/subgraphs taken from a KG,
with each subgraph holding facts labelled with a timestamp. Therefore, a temporal subgraph
evolves with changing relation connections. The link prediction problem can be solved
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by utilising Markov models [197] to infer the multi-relational interactions among entities
and relations over time and can be trained using a recursive model. Probabilistic entity
representations based on variational Bayesian inference can be adopted to model entity features
and uncertainty jointly [111]. The dynamic evolution of facts can be modelled using an
autoregressive approach [86], incorporating local multi-hop neighbouring information and a
multi-relational graph aggregator. Alternatively, a multilayer GCN can capture dependencies
between concurrent facts with gated components to learn long-term temporal patterns [109].
Continuous-time embeddings can encode temporal and structural data from historical KG
snapshots [64].
Historical Context based models focus on the chronological order of facts in a KG, determined
by the availability of timestamps, which enable predicting missing links by reasoning with the
historical context of the query. An attention-based reasoning process has been proposed [63] as
the expansion of a query-dependent inference subgraph, which iteratively expands by sampling
neighbouring historical facts. Another approach uses path-based multi-hop reasoning by
propagating attention using a two-stage GNN through the edges of the KG, using the inferred
attention distribution [87]. The model captures displacements at two different granularities,
i.e., past, present, and future and the magnitude of the displacement. Two heuristic-based
tendency scores Goodness and Closeness [12] have been introduced to organise historical facts
for link prediction. Historical facts are aggregated based on these scores, followed by a GRU
for dynamic reasoning. It is observed that history often repeats itself in KGs [214], leading to
the proposal of two modes of inference: Copy and Generation.

Limitations. Although recently many TKGC models have been proposed that resolve the issues
of classical KG embedding models with timestamps, some intriguing possibilities for future studies
on TKGC include: (1) External knowledge such as relational domain knowledge, entity types, and
semantics of entities and relationships can be added to the limited structural/temporal information
during model learning to enhance prediction accuracy. (2) Due to the time dimension and intricate
relationships between facts and timestamps, time-aware negative sampling should be investigated
in TKGC. (3) Most methods assume timestamps are available, while in some cases only relative
time information is known. For example, we would know that a person lived in a city after they
were born, but neither when the person was born, nor when they started living there. (4) With
the constant evolution of the real-world KGs, TKGC should be regarded as an incremental or
continual learning problem.

4.1.6 Dynamic KG Embeddings
As discussed in the previous section, incorporating timestamps is one way to handle changes;
however, facts may be added, altered, or deleted over time, are not foreseen [95], and would
typically require a complete re-computation of the embedding model. Such an approach might still
be feasible for KGs like DBpedia, which have release cycles of weeks or months [70], but not for
continuously updated KGs such as Wikidata, let alone examples of even more highly dynamic KGs,
e.g., digital twins, which may continuously change every second. Moreover, naïvely recomputing
embeddings for an only slightly changed KG may lead to drastic shifts in the embeddings of
existing entities, e.g., due to stochastic training behaviour. This would require a recalibration of
downstream models consuming those embeddings, as they would not be stable [187, 94].

While a few approaches for embedding dynamic graphs (not necessarily KGs) have been
proposed [90], many of them focus on embedding a series of snapshots of KGs, rather than
developing mechanisms for embedding a dynamic KG. Thus, they do not support online learning,
i.e., continuously adjusting the KG embedding model whenever changes occur.
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Approaches capable of online learning are much scarcer. One of the first was puTransE [165],
which continuously learns new embedding spaces. Similarly, Wewer et al. [187] investigate updating
the link prediction model by incorporating change-specific epochs forcing the model to update the
embeddings related to added or removed entities and/or relations.

Embeddings based on random walks can be adapted to changes in the graph by extracting
new walks around the changed areas [115], or by applying local changes to the corpus of random
walks [146]. The latter approach also supports the deletion of nodes and edges. DKGE [189] learns
embeddings using gated graph neural networks and requires retraining only vectors of affected
entities in the online learning part. Similarly, OUKE first learns static embeddings and computes
dynamic representations only locally using graph neural networks. The two representations are
then combined into a dynamic embedding vector. The idea of only updating embeddings of affected
entities is also pursued by RotatH [186]. A different strategy is considered by Navi [94], which
learns a surrogate model to reconstruct the entity embeddings based on those of neighbouring
existing entities. This surrogate model is then used to recompute the embedding vectors for new
entities or entities with changed contexts.

Limitations. The main limitations in the existing approaches so far are threefold: (1) In most
models, only addition to KGs is studied, while deletion is not the focus, an exception is the
work by Wewer et al. [187].2 (2) The stability of the resulting embeddings, which is crucial for
downstream applications, has rarely been analysed systematically. (3) The applicability in a true
real-time scenario, as it would be required, e.g., for digital twins, is unclear for most approaches,
which are evaluated on snapshots.

4.1.7 Inductive KG Embedding
In the inductive setting, graph representation learning involves training and inference of partially
or completely disjoint sets of nodes, edges, and possibly even relationships types. In practice, from
the specific set of known structures, it tries to generalise knowledge that enables reasoning with
unseen graph objects by exploiting information on the structures involving them and the data
attached to them [47]. The case of link prediction involves being able to predict the existence of a
link between two previously unseen nodes (head and tail) by reasoning about their connections to
other known nodes (i.e., nodes observed during training) or by reasoning about their attributes
(e.g., features similar to those of nodes seen during training).

Therefore, in the most common setting, relationship types do not change, but training involves
a given KG and inference involves a completely or partially different graph. Overall, the crucial
point is that there must be some form of shared information that allows for inferring a description
of an unknown entity or edge from a small set of known attributes. For example, a common
approach allows for predictions involving previously unseen, or out-of-sample, entities that attach
to a known KG with a few edges adopting known relationship types [48]. In this case, a few nodes
in the KG seen during training are used as anchors and called NodePieces. A full NodePiece
vocabulary is then constructed from anchor nodes and relation types. Given a new node, an
embedding representation is obtained using elements of the constructed NodePiece vocabulary
extracting a hash code for it given by the sequence of k closest anchors, combined with discrete
anchor distances, and a relational context connecting relations. Other approaches extract a local
subgraph of one or more nodes and consider the structures within such a subgraph trying to learn

2 Even for papers using different versions of public KGs e.g., DBpedia or YAGO, the majority of changes are
additions, and most benchmarks used in the evaluation of the papers mentioned above, usually have much
more additions than deletions.
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an inductive bias able to infer entity-independent relational semantics [167]. This approach is then
also adopted to predict missing facts in KGs, i.e., to predict a missing relation between two entities.
Similarly, NBFNet [215] instead encodes the representation of a pair of nodes using the generalised
sum of all path representations between the two nodes and with each path representation as
the generalised product of the edge representations in the path. In this case, the operation is
modelled along the line of a generalised Bellman-Ford algorithm that computes the shortest paths
from a single source vertex to all of the other vertices by taking into account edge weights. Here,
operators to compute the length of the shortest path are learned for a specific downstream task.

The aforementioned methods are designed for the case where the only information available are
triples connecting entities and do not take into account node or edge properties. Conversely, when
properties are taken into account, e.g., textual data describing entities, this information can be
exploited as node or edge features. A typical case is that of networks that adopt an auto-encoder
architecture to encode node representations and decode edges as a function over the representation
of node pairs. Among those, GraphSAGE [61] was the first inductive GNN able to efficiently
generate embeddings for unseen nodes by leveraging node features, e.g., textual attributes. Later
methods, including BLP [36] create embeddings for entities by encoding the description with a
language model fine-tuned on a link prediction objective. This model can then be used inductively,
as long as nodes have a description.

Limitations. All these approaches have only scratched the surface of the need for KG embeddings.
In particular, challenges persist in terms of (1) scalability, e.g., the possibility of learning inductive
biases from small representative samples of the graph; (2) exploiting well-known feature extraction
from graphs and KGs, as existing methods tend to disregard the possibility of using structural
features, e.g., betweenness, page rank, relational neighbourhood and characteristic sets [122];
(3) moreover, while GNNs seem the most promising and expressive architecture, their ability
to produce inductive relation aware KG representations are limited in their treatment of rich
vocabularies of relation types (typically limited to fewer than a hundred), their ability to exploit
information at more than 3 hops of distance, and the possibility to generate a representation
for very sparse feature sets. Finally, known challenges that apply to transductive methods, e.g.,
distribution shift and how to update the model or decide to train it from scratch, still apply. Finally,
the ability to work in an inductive fashion might increase the risk of data leakages, which already
exist in non-inductive settings [42]. The use of GNNs that learn how to aggregate information
from node and edge attributes raises more concerns when the training data involves private data;
how to ensure that private data is not leaked through the model, e.g., via differentially private
KG embedding [62], is still an open question.

4.1.8 Multilingual KG Embeddings
Providing multilingual information in a KG is crucial to ensure wide adoption across different
language communities [88]. Languages in KGs can have different representations; e.g., in Wikidata,
each entity has a language-independent identifier, and labels in different languages are indicated
with the rdfs:label property [89]. Therefore, in Wikidata, entities do not need alignment across
languages. In DBpedia, there is one entity per language, derived from the respective language
Wikipedia [104]. Therefore, different language entities on the same concept can have different facts
stated about them. Here, an alignment using the owl:sameAs property is necessary to ensure the
different entities are connected across languages and enable seamless access to information for all
language communities. The different representations of languages in the different KGs can heavily
influence which way the KG can be embedded. For example, if provided with a KG per language
as in DBpedia, different language KGs might be embedded separately and then aligned or can be
fused for usage in downstream applications [74].
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One of the downstream tasks of multilingual KG embeddings is KG completion. Finding new
facts given machine-readable data such as a KG is a tedious task for human annotators, even
more so when the graph covers a wide range of languages. Addressing these challenges, recent
work has employed KG embeddings across languages to predict new facts in a KG.

One of the large challenges of multilingual KG embeddings is the knowledge inconsistency across
languages, i.e., the vastly different number of facts per language. Fusing different languages to
overcome such knowledge inconsistencies for multilingual KG completion can improve performance
across languages, especially for lower-resourced languages [74]. To fuse different languages, KGs
need to be aligned across languages. Such alignment can be done jointly with the task of
multilingual KG completion [25, 168, 27].

Another approach for multilingual KG completion is leveraging large language models’ (LLM)
knowledge about the world to add new facts to a KG. As LLMs are not trained towards KG
completion and are biased towards English, Song et al. [157] introduce global and local knowledge
constraints to constrain the reasoning of answer entities and to enhance the representation of
query context. Hence, the LLMs are better adapted for the task of multilingual KG completion.

Limitations. Although most of the existing multilingual KG embedding models focus on having
a unified embedding space across different language versions of the KGs, these embeddings
have several shortcomings. (1) The potential of the model to learn and generalise relations
between entities in different languages is often restricted by sparse cross-lingual links, resulting in
less accurate cross-lingual representations of entities. (2) Polysemy, which occurs when a word
has numerous meanings, can be difficult to address across languages, resulting in ambiguity in
cross-lingual representations. (3) Entities and relations can have very context-dependent and
language-specific meanings, which is a challenging task for multilingual embeddings to capture
the nuances of the context. (4) Resource imbalances may result in low-resource languages having
inadequate training data and linguistic resources, impacting the entity and relation embeddings.

4.2 General Challenges
In addition to the goal of accounting for a broader spectrum of available information, there are
more general challenges and opportunities for KG embedding models: (1) KG embedding models
can inherit biases from training data, thereby reinforcing societal preconceptions. (2) Scalable
embedding approaches are required for large-scale KGs with millions or billions of elements and
relations. (3) Improving the interpretability and explainability of embeddings remains a challenge.

4.2.1 Bias in KG Embeddings
KGs, which serve as the foundation for KG embeddings, are regarded as crucial tools for organising
and presenting information, enabling us to comprehend the vast quantities of available data.
Once constructed, KGs are commonly regarded as “gold standard” data sources that uphold
the accuracy of other systems, thus making the objectivity and neutrality of the information
they convey vital concerns. Biases inherent to KGs may become magnified and spread through
KG-based systems [150]. Traditionally, bias can be defined as “a disproportionate weight in favour
of or against an idea or thing, usually in a way that is closed-minded, prejudicial, or unfair”3.
Taking into account the bias networking effect for KGs, it is crucial that various types of bias are
already acknowledged and addressed during KG construction [79].

3 Wikipedia article on bias. https://en.wikipedia.org/wiki/Bias, retrieved 2023-11-28.
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Biases within KGs, as well as the approaches to address them, differ from those found in
linguistic models or image classification. KGs are sparse by nature, i.e., only a small number
of triples are available per entity. In contrast, linguistic models acquire the meaning of a term
through its contextual usage in extensive corpora, while image classification leverages millions
of labelled images to learn classes. Biases in KGs can arise from various sources, including the
design of the KG itself, the (semi-)automated generation of the source data, and the algorithms
employed to sample, aggregate, and process the data. These source biases typically manifest in
expressions, utterances, and textual sources, which can then permeate downstream representations
and in particular KG embeddings. Additionally, we must also account for a wide range of human
biases, such as reporting bias, selection bias, confirmation bias, overgeneralisation, and more.

Biases in KGs as the source of KG embeddings can arise from multiple sources. Data bias
occurs already in the data collection process or simply from the available source data. Schema
bias depends on the chosen ontology for the KG or simply is already embedded within the used
ontologies [79]. Inferential bias might result from drawing inferences on the represented knowledge.
Ontologies are typically defined by a group of knowledge engineers in collaboration with domain
experts and consequently (implicitly) reflect the world views and biases of the development team.
Ontologies are also prone to encoding bias depending on the chosen representation language
and modelling framework. Moreover, biases in KG embeddings may in particular arise from the
chosen embedding method as for instance induced by application-specific loss functions. Inferential
biases, which may arise at the inferencing level, such as reasoning, querying, or rule learning, are
mostly limited to KGs themselves and rarely propagate to KG embeddings. A simple example of
inferencing bias might be the different SPARQL entailment regimes, which in consequence, might
be responsible for different results that different SPARQL endpoints deliver despite containing the
same KG [2, 55].

Collaboratively built KGs, such as DBpedia or GeoNames, also exhibit social bias, often arising
from the western-centric world view of their main contributors [37]. In addition, some “truths"
represented in such KGs may be considered controversial or opinionated, which underlines the
importance of provenance information.

For KG embeddings that represent a vector space-based approximation of the structural and
semantic information contained in a KG, one of the main sources of bias lies in the sparsity and
incompleteness of most KGs. KG embeddings trained on incomplete KGs might favour entities
for which more information is available [136]. Moreover, if the underlying KG is biased, then KG
embeddings trained on this base data will as well be, and in fact, bias may even be amplified.
De-biasing of KG embeddings requires methods for detecting as well as removing bias in KG
embeddings. Depending on the underlying embedding model, this task might become complex
and requires finetuning of embeddings with respect to certain sensitive relations [45, 46, 9].

4.2.2 Reliability and Scalability of KG Embeddings
KG embedding methods suffer from many issues in terms of scalability. For example, many studies
experiment mainly on (poorly constructed) subsets of Freebase and Wordnet, the infamous FB15k
and WN18 [1], which are known to suffer from information leakage. These datasets contain in the
order of a few million triples and rarely go beyond 1,000 relationship types, usually focusing on
subgraphs with 200 or fewer. Recently, more realistic datasets have been proposed in terms of the
quality of the data involved and of the link prediction task adopted [145]. Nonetheless, even these
are far from being representative of typical real-world KG applications. Consider that DBpedia
contains 52M distinct triples involving 28M distinct literals and as many distinct entities, with
1.3K distinct relationship types. Indeed, a recent Wikidata snapshot contains 1.926 billion triples,
involving more than 600M entities and 904M distinct literals across 9K relationship types [134].
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The size of real-world KGs is far beyond the capabilities of current methods, and the current
results on small controlled benchmarks cannot be seen as representative of their scalability and
reliability on real-world deployment. This perhaps also suggests the need for methods designed
end-to-end to consider cases where different models can be learned for different subgraphs and
then combined in a modular fashion. Last but not least, as KG embedding methods are adopted
for tasks that go beyond link prediction, e.g., KG alignment [159], we refer to the well-known
issues of scale in terms of dataset size (number of triples) and in terms of heterogeneity (scale of
the vocabulary of relationships and attributes), as well as to new important issues based on the
number of KGs to align, i.e., scale in terms of the number of distinct KG sources [16].

4.2.3 Explainability of KG Embeddings
One of the persistent difficulties is the development of KG embedding methods to enhance
interpretability and explainability. This includes comprehending the reasoning and decision-
making processes of KG embedding models as well as providing explanations for their predictions.
KG embeddings have several advantages over conventional representations produced by deep
learning algorithms, including their absence of ambiguity and the ability to justify and explain
decisions [125]. Additionally, they can offer a semantic layer to help applications such as question-
answering, which are normally handled by text-based brute force techniques. CRIAGE [129]
is one such tool that can be used to understand the impact of adding and removing facts.
GNNExplainer [203] is proposed for the explainability of the predictions done by GNNs. Deep
Knowledge-Aware Networks [176] and Knowledge-aware Path Recurrent Networks [180] have
witnessed a surge in attention to recommendation systems. They model sequential dependencies
that link users and items. OpenDialKG [117] is a corpus that aligns KGs with dialogues and
presents an attention-based model that learns pathways from dialogue contexts and predicts
relevant novel entities. These models offer a semantic and explicable layer for conversational
agents and recommendations, aiding in the completion and interpretation of the predictions.

Limitations. However, there are still a number of limitations: (1) The lack of standardised
evaluation standards makes it difficult to compare different approaches and assess performance
consistently. (2) Improving interpretability often comes at the expense of performance and
striking a balance between interpretability and performance still remains a challenge. (3) User-
centric evaluation is necessary to understand the practical utility of explainable KG embeddings.
(4) Current research on KG embedding explainability often focuses on global or model-level
explanations, ignoring the importance of contextual and domain-specific explanations.

4.2.4 Complex Logical Query Answering and Approximate Answering of
Graph Queries

The link prediction task is often seen as a graph completion task. However, it can equivalently be
cast as a query-answering task for a very simple query. For example, if we predict the tail of the
triple <h,r,?>, the task is equivalent to answering the corresponding query as if the graph had all
the missing information. Recently, researchers started investigating how we could answer such
queries if they are more complex, a task known as complex logical query answering4. The goal is,
given a graph with missing information and a graph query, to produce the answers to the query
as if the graph were complete (or more commonly, produce a ranking of possible answers).

4 also sometimes approximate query answering, multi-hop reasoning, or query embedding
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One might naïvely assume that this can be solved by first completing the graph and then
performing a traditional graph query on the completed graph. The issue is, however, that a very
large KG can never be complete. This is because link prediction models do not yield a set of
missing edges, but rather a ranking of possible completions for an incomplete triple.

We can distinguish three main lines of work in this area. The reader is referred to relevant
surveys [138, 30] for more details. The first group of approaches are those that make use of a link
predictor, like the ones introduced above. These methods decompose the query into triples and
then use the link prediction model to make predictions for the triples. The first approach of this
type was CQD [7], which uses fuzzy logic to combine the outputs of the link predictor. Further
developments for this type of model include QTO [13], which materialises all intermediate scores
for the link predictors and makes sure that edges existing in the graph are always regarded as more
certain than those predicted by the link predictor. Another newer approach is Adaptive CQD [8],
which improves CQD by calibrating the scores of the link predictor across different relation types.

A second group of approaches are referred to as projection approaches, and the earliest
approaches in this domain are of this type. These methods are characterised by the restriction
that they can only answer DAG-shaped graph queries. They are inspired by translation-based link
predictors. Starting from the entities in the query (in this context called the anchors), they project
them with a relation-specific model to a representation for the tail entity. This representation
then replaces the other occurrences as a subject of the variable in the query. If a variable occurs
in more than one object position, a model is invoked to combine the computed projections into
a single representation (called the intersection). The first approach of this type was Graph
Query Embedding (GQE) [60], which did the above using vectors as representations, simple linear
projections, and an MLP with element-wise mean for the intersection. Later examples include
Query2Box [139], which uses axis-aligned hyperplanes to represent the outcomes of projections
and intersections, and BetaE [140], which instead uses the beta distribution.

A final group of approaches is message-passing-based. These are very flexible and can deal
with more query shapes than the above. This method regards the query as a small graph and
embeds that complete query into a single embedding. Then, answers to the query are found simply
by retrieving the entities of which the embedding is close to that query in the embedded space. A
notable example is MPQE [35], which uses a relational graph convolutional network (R-GCN)
to embed the query. The flexibility of these models is illustrated by StarQE [4], which can even
answer hyper-relational queries (very similar to RDF-star).

Limitations. As indicated in the survey by Ren et al. [138], there are still very many open
questions in this domain. (1) One aspect is that current approaches only support small subsets
of all possible graph queries. For example, hardly any work attempts to answer cyclic queries,
queries with variables on the relation position, or only variables in the whole query. (2) Also, the
graph formalism currently used is limited; only very few approaches can deal with literal data,
and there is no word yet on temporal KGs or the use of background semantics.

5 Applications

Recent research on KG embeddings has shown broad potential across diverse application do-
mains such as search engines [43], recommendation systems [49], question-answering systems [73],
biomedical and healthcare informatics [5], e-commerce [210], social network analysis [152], educa-
tion [201], and scientific research [119]. However, in this study, we highlight two such domains:
recommendation and biomedical/therapeutic use cases.
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5.1 KG Embedding for Recommendation
Recommender systems (RSs) are an integral part of many online services and applications to
provide relevant content and products tailored to their users. Many RSs identify user preference
patterns assuming that users with similar past behaviour have similar preferences, e.g., people
that watch the same movies are likely to do so also in the future, an approach commonly referred
to as collaborative filtering [69, 68]. Yet, many existing methods only work in a warm-start
setting, where it is assumed that all users and items have been seen during training [61, 205].
Moreover, methods that try to deal with cold-start settings, where for some users or items only
user–item interactions are known and only at inference time [202, 205], making them unable to
handle situations where this type of data is sparse, e.g., long-tail users and items. Therefore,
we can see this problem as a link prediction problem, and we can also distinguish between a
transductive setting and an inductive setting. In the transductive setting, some approaches try
to exploit other contextual information from KGs, e.g., semantic annotations, taxonomies, item
descriptions, or categories, to overcome these problems. In particular, a large body of methods
exploits both domain-specific and open-domain KGs integrated with user and item information.
In practice, users and items are nodes connected by special domain-specific relation types, e.g.,
a rating or a purchase, and item nodes are represented with additional connections to other
entities describing their categories, features, producers, and provenance. This information, in the
form of a Collaborative KG, is adopted as additional side information in the recommendation
process [179, 175, 126]. These methods can be grouped into three categories:
1. path-based methods, which capture information from distant nodes but tend to dismiss much

of the structural information in KG and are very dependent on the paths selected during
training [180, 191, 162];

2. embedding-based methods, which use existing transductive graph embedding approaches to
capture the semantic relations of the graph structure, such as TransR [206] or Node2Vec [56],
further applying them in recommendation scenarios [126, 207]; and

3. structural-based methods, which use GNNs to aggregate structural information of each node’s
neighbourhood [175, 179].

Among these, GNNs have recently shown promising results thanks to their ability to model
relations and capture high-order connectivity information by combining KGs and collaborative
data (user–item interactions) [179]. Nonetheless, these approaches often rely on transductive
methods, making them unable to handle frequent changes in the graph. Moreover, their user–item
representation often is limited to a single relation type and still cannot fully exploit the contextual
knowledge offered by open-domain KGs, due to only very few relation types being considered.
Furthermore, these approaches need to be able to exploit both the structure of the graph and the
attributes describing the items.

5.2 Multimodal KG Embeddings for Biomedical and Therapeutic Use
In the biomedical domain, KGs are a natural way to model and represent complex biomedical
structured data, such as molecular interactions, signalling pathways and disease co-morbidities
[106]. Information from a single source usually does not provide sufficient data, and various
state-of-the-art studies have shown that incorporating multiple heterogeneous knowledge sources
and modalities yields better predictions [101, 53, 71]. Learning an effective representation that
leverages the topology of these multimodal and heterogeneous KGs to create optimised embedding
representations is key to applying AI models. These optimised embeddings can then be fed into
link prediction models, such as for interactions between proteins [80], drugs [53], drug-targets
[53, 101], or drug indication/contraindications for diseases [71].

TGDK



4:20 Knowledge Graph Embeddings: Open Challenges and Opportunities

For instance, Otter-Knowledge [101] uses MKGs built from diverse sources, where each node
has a modality assigned, such as textual (e.g., protein function), numerical (e.g., molecule mass),
categorical entities (e.g., protein family), and modalities for representing protein and molecules.
For each modality in the graph, a model is assigned to compute initial embeddings, e.g., pre-trained
language models such as ESM [142] and MolFormer [144] are used for protein sequences and
molecules’ SMILES, respectively. A GNN is then invoked to enrich the initial representations
and train a model to produce knowledge-enhanced representations for drug molecules and protein
entities. These representations can improve drug-target binding affinity prediction tasks [72], even
in the presence of entities not encountered during training or having missing modalities.

During training, attribute modalities are treated as relational triples of structured knowledge
instead of predetermined features, making them first-class citizens of the MKG [128, 101]. The
advantage of this approach is that entity nodes are not required to carry all multimodal properties
or project large property vectors with missing values. Instead, the projection is done per modality
and only when such a modality exists for the entity.

6 Discussion and Conclusion

Currently, the vast majority of evaluations of knowledge graph embeddings are conducted on the
task of link prediction. At the same time, embeddings created with such techniques are used
across a wide range of diverse downstream tasks, such as recommender systems, text annotation
and retrieval, fact validation, data interpretation and integration, to name just a few. This raises
the question: How suitable is the effectiveness of a link prediction task as a predictor of the
applicability of a particular KGE method for a particular downstream task?

While the evaluation of link prediction is quite standardised with respect to benchmark
datasets and evaluation metrics, the field of downstream applications is much more diverse and
less standardised. Some frameworks, such as GEval [127] and kgbench [19], offer a greater variety
of tasks and evaluations, including evaluation metrics and dataset splits.

Some studies have looked into characterising the representation capabilities of different KGE
methods. They, for instance, analyse whether different classes are separated in the embedding
space [6, 77, 216]. More recently, the DLLC benchmark [132] has been proposed, which allows for
analysing which types of classification problems embeddings produced by a particular method can
address. Other studies analyse the distance function in the resulting embedding spaces, finding
that while most approaches create embedding spaces that encode entity similarity, others focus on
entity relatedness [131], and that some methods can actually be altered to focus more on similarity
and relatedness [133].

In addition, link prediction, entity categorisation, KG completion, and KG embeddings are
crucial for a number of downstream activities, such as entity recommendation, relation extraction,
question-answering, recommender systems, semantic search, and information retrieval. Models that
leverage user profiles, historical interactions, and KGs can deliver personalised recommendations,
capture similarity and relevance, and increase accuracy and relevance. KG embeddings also
improve the accuracy of relation extraction by adding structured knowledge. The majority of
existing KG embedding models are generalised, that is, they are trained and evaluated on open
KGs for KG completion. However, task-specific KG embeddings would be quite advantageous in
various kinds of applications, which still remains an open research task. They can be optimised for
creating representations for specific tasks, improving performance, focusing on relevant information
extraction, resolving data scarcity, and thereby improving interpretability and explainability. With
the use of domain-specific data or constraints, these embeddings can be trained to grasp and
reason about the relationships and semantics unique to that domain.
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Recent ongoing research also reveals that when KG embeddings and LLMs are combined, a
symbiotic relationship results, maximising the benefits of each methodology. While LLMs help
to integrate textual knowledge, improve entity and relation linking, promote cross-modal fusion,
and increase the explainability of KG embeddings, KG embeddings provide structured knowledge
representations that improve the contextual comprehension and reasoning of LLMs. Therefore,
future research may focus on building more robust and comprehensive models for knowledge
representation, reasoning, and language understanding as a result of these interrelated effects.

KG embeddings will continue to evolve and serve an important role in enabling effective
knowledge representation, reasoning, and decision-making as KGs grow in scale and complexity.
This study highlights the potential of KG embeddings to convert unstructured data into structured
knowledge, reveal deeper insights, and enhance intelligent applications.
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