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Abstract

Markov decision process (MDP) is a decision making framework where a deci-
sion maker is interested in maximizing the expected discounted value of a stream
of rewards received at future stages at various states which are visited accord-
ing to a controlled Markov chain. Many algorithms including linear programming
methods are available in the literature to compute an optimal policy when the
rewards and transition probabilities are deterministic. In this paper, we consider
an MDP problem where the reward vector is known and the transition probability
vector is a random vector which follow a discrete distribution whose information
is not completely known. We formulate the MDP problem using distribution-
ally robust chance-constrained optimization framework under various types of
moments based uncertainty sets, and statistical-distance based uncertainty sets
defined using ϕ-divergence and Wasserstein distance metric. For each uncertainty
set, we propose an equivalent mix-integer bilinear programming problem or a
mix-integer semidefinite programming problem with bilinear constraints. As an
application, we study a machine replacement problem and perform numerical
experiments on randomly generated instances.

Keywords: Markov decision processes, Distributionally robust chance-constrained
optimization, Random transition probabilities, Machine replacement problem.
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1 Introduction

An MDP is a decision making framework to model the performance of a stochastic
system which evolves over time according to a controlled Markov chain. We consider
the case where the system has a finite number of states. At time t = 0, the system
is at some initial state s0 ∈ S, where S is a finite state space, according to an initial
distribution γ, and a decision maker chooses an action a0 ∈ A(s0), where A(s0) denotes
the set of finite number of actions available to the decision maker at state s0. As a
consequence a reward R(s0, a0) is earned and at time t = 1, the system moves to
a new state s1 with probability p(s0, a0, s1). The same thing repeats at time t = 1
and it continues for the infinite horizon. We assume that the reward and transition
probabilities are stationary, i.e., R(Xt = s,At = a) = R(s, a) and P (Xt+1 = s′|Xt =
s,At = a) = p(s, a, s′) for all t; Xt and At denote the state and action at time t,
respectively. The decision taken at time t, which could be deterministic or randomized,
may depend on the history ht at time t, where ht = (s0, a0, s1, . . . , st−1, at−1, st). Let
Ht be the set of all possible histories at time t. A history dependent decision rule ft
at time t is defined as ft(ht) ∈ ℘(A(st)) for every history ht with final state st, where
℘(A(st)) denotes the set of probability distributions on the action setA(st). A sequence
of history dependent decision rules fh = (ft)

∞
t=0 is called a history dependent policy. A

history dependent policy (ft)
∞
t=0 is called a stationary policy if there exists a decision

rule f such that ft = f for all t and it depends only on the current state. We denote
a stationary policy, with some abuse of notations, by f and define f = (f(s))s∈S such
that f(s) ∈ ℘(A(s)) for every s ∈ S. As per stationary policy f , whenever the Markov
chain visits state s, the decision maker chooses an action a with probability f(s, a).
We denote the set of all history dependent and stationary policies by POHD and POS ,
respectively. A history dependent policy fh ∈ POHD and initial distribution γ defines

a probability measure P fh

γ over the state and action trajectories, and Efh

γ denotes

the expectation operator corresponding to the probability measure P fh

γ . For a given

policy fh and an initial distribution γ, the expected discounted reward at a discount
factor α ∈ (0, 1) is defined as Altman (1999); Puterman et al (1994)

Vα(f
h, p) = (1− α)Efh

( ∞∑
t=0

αtR(Xt, At)

)
=
∑
s∈S

∑
a∈A(s)

m̂(fh, p; s, a)R(s, a). (1)
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The set {m̂(fh, p; s, a)}(s,a) is the occupation measure defined by

m̂(fh, p; s, a) = (1− α)

∞∑
t=0

αtP fh

γ (Xt = s,At = a), ∀ s ∈ S, a ∈ A(s). (2)

It is well known that for a discounted MDP problem there exists an stationary optimal
policy. For a given transition probabilities p(s, a, s′) for all s, s′ ∈ S, a ∈ A(s), it follows
from Theorem 3.2 of Altman (1999) that the set of occupation measures m̂(f, p), for
f ∈ POS is equivalent to the following set

Q(p) =

{
ρ ∈ R|K| ∣∣ ∑

(s,a)∈K

ρ(s, a)
(
δ(s′, s)− αp(s, a, s′)

)
= (1− α)γ(s′), ∀ s′ ∈ S,

ρ(s, a) ≥ 0, ∀ (s, a) ∈ K

}
,

where δ(s′, s) is the Kronecker delta and K = {(s, a) | s ∈ S, a ∈ A(s)}. For each ρ ∈
Q(p), the stationary optimal policy f can be defined as

f(s, a) =
ρ(s, a)∑

a∈A(s) ρ(s, a)
, ∀ (s, a) ∈ K,

whenever the denominator is nonzero
(
if it is zero, we choose f(s) arbitrarily from

℘(A(s))
)
Altman (1999). We restrict our attention to the stationary policies in the

rest of the paper.
The rewards and transition probabilities represented by |K|-dimensional vec-

tor R = (R(s, a))(s,a)∈K and |K|.|S|-dimensional vector p = (p(s, a, s′))(s,a,s′)∈K×S ,
respectively, are considered as the parameters of an MDP model and are assumed to
be exactly known. However, in practice R and p are not known in advance and are
estimated from historical data. This leads to errors in the optimal policies Mannor
et al (2007). Most efforts to take into account this uncertainty focused on the study of
robust MDPs where the rewards or the transition probabilities are known to belong
to a prespecified uncertainty set Iyengar (2005); Nilim and El Ghaoui (2005); Vara-
gapriya et al (2022); White III and Eldeib (1994); Wiesemann et al (2012); Ho et al
(2022); Goyal and Grand-Clement (2023). However, Delage and Mannor (2010) showed
that the robust MDP approach usually leads to conservative policies. For this reason,
a chance-constrained Markov decision process (CCMDP) was introduced in Delage
and Mannor (2010), where the controller obtains the expected discounted reward with
certain confidence. In Delage and Mannor (2010), the case of random rewards and ran-
dom transition probabilities are considered separately and it is shown that a CCMDP
is equivalent to a second-order cone programming (SOCP) problem when the running
reward vector follows a multivariate normal distribution and the transition probabili-
ties are exactly known. When the transition probabilities follow Dirichlet distribution
and the running rewards are exactly known, the CCMDP problem becomes intractable
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and the optimal policies can be computed using approximation methods. Varagapriya
et al (2023) considered a constrained MDP problem where the running cost vectors
are random vectors and the transition probabilities are known. They formulated it as a
joint chance-constrained MDP problem and proposed two SOCP based approximations
which give upper and lower bounds to the optimal value of joint chance-constrained
MDP problem if the cost vectors follow multivariate elliptical distributions and the
dependence among the constraints is driven by a Gumbel-Hougaard copula.

In many practical situations, it is often the case that only a partial information
about the underlying distribution is available based on the historical data. In that
case, a distributionally robust approach, is used to model the uncertainties, which
assumes that the true distribution belongs to an uncertainty set based on its partially
available information. Such an approach has been used in modelling the uncertainties
of many optimization and game problems Jiang and Guan (2016); Liu et al (2022);
Singh et al (2017). There are at least two popular ways to construct an uncertainty
set for the distribution of the uncertain parameters. The first one is based on the par-
tial information on moments of the true distribution and the second one is based on
the statistical distance between the true distribution and a reference distribution. The
moments-based uncertainty sets assume certain conditions on the first two moments
Cheng et al (2014); Delage and Ye (2010); Popescu (2007). The statistical distance-
based uncertainty sets contain all the distributions which lie inside a ball of small
radius and center at a reference distribution which is usually considered to be an
empirical distribution or a normal distribution Esfahani and Kuhn (2018); Jiang and
Guan (2016). To define a distance between the distributions, either a ϕ−divergence
Ben-Tal et al (2013); Jiang and Guan (2016) or Wasserstein distance metric is used
Esfahani and Kuhn (2018); Gao and Kleywegt (2023); Zhao and Guan (2018). A dis-
counted MDP problem with uncertain transition probabilities under distributionally
robust optimization framework is considered in the literature Xu and Mannor (2012);
Zhi Chen and Haskell (2019). They considered the case where the decision maker aims
to find an optimal policy which maximizes worst-case expected discounted reward. To
the best of our knowledge, an MDP problem with uncertain transition probabilities
under distributionally robust chance constraint based payoff criterion is not considered
in the literature.

In this paper, we consider an infinite horizon MDP with discounted payoff cri-
terion where the reward vector is known and transition probabilities are defined by
a random vector. The transition probability vector is assumed to follow a discrete
distribution which is not completely known and belong to a given uncertainty set.
We formulate the random transition probability vector with a distributionally robust
chance constraint which guarantees the maximum reward for a given policy with at
least a given level of confidence. We call this class of MDP a distributionally robust
chance-constrained Markov decision process (DRCCMDP), where we consider both
moments and statistical distance based uncertainty sets. The main contributions of
the paper are as follows.

1. We consider three different types of uncertainty sets based on the moments of
the random transition probabilities. We show that the DRCCMDP problem can
be reformulated as a mixed-integer bilinear programming (MIBP) problem or a
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mixed-integer semidefinite programming (MISDP) problem with additional bilin-
ear constraints. The MIBP problems can be solved efficiently using the GUROBI
solver, while the MISDP problems with bilinear constraints can be handled by
the CUTSDP solver available in the YALMIP toolbox of Matlab, which is time
consuming, without any guarantee of the running time.

2. We consider two types of uncertainty sets based on statistical distance between
the true distribution of transition probabilities and a reference distribution. The
uncertainty sets are constructed using either ϕ−divergences distance or Wasser-
stein distance. For ϕ−divergences distance, we explore four distinct types of
ϕ-divergences (Kullbach-Leibler, Variation, Modified χ2, Hellinger) to construct
uncertainty sets. For each uncertainty set, we show that the DRCCMDP problem
is equivalent to MIBP problem.

3. We illustrate our theoretical results on a machine replacement problem.

The paper is organized as follows. In Section 2, we define a DRCCMDP under a
discounted payoff criterion with random transition probabilities and known reward
vector. In Section 2.1 and Section 2.2, we propose equvalent reformulations of DRC-
CMDP under different moments based and statistical distance based uncertainty sets.
We present how to solve reformulations using existing solvers in Section 2.3. The
numerical results on a machine replacement problem is given in Section 3. We conclude
the paper in Section 4.

2 Distributionally robust chance-constrained
Markov decision process

In this section, we consider an MDP model defined in Section 1, where the running
reward vector R is exactly known, nonnegative and the transition probability vector p
are random variables. For each triplet (s, a, s′) ∈ K×S, we assume that the p(s, a, s′) is
an 1− dimensional random variable defined on a probability space (Ω,F ,P). Therefore,
for each realization ω ∈ Ω, the term p(s, a, s′)(w) ∈ [0, 1] and

∑
s′∈S p(s, a, s′)(ω) = 1.

It represents the probability of moving to a new state s′, when an action a in taken
at state s. Assume that p follows a discrete distribution Fp, whose support is taken
by the set of historical data on the transition probabilities. Denote this set by Ep =
{p1, p2, . . . , pJ}. For a given policy f ∈ POS and a realization ω ∈ Ω, the expected
discounted reward Vα(f, p)(ω) can be written as

Vα(f, p)(ω) =
∑
s∈S

∑
a∈A(s)

m̂(f, p, s, a)(ω)R(s, a), (3)

where m̂(f, p)(ω) is an occupation measure corresponding to transition probability
vector p(ω). Since the transition probabilities are random variables, it is clear that
m̂(f, p) is a |K|−dimensional random vector and Vα(f, p) is an 1−dimensional ran-
dom variable defined on same probability space (Ω,F ,P). We consider the case where
decision maker is interested in maximizing the expected discounted reward which can
be obtained with at least a given confidence level (1− ϵ). This leads to the following
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chance-constrained optimization problem

(CCMDP) sup
y∈R, f∈POS

y

s.t. Pp (Vα(f, p) ≥ y) ≥ 1− ϵ, (4)

In most of the practical situations, we only have partial information about the
underlying probability distributions of p based on historical data of the transition prob-
abilities. Such situations can be modelled with the distributionally robust optimization
approach, where the decision marker believes that the distribution of p belongs to some
uncertainty set Dp. To ensure that the chance constraint P(Vα(f, p) ≥ y) ≥ 1−ϵ holds,
we assume that it holds for any distribution which belongs to the uncertainty set. This
leads to the following distributionally robust chance-constrained optimization problem

(DRCCMDP) sup
y∈R, f∈POS

y

s.t. (i) inf
Fp∈Dp

Pp (Vα(f, p) ≥ y) ≥ 1− ϵ. (5)

In the following sections, we consider two types of uncertainty sets with moments
based uncertainty sets and statistical distance based uncertainty sets.

2.1 Moments based uncertainty sets

We consider the uncertainty sets which are constructed based on available information
about the first two moments of the true distribution of p. For each s′ ∈ S, consider a
|K|-dimensional sub-vector p(s′) = (p(s, a, s′))(s,a)∈K of p. We estimate sample mean

vector µ ∈ R|S|×|K| of p and positive definite sample covariance matrix Σ(s′) of p(s′)
for all s′ ∈ S by observing sufficiently large number of data. We consider three most
popular uncertainty sets, based on estimates µ and Σ(s′), which have been studied
in the literature Delage and Ye (2010); Cheng et al (2014); Calafiore and El Ghaoui
(2006). They are defined as follows:

1. Uncertainty set with known mean and known covariance matrix:

D1 =

Fp ∈ M+
Ep

∣∣∣∣∣∣
(i) E(1{p∈Ep}) = 1,
(ii) E(p) = µ,
(iii) E[(p(s′)− µ(s′))(p(s′)− µ(s′))T] = Σ(s′), s′ ∈ S.

 ,

(6)
2. Uncertainty set with known mean and unknown covariance matrix:

D2 =

Fp ∈ M+
Ep

∣∣∣∣∣∣
(i) E(1{p∈Ep}) = 1,
(ii) E(p) = µ,
(iii) E[(p(s′)− µ(s′))(p(s′)− µ(s′))T] ⪯ δ0Σ(s

′), s′ ∈ S.

 ,

(7)
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3. Uncertainty set with unknown mean and unknown covariance matrix:

D3 =

Fp ∈ M+
Ep

∣∣∣∣∣∣
(i) E(1{p∈Ep}) = 1,

(ii) [E (p(s′))− µ(s′)]TΣ(s′)(−1)[E (p(s′))− µ(s′)] ≤ δ1, s′ ∈ S,
(iii) E[(p(s′)− µ(s′))(p(s′)− µ(s′))T] ⪯ δ2Σ(s

′), s′ ∈ S.

 ,

(8)

where M+
Ep

is the set of all probability distributions on Ep, and δ1 ≥ 0, δ2, δ0 ≥ 1. The
notation A ⪯ B implies that B − A is a positive semidefinite matrix. We denote the
set of n× n (positive semidefinite) symmetric matrices by (Sn

+) S
n and ◦ denotes the

Frobenius product. Using these notations, we present the deterministic reformulation
of DRCCMDP problem (5) for each type of moments based uncertainty set defined
above.
Theorem 1. For DRCCMDP problem (5), the following results hold.

(i) If the true distribution of p belongs to the uncertainty set D1, then (5) is equivalent
to the following deterministic problem

sup y

s.t. (i) − v − wTµ−
∑
s′∈S

z(s′) ◦ Σ(s′) ≥ 1− ϵ,

(ii) 1{Vα(f,pj)≥y} + v + wTpj +
∑
s′∈S

z(s′) ◦ [pj(s′)− µ(s′)][pj(s
′)− µ(s′)]T ≥ 0,

∀ j = 1, . . . , J,

(iii) z(s′) ∈ S|K|,∀ s′ ∈ S

(iv)
∑

a∈A(s)

f(s, a) = 1, ∀ s ∈ S, f(s, a) ≥ 0, ∀ (s, a) ∈ K. (9)

(ii) If the true distribution of p belongs to the uncertainty set D2, then the optimization
problem (5) is equivalent to the following deterministic problem

sup y

s.t. (i) − v − wTµ−
∑
s′∈S

z(s′) ◦ δ0Σ(s′) ≥ 1− ϵ,

(ii) 1{Vα(f,pj)≥y} + v + wTpj +
∑
s′∈S

z(s′) ◦ [pj(s′)− µ(s′)][pj(s
′)− µ(s′)]T ≥ 0,

∀ j = 1, . . . , J,

(iii) z(s′) ∈ S
|K|
+ ,∀ s′ ∈ S,

(iv)
∑

a∈A(s)

f(s, a) = 1, ∀ s ∈ S, f(s, a) ≥ 0, ∀ (s, a) ∈ K. (10)
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(iii) If the true distribution of p belongs to the uncertainty set D3, then the optimization
problem (5) is equivalent to the following deterministic problem

sup y

s.t. (i) − v −
∑
s′∈S

z(s′) ◦ δ2Σ(s′) ≥ 1− ϵ,

(ii) 1{Vα(f,pj)≥y} + v −
∑
s′∈S

Q(s′) ◦Nj(s
′)

+
∑
s′∈S

z(s′) ◦ [pj(s′)− µ(s′)][pj(s
′)− µ(s′)]T ≥ 0,∀ j = 1, . . . , J,

(iii) z(s′) ∈ S
|K|
+ , Q(s′) ∈ S

|K|+1
+ , ∀ s′ ∈ S,

(iv)
∑

a∈A(s)

f(s, a) = 1, ∀ s ∈ S, f(s, a) ≥ 0, ∀ (s, a) ∈ K. (11)

where

Nj(s
′) =

(
Σ(s′) pj(s

′)− µ(s′)

(pj(s
′)− µ(s′))

T
δ1

)
. (12)

Proof. For any f ∈ POS and y ∈ R, we consider the following optimization problem

inf
Fp∈Dp

Pp (Vα(f, p) ≥ y) . (13)

Note that p is a discrete distribution with finite support Ep = {p1, . . . , pJ}, then
we can represent its true distribution Fp by its probability mass function which is a

J−dimensional vector q = (q1, . . . , qJ) such that
∑J

j=1 qj = 1, qj ≥ 0 for all j =
1, 2, . . . , J . By representing optimization problem (13) in terms of variable q, we show
the deterministic reformulation of (5) for each uncertainty set.

(i) For uncertainty set D1, the optimization problem (13) can be rewritten as follows

inf
q≥0

J∑
j=1

qj1{Vα(f,pj)≥y}

s.t. (i)

J∑
j=1

qj = 1, (ii)

J∑
j=1

qjpj = µ,

(iii)

J∑
j=1

qj [pj(s
′)− µ(s′)][pj(s

′)− µ(s′)]T = Σ(s′), ∀ s′ ∈ S. (14)
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The dual problem of (14) can be written as follows

sup
(v,w,z)

−v − wTµ−
∑
s′∈S

z(s′) ◦ Σ(s′),

s.t. (i) 1{Vα(f,pj)≥y} + v + wTpj +
∑
s′∈S

z(s′) ◦ [pj(s′)− µ(s′)][pj(s
′)− µ(s′)]T ≥ 0,

∀ j = 1, . . . , J,

(ii) z(s′) ∈ S|K|, ∀ s′ ∈ S.

where v ∈ R, w ∈ R|K|.|S| and z(s′), s′ ∈ S, are the dual variables of (i), (ii), and
(iii) of (14). Note that (14) is a linear program(LP), and therefore the strong duality
holds which in turn implies that the DRCCMDP problem (5) can be reformulated
as (9).

(ii) For the case of uncertainty set D2, the optimization problem (13) can be rewritten
as follows

inf
q≥0

J∑
j=1

qj1{Vα(f,pj)≥y}

s.t. (i)

J∑
j=1

qj = 1, (ii)

J∑
j=1

qjpj = µ,

(iii)

J∑
j=1

qj [pj(s
′)− µ(s′)][pj(s

′)− µ(s′)]T ⪯ δ0Σ(s
′), ∀ s′ ∈ S. (15)

The dual problem of (15) is given by

sup −v − wTµ−
∑
s′∈S

z(s′) ◦ δ0Σ(s′),

s.t. (i) 1{Vα(f,pj)≥y} + v + wTpj +
∑
s′∈S

z(s′) ◦ [pj(s′)− µ(s′)][pj(s
′)− µ(s′)]T ≥ 0,

∀ j = 1, . . . , J,

(ii) z(s′) ∈ S
|K|
+ .

Since (15) is a semidefinite programming (SDP) problem, the strong duality holds,
which ensures that the DRCCMDP problem (5) can be reformulated as (10).

(iii) For the case of uncertainty set D3, it follows from Schur complement that the

constraints (ii) in (8) are equivalent to N(s′) ∈ S
|K|+1
+ , for any s′ ∈ S, where

N(s′) =

(
Σ(s′) E(p(s′))− µ(s′)

(E(p(s′))− µ(s′))
T

δ1

)
,

9



Moreover, for any s′ ∈ S, we can write N(s′) =
∑J

j=1 qjNj(s
′), where Nj(s

′) is
defined in (12). The rest of the proof follows from the same arguments used in the
case of uncertainty set D2.

The deterministic reformulations (9), (10) and (11) have infinite number of con-
straints due to indicator function 1{Vα(f,pj)≥y}. Using the fact that 1{Vα(f,pj)≥y} can
take only binary variables, we further reformulate (9), (10) and (11) as mixed integer
optimization problems. We present the proof for (9) and for (10) and (11) the proof fol-
lows using the same arguments. Let M = 1T

|K|R, where 1|K| denotes |K|−dimensional
vector with all components equal to 1, and η > 0 be an infinitesimal number. The
following theorem gives a mixed-integer reformulation of (9).
Theorem 2. Suppose initial distribution γ = (γ(s))s∈S satisfy γ(s) > 0 for all s ∈ S.
Then, the optimization problem (9) can be reformulated as the following mixed-integer
problem

(Bilinear-K-K) sup
y,v,w,z,β,(ρj)Jj=1

y

s.t. (i) − v − wTµ−
∑
s′∈S

z(s′) ◦ Σ(s′) ≥ 1− ϵ,

(ii) βj + v + wTpj +
∑
s′∈S

z(s′) ◦ [pj(s′)− µ(s′)][pj(s
′)− µ(s′)]T ≥ 0,

∀ j = 1, . . . , J,

(iii) z(s′) ∈ S|K|, ∀ s′ ∈ S,

(iv) ρTj R− y ≤ Mβj − η(1− βj), y − ρTj R ≤ M(1− βj), j = 1, . . . , J,

(v) βj ∈ {0, 1} , j = 1, . . . , J,

(vi)
∑

(s,a)∈K

ρj(s, a) (δ(s
′, s)− αpj(s, a, s

′)) = (1− α)γ(s′), ∀ s′ ∈ S,

(vii) ρj(s, a) ≥ 0, ∀ (s, a) ∈ K, j = 1, . . . , J,

(viii) ρ1(s, a)
∑

a′∈A(s)

ρj(s, a
′) = ρj(s, a)

∑
a′∈A(s)

ρ1(s, a
′),

∀ (s, a) ∈ K, j = 2, . . . , J.
(16)

Proof. For an f ∈ POS , we can write Vα(f, pj) = m̂(f, pj)
TR, where m̂(f, pj) is the

occupation measure vector defined by (2) corresponding to policy f and transition
probabilities vector pj . Therefore, Vα(f, pj) ∈ [0,M ] which implies that any optimal
solution y of (5) belongs to [0,M ]. Then, we can add the constraint y ∈ [0,M ] with-
out loss of optimality. We show that βj = 1{Vα(f,pj)≥y} is equivalent to following
constraints

(i) Vα(f, pj)− y ≤ Mβj − η(1− βj), y − Vα(f, pj) ≤ M(1− βj), j = 1, . . . , J,
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(ii) βj ∈ {0, 1}. (17)

1. Let βj = 1{Vα(f,pj)≥y}. If Vα(f, pj) < y, then βj = 0, y − Vα(f, pj) ≤ M and
Vα(f, pj) − y ≤ −η for sufficiently small positive η. If Vα(f, pj) ≥ y, then βj = 1,
Vα(f, pj)− y ≤ M and y − Vα(f, pj) ≤ 0. Therefore, the constraints given by (17)
are satisfied.

2. Suppose the constraints given by (17) are satisfied. If βj = 0, then Vα(f, pj) < y.
If βj = 1, then Vα(f, pj) ≥ y. Therefore, βj = 1{Vα(f,pj)≥y}.

It follows from the discussion in Section 1 that for all j = 1, . . . , J , the set of occupation
measures {m̂(f, pj) | f ∈ POS} is equivalent to the set Q(pj). Since γ(s) > 0 for
all s ∈ S,

∑
a′∈A(s) ρj(s, a

′) > 0 for all j = 1, 2, . . . , J . This implies that for every

f ∈ POS , there exists ρj ∈ Q(pj) such that

Vα(f, pj) = ρTj R, ∀ j = 1, . . . , J,

f(s, a) =
ρj(s, a)∑

a′∈A(s) ρj(s, a
′)
, ∀ (s, a) ∈ K, j = 1, . . . , J.

Hence, optimization problem (9) is equivalent to the optimization problem (16). The
constraint (viii) ensures that all ρj , j = 1, . . . , J corresponds to the same policy f .

Remark 1. If (y∗, v∗, w∗, z∗, β∗, (ρ∗j )
J
j=1 is an optimal solution of (16), the optimal

policy of DRCCMDP problem (5) is defined by

f∗(s, a) =
ρ∗1(s, a)∑

a′∈A(s) ρ
∗
1(s, a

′)
, ∀ (s, a) ∈ K.

Similarly, the reformulations of DRCCMDP problem (5) for the case of uncertainty
sets D2 and D3 are given as below

(Bilinear-K-U) sup
y,v,w,z,β,(ρj)Jj=1

y

s.t. (i) − v − wTµ−
∑
s′∈S

z(s′) ◦ δ0Σ(s′) ≥ 1− ϵ,

(ii) βj + v + wTpj +
∑
s′∈S

z(s′) ◦ [pj(s′)− µ(s′)][pj(s
′)− µ(s′)]T ≥ 0,

∀ j = 1, . . . , J,

(iii) z(s′) ∈ S|K|
+ , ∀ s′ ∈ S,

(iv)− (viii) of (16). (18)

(Bilinear-U-U) sup
y,v,Q,z,β,(ρj)Jj=1

y

11



s.t. (i) − v −
∑
s′∈S

z(s′) ◦ δ2Σ(s′) ≥ 1− ϵ,

(ii) βj + v −
∑
s′∈S

Q(s′) ◦Nj(s
′)

+
∑
s′∈S

z(s′) ◦ [pj(s′)− µ(s′)][pj(s
′)− µ(s′)]T ≥ 0, ∀ j = 1, . . . , J,

(iii) z(s′) ∈ S|K|
+ , Q(s′) ∈ S|K|+1

+ , ∀ s′ ∈ S,

(iv)− (viii) of (16). (19)

2.2 Statistical distance based uncertainty sets

In this section, we consider uncertainty sets defined by ϕ-divergence and Wasserstein
distance metrics. In such uncertainty sets, a reference distribution ν is known to the
decision maker based on the available estimated data of transition probabilities. The
decision maker believes that the true distribution of transition probabilities vector p,
denoted by Fp belongs to a ball centered at the reference distribution ν. We assume
that both ν and Fp are discrete distributions on same support Ep. Let (q

0
j )

J
j=1 be the

probability mass function of the reference distribution ν, i.e., q0j is the weight of jth

atom pj . We assume that q0j > 0 for all j = 1, . . . , J .

2.2.1 Uncertainty set with ϕ -divergence distance

The ϕ−divergence distance between two discrete probability distributions ν1 and ν2
with support Ep is given by

Iϕ(ν1, ν2) =

J∑
j=1

ϕ

(
ν1(pj)

ν2(pj)

)
ν2(pj),

where ν1(pj) (resp. ν2(pj)) is the weight of ν1 (resp. ν2) on the jth atom pj of Ep and
ϕ is a convex function on R+. For general ϕ-divergence with the choices of function
ϕ and its properties, we refer to Ben-Tal et al (2013). The uncertainty set of the
distribution of p based on ϕ-divergence is defined by

D4 =

{
Fp ∈ M+

Ep
| Iϕ(Fp, ν) ≤ θϕ

}
, (20)

where θϕ > 0 denotes the radius. The following definition of the conjugate of a function
is useful for our subsequent analysis.
Definition 1. The conjugate of ϕ is a function ϕ∗ : R → R ∪∞ such that

ϕ∗(r) = sup
t≥0

{rt− ϕ(t)} , ∀ r ∈ R.

Table 1 presents four special types of ϕ-divergences with their conjugate.
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Table 1 List of selected ϕ-divergences with their conjugate

Divergence ϕ(t), t ≥ 0 ϕ∗(r)
Kullback-Leibler t log(t)− t+ 1. er − 1

Variation distance |t− 1|.
−1, r ≤ −1,

r, −1 ≤ r ≤ 1,
∞, r > 1.

Modified χ2 - distance (t− 1)2.
−1, r ≤ −2,

r + r2

4 , r > −2.

Hellinger distance (
√
t− 1)2.

r
1−r , r < 1,

∞, r ≥ 1.

Lemma 1. The dual of an optimization problem

inf
Fp∈D4

PFp
((Vα(f, p) ≥ y), (21)

is given by

sup
λ>0,β∈R

{
β − λθϕ − λPν (Vα(f, p) ≥ y)ϕ∗

(
β − 1

λ

)
− λ [1− Pν (Vα(f, p) ≥ y)]ϕ∗

(
β

λ

)}
,

(22)

and the strong duality between (21) and (22) holds.

Proof. The primal problem (21) can be written as a following optimization problem

vP = inf
q≥0

J∑
j=1

qj1{Vα(f,pj)≥y}

s.t. (i)

J∑
j=1

q0jϕ

(
qj
q0j

)
≤ θϕ, (ii)

J∑
j=1

qj = 1. (23)

The dual problem of (23) is given by

vD = sup
λ≥0,β∈R

{
β − λθϕ + inf

q≥0

J∑
j=1

[
qj1{Vα(f,pj)≥y} − βqj + λq0jϕ

(
qj
q0j

)]}
,

where λ is the dual variable of the constraint (i) of (23) and β is the dual variable of
the constraint (ii) of (23). Note that (23) is a convex optimization problem because
ϕ is a convex function. Since θϕ > 0, it is clear that for q = q0, (i) of (23) is strictly
feasible. Hence, the Slater’s condition is satisfied which guarantees the strong duality,
i.e., vP = vD. It remains to show that vD is same as (22). For a given β ∈ R, consider a
function F (λ, q) =

∑J
j=1

[
qj1{Vα(f,pj)≥y} − βqj + λq0jϕ

(
qj
q0j

)]
. It is clear that F (λ, q)

13



is a linear function of λ. Let G(λ) = −λθϕ + infq≥0 F (λ, q). For any t ∈ [0, 1] and
λ1 ≥ 0, λ2 ≥ 0, we have

inf
q≥0

F [tλ1 + (1− t)λ2, q] = inf
q≥0

(tF (λ1, q) + (1− t)F (λ2, q))

≥ t inf
q≥0

F (λ1, q) + (1− t) inf
q≥0

F (λ2, q).

This implies that G(λ) is a concave function of λ on [0,∞). Consider the optimiza-
tion problem supλ≥0 G(λ). We prove that G(0) ≤ supλ>0 G(λ). In fact, if G(0) >
supλ>0 G(λ). Then, there exists a t sufficiently close to 1 such that tG(0)+(1−t)G(1) >
supλ>0 G(λ). Since G(λ) is a concave function, G(1− t) ≥ tG(0) + (1− t)G(1) which
in turn implies that G(1 − t) > supλ>0 G(λ). This gives a contradiction. Therefore,
G(0) ≤ supλ>0 G(λ) and we can restrict on λ > 0 without loss of optimality in the
dual problem vD. Hence, the dual problem of (21) can be rewritten as follows

vD = sup
λ>0,β∈R

{
β − λθϕ + inf

q≥0

J∑
j=1

[
qj1{Vα(f,pj)≥y} − βqj + λq0jϕ

(
qj
q0j

)]}
,

= sup
λ>0,β∈R

{
β − λθϕ +

J∑
j=1

inf
qj≥0

[
qj1{Vα(f,pj)≥y} − βqj + λq0jϕ

(
qj
q0j

)]}
,

= sup
λ>0,β∈R

{
β − λθϕ +

J∑
j=1

inf
qj≥0

λq0j

[
ϕ

(
qj
q0j

)
− qj

q0j

(
β − 1{Vα(f,pj)≥y}

λ

)]}
,

= sup
λ>0,β∈R

{
β − λθϕ −

J∑
j=1

sup
qj≥0

λq0j

[
qj
q0j

(
β − 1{Vα(f,pj)≥y}

λ

)
− ϕ

(
qj
q0j

)]}
.

Let tj =
qj
q0j
, using the definition of the conjugate of a function, the dual problem vD

can be rewritten as follows

vD = sup
λ>0,β∈R

{
β − λθϕ −

J∑
j=1

λq0jϕ
∗
(
β − 1{Vα(f,pj)≥y}

λ

)}
,

= sup
λ>0,β∈R

{
β − λθϕ − λPν (Vα(f, p) ≥ y)ϕ∗

(
β − 1

λ

)
− λ [1− Pν (Vα(f, p) ≥ y)]ϕ∗

(
β

λ

)}
,

which completes the proof.

Lemma 2. Consider the DRCCMDP problem (5) under the uncertainty set defined
by (20) for the ϕ-divergences listed in Table 2. Then, the DRCCMDP problem (5) can
be rewritten as follows

sup
y∈R, f∈POS

y

s.t. (i) Pν (Vα(f, p) ≥ y) ≥ g∗(θϕ, ϵ), (24)
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where the values of θϕ, ϵ and g∗(θϕ, ϵ) for different ϕ-divergences are given in Table 2.

Table 2 The function f for selected ϕ−divergences

Divergence g∗(θϕ, ϵ) θϕ, ϵ

K-L infx∈(0,1)
e−θϕx1−ϵ−1

x−1
θϕ > 0

0 < ϵ < 1

Variation 1− ϵ+
θϕ
2

θϕ > 0
0 < ϵ < 1

Modified χ2
1− ϵ+

√
θ2
ϕ+4θϕ(ϵ−ϵ2)−(1−2ϵ)θϕ

2θϕ+2

θϕ > 0

0 < ϵ < 1
2

Hellinger

−B+
√
∆

2 ,

where B = −(2− (2− θϕ)
2)ϵ− (2−θϕ)

2

2 ,

C =
(
(2−θϕ)

2

4 − ϵ
)2

,

∆ = B2 − 4C = (2− θϕ)
2
[
4− (2− θϕ)

2
]
ϵ(1− ϵ).

0 < θϕ < 2−
√
2

0 < ϵ < 1

Proof. The details of the proof for the Hellinger distance case is given in Appendix A.
The proofs for Kullback-Leibler, Variation distance and Modified χ2 - distance follow
from Propositions 2, 3 and 4 of Jiang and Guan (2016), respectively.

Theorem 3. Suppose initial distribution γ = (γ(s))s∈S satisfy γ(s) > 0 for all s ∈ S.
Then, the optimization problem (24) can be reformulated as the following mixed-integer
optimization problem

(Bilinear-Phi) sup
y,β,(ρj)Jj=1

y

s.t. (i)

J∑
j=1

q0j βj ≥ g∗(θϕ, ϵ),∀ j = 1, . . . , J,

(iv)− (viii) of (16). (25)

Proof. Using Lemma 2, the optimization problem (24) can be written as

sup y

s.t. (i)

J∑
j=1

q0j 1{Vα(f,pj)≥y} ≥ g∗(θϕ, ϵ),

(ii)
∑

a∈A(s)

f(s, a) = 1, ∀ s ∈ S, f(s, a) ≥ 0, ∀ (s, a) ∈ K. (26)

By taking βj = 1{Vα(f,pj)≥y} for all j = 1, . . . , J , and using the same arguments
used in Theorem 2 the optimization problem (26) is equivalent to the mixed integer
optimization problem (25)
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2.2.2 Uncertainty set with Wasserstein distance

The Wasserstein distance Wd(Fp, ν) between true distribution Fp and reference
distribution ν with support on Ep, is given by

Wd(Fp, ν) =

[
inf

{
J∑

i,j=1

ωij ||pi − pj ||d2 |
J∑

j=1

ωij = q0i ,

J∑
i=1

ωij = qj , ωij ≥ 0,∀ i, j

}] 1
d

,

where d ≥ 1 is some constant. For each i and j, wij is the weight transported from
the ith atom of the reference distribution ν to the jth atom of the true distribution
Fp and q0i is the weight of ith atom of reference distribution ν and qj is the weight
of jth atom of Fp. For more details on the Wasserstein distance metric, we refer to
Villani et al (2009); Villani (2021). The uncertainty set of p using Wasserstein distance
is defined by

D5 =
{
Fp ∈ M+

Ep
| Wd(Fp, ν) ≤ θW

}
, (27)

where θW > 0. We have the following lemma.
Lemma 3. The DRCCMDP problem (5) under the uncertainty set defined by (27) is
equivalent to the following optimization problem

sup
y,v,h,f

y

s.t. (i) −
J∑

i=1

q0i vi − hθdW ≥ 1− ϵ,

(ii) h ≥ 0,

(iii) 1{Vα(f,pj)≥y} + vi + hcdij ≥ 0, ∀ i, j = 1, . . . , J,

(iv)
∑

a∈A(s)

f(s, a) = 1, ∀ s ∈ S, f(s, a) ≥ 0, ∀ (s, a) ∈ K, (28)

where cdij = ||pi − pj ||d2.

Proof. The optimization problem infFp∈D5 Pp (Vα(f, p) ≥ y) can be equivalently writ-
ten as follows

inf
ω≥0,q≥0

J∑
j=1

qj1{Vα(f,pj)≥y}

s.t. (i)

J∑
j=1

ωij = q0i , ∀ i = 1, . . . , J,

(ii)

J∑
i=1

ωij = qj , ∀ j = 1, . . . , J,
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(iii)

J∑
i,j=1

ωijc
d
ij ≤ θdW . (29)

By replacing qj =
∑J

j=1 ωij in (29), we have

inf
ω≥0

J∑
i,j=1

ωij1{Vα(f,pj)≥y}

s.t. (i)

J∑
j=1

ωij = q0i , ∀ i = 1, . . . , J

(ii)

J∑
i,j=1

ωijc
d
ij ≤ θdW . (30)

The dual problem of (30) is given by

sup
v∈RJ , h≥0

−
J∑

i=1

q0i vi − hθdW

s.t. (i) 1{Vα(f,pj)≥y} + vi + hcdij ≥ 0, ∀ i, j = 1, . . . , J. (31)

Note that (30) is an LP, which ensures that the strong duality holds. Therefore, the
DRCCMDP problem (5) is equivalent to (28).

Theorem 4. Suppose initial distribution γ = (γ(s))s∈S satisfy γ(s) > 0 for all s ∈ S.
Then, the optimization problem (28) can be reformulated as the following mixed-integer
optimization problem

(Bilinear-Wasserstein) sup
y,v,h,β,(ρj)Jj=1

y

s.t. (i), (ii) of (28)

(ii) βj + vi + hcdij ≥ 0, ∀ i, j = 1, . . . , J,

(iv)− (viii) of (16). (32)

Proof. By taking βj = 1{Vα(f,pj)≥y} for all j = 1, . . . , J , and using the same arguments
used in Theorem 2 the optimization problem (28) is equivalent to the mixed integer
optimization problem (32)

2.3 Solving mixed integer programming problems with
bilinear and positive semidefinite cone constraints

The equivalent mixed-integer programming problems proposed in Sections 2.1 and
2.2 to solve DRCCMDP problem (5) for different types of moments based and sta-
tistical distance based uncertainty sets are quite similar. For example, they have the
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same objective function, and the same set of integer and bilinear equality constraints.
Additionally, these problems have (i) linear constraints corresponding to moments
based uncertainty set defined by (6) and statistical distance based uncertainty sets
defined by (20) and (27), (ii) linear constraints as well as positive semidefinite cone
constraints corresponding to moments based uncertainty sets defined by (7) and (8).
The equivalent optimization problems corresponding to the uncertainty sets defined
by (6), (20) and (27) are called MIBP problems. The equivalent optimization prob-
lems corresponding to the uncertainty sets defined by (7) and (8) are called MISDP
problems with bilinear constraints.

The MIBP problems can be solved efficiently by GUROBI 9.0 or higher ver-
sion. It deals bilinear constraints by relaxing them using linear constraints based on
McCormick lower and upper envelopes McCormick (1976), which depend on the local
bounds of the variables present in the bilinear terms. In our case, all the mixed integer
programming problems have following bilinear constraints in common

ρ1(s, a)
∑

a′∈A(s)

ρj(s, a
′) = ρj(s, a)

∑
a′∈A(s)

ρ1(s, a
′), ∀ (s, a) ∈ K, j = 2, . . . , J. (33)

Let ∑
a′∈A(s)

ρj(s, a
′) = Mj(s), ∀ j = 1, . . . , J, s ∈ S,

ρ1(s, a)Mj(s) = Cj(s, a), ∀ j = 2, . . . , J, s ∈ S, a ∈ A(s),

ρj(s, a)M1(s) = Dj(s, a), ∀ j = 2, . . . , J, s ∈ S, a ∈ A(s).

By introducing auxiliary variables Mj(s), Cj(s, a), Dj(s, a), the constraints (33) are
equivalent to the following set of constraints

(i)
∑

a′∈A(s)

ρj(s, a
′) = Mj(s), ∀ j = 1, . . . , J, s ∈ S,

(ii) Cj(s, a) = Dj(s, a), ∀ j = 2, . . . , J, s ∈ S, a ∈ A(s),

(iii) ρ1(s, a)Mj(s) = Cj(s, a), ∀ j = 2, . . . , J, s ∈ S, a ∈ A(s),

(iv) ρj(s, a)M1(s) = Dj(s, a), ∀ j = 2, . . . , J, s ∈ S, a ∈ A(s). (34)

We propose tight bounds for ρj(s, a) and Mj(s) which are used in generating the
McCormick envelopes of bilinear terms present in (iii) and (iv) of (34). It is well known
that for the occupation measure ρj there exists a policy f such that (see Altman
(1999))

ρj(s, a) = f(s, a)Mj(s), ∀ s ∈ S, a ∈ A(s), j = 1, . . . , J,

and

Mj = (Mj(s))s∈S = (1− α)γT [I − αPj(f)]
(−1)

,
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= (1− α)γT

[
I +

∞∑
i=1

(αPj(f))
i

]
, ∀ j = 1, . . . , J,

where Pj(f) is a transition probability matrix induced by transition probabilities pj
and stationary policy f , which is given by

Pj(f)(s, s
′) =

∑
a∈A(s)

f(s, a)pj(s, a, s
′), ∀ s, s′ ∈ S.

Since
∑

a∈A(s) f(s, a) = 1, we have Pj(f)(s, s
′) ≥ mina∈A(s) pj(s, a, s

′), for any s, s′ ∈
S. Let Pj,min(s, s

′) = mina∈A(s) pj(s, a, s
′) and Pj,min = (Pj,min(s, s

′))s,s′∈S be a |S| ×
|S| matrix. We derive lower bound for Mj(s) as follows

Mj(s) = (1− α)γT

[
I +

∞∑
i=1

(αPj(f))
i

]
s

≥ (1− α)γT

[
I +

∞∑
i=1

(αPj,min)
i

]
s

= (1− α)γT [I − αPj,min]
(−1)
s .

Denote M l
j(s) = (1 − α)γT [I − αPj,min]

(−1)
s and Mu

j (s) = 1 −
∑

s′ ̸=s M
l
j(s

′). Since∑
s∈S Mj(s) = 1, a lower bound and an upper bound of Mj(s) are given by

M l
j(s) ≤ Mj(s) ≤ Mu

j (s), ∀ j = 1, . . . , J, s ∈ S. (35)

Since 0 ≤ ρj(s, a) ≤ Mj(s), for all s ∈ S, a ∈ A(s), j = 1, . . . , J , the lower and upper
bounds of ρj(s, a) are given by

0 ≤ ρj(s, a) ≤ Mu
j (s), ∀ j = 1, . . . , J, s ∈ S, a ∈ A(s). (36)

The MISDP problems with bilinear constraints are difficult to solve in general. To
the best of our knowledge, there is no commercial solver which can solve efficiently this
type of optimization problem. We propose using CUTSDP solver, which is an internal
solver in YALMIP toolbox of MATLAB. One of the core ideas in YALMIP is to rely
on external solvers for time-consuming tasks. A positive semidefinite constraint A ⪰ 0,
where A is an n × n matrix, is equivalent to an infinite number of linear constraints
xTAx ≥ 0, for all x ∈ Rn. CUTSDP solver uses a cutting plane (outer approximation)
approach, which relaxes positive semidefinite constraint by finite number of linear con-
straints, solves the relaxation problem and add violated linear cuts to the model and
repeat the same procedure. The main idea of CUTSDP is to appropriately generate
several vectors x to construct a finite number of linear constraints, that leads to an
outer approximation of the original problem. The approximation problem is a MIBP
problem which is solved by an external solver (such as GUROBI). If the solution of
approximation problem does not satisfy the original positive semidefinite constraint,
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the solver will add a cutting plane based on a negative eigenvalue, and repeats the pro-
cess, with a hope that after some iterations, it will eventually satisfy the semidefinite
constraint.

3 Machine replacement problem

In this section, we present a series of numerical experiments performed on a machine
replacement problem to compare the approaches discussed earlier. These comparisons
aim to evaluate the performance and efficiency of the different reformulations and
solvers in solving the respective problems. By conducting these comparisons, we can
gain insights into the strengths and limitations of each approach and make informed
decisions based on the specific problem characteristics. All the numerical results below
are performed using Matlab R2023a on an Intel Core i5-1135G7, Processor 2.4 GHz
(8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD.

We consider a machine replacement problem where a machine in a factory has a
life-time of N years. At every stage a maintenance of the machine is scheduled but
a factory owner can decide whether to repair the machine or not. There is a high
probability that the machine behaves like a new one if it is being repaired and its life
gets reduced by a year if it is not being repaired. The factory owner incurs maintenance
cost if he decides to repair the machine. It can be modelled as an MDP problem where
the life of a machine represents the state of underlying Markov chain, i.e., there are
N + 1 states. The first state represents a brand new machine. At each state there are
two actions: i) ”repair”, ii) ”do not repair”. Figure 1 presents a case of fixed transition
probabilities of the Markov chain with respect to each action. The maintenance cost
corresponding to every state-action pair is not exactly known and is realised after the
decision is made. Therefore, it is modelled with a random variable. We assume that for
every state action pair (s, a), the maintenance cost is defined as ĉ(s, a) = K + Ẑ(s, a),
where K represents the fixed cost and Ẑ(s, a) represents a variable cost which is a
random variable. The machine generates a revenue L(s, a) at state-action pair (s, a)
and the profit for each (s, a) ∈ K is given by

R̂(s, a) = L(s, a)−K − Ẑ(s, a). (37)

We define the reward vector R by taking the expected value of R̂, i.e., R(s, a) =
E(R̂(s, a)), ∀ s ∈ S, a ∈ A(s). The reward vector is given by

R(s, a) = L(s, a)−K − µẐ(s, a), (38)

where K = 10 and L, µẐ are given in Table 3, µẐ is the mean vector of Ẑ. We
randomly simulate 100 transition probabilities pj , j = 1, . . . , 100 as follows. For any
s, s′ = 1, . . . , N + 1 and a = 1, 2, we consider the following cases.

• Case 1: If a = 1, i.e., the decision is to repair the machine. Assume that we are
actually at state s. If 2 ≤ s ≤ N +1, we come back to state 1 with high probability
q1,s and stay at state s with probability 1− q1,s. Then, p(s, a, s

′) = 1− q1,s if s′ = s,
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p(s, a, s′) = q1,s if s′ = 1 and p(s, a, s′) = 0, otherwise. We randomly generate q1,s
on [0.7, 1]. If s = 1, then p(s, a, s′) = 1 if s′ = 1 and p(s, a, s′) = 0, otherwise.

• Case 2: If a = 2, i.e., the decision is to do not repair the machine. If 1 ≤ s ≤ N ,
we move to the next state s+ 1 with high probability q2,s and stay at actual state
s with probability 1 − q2,s. Then, p(s, a, s

′) = 1 − q2,s if s′ = s, p(s, a, s′) = q2,s if
s′ = s + 1 and p(s, a, s′) = 0, otherwise. We randomly generate q2,s on [0.7, 1]. If
s = N + 1, then p(s, a, s′) = 1 if s′ = N + 1 and p(s, a, s′) = 0, otherwise.

The transition probability vector p is |S|.|K|-dimensional random vector with sup-
port on Ep = {p1, . . . , pJ}. Let µ be the sample mean of p and Σ(s′) be the sample
covariance matrix of p(s′), for any s′ ∈ S, where µ and Σ(s′) are given as follows

µ =
1

J

J∑
j=1

pj ,

Σ(s′) =
1

J − 1

J∑
j=1

(pj(s
′)− µ(s′))(pj − µ(s′))T.

The factory owner is interested in maximizing the expected discounted profit. We
assume that the factory owner has a finite number of the same machines which are
modelled using the same Markov chain. Therefore, we compute the optimal repair
policy with respect to a single machine and the same repair policy can be applied for
all other machines.

Fig. 1 Machine replacement MDP with two actions: ”repair” (with solid lines) and ”do not repair”
(with dashed lines)

In our numerical experiments, we set the number of states to 10, the threshold
value ϵ = 0.1, the discount parameter α = 0.85 and the initial distribution of states γ
to be uniformly distributed. For the above instance, |K| = 20. We use the above µ and
Σ(s′), s′ ∈ S for all the moments based uncertainty sets. The reference distribution in
all statistical distance based uncertainty sets is assumed to be uniformly distributed on
Ep. We summarize the other parameters related to all the uncertainty sets in Table 4.
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Table 3 Random cost Ẑ and Revenue L

State(s)
Action(a) ”Repair”

µ
Ẑ
(s, 1)

”Do not
repair”
µ
Ẑ
(s, 2)

”Repair”
L(s, 1)

”Do not
repair”
L(s, 2)

1 10 0 30 30

2 10.1 0 30 29.9

3 10.2 0 30 29.8

4 10.3 0 30 29.7

5 10.4 0 30 29.6

6 10.5 0 30 29.5

7 10.6 0 30 29.4

8 10.7 0 30 29.3

9 10.8 0 30 29.2

10 10.9 5 30 29.1

Table 4 Other parameters

Known mean
unknown covariance

δ0 = 0.9

Unknown mean
unknown covariance

δ1 = δ2 = 1

ϕ−divergence θϕ = 0.01

Wasserstein distance θW = 0.01, d = 1

We compute the optimal policies of the DRCCMDP problem (5) for each uncertainty

Table 5 Optimal policies of DRCCMDP with different uncertainty sets

State(s)

Optimal
policies

Known
known
(p,1-p)

Known
unknown
(p,1-p)

Unknown
unknown
(p,1-p)

ϕ−divergence
(Kullback-Leibler)

(p,1-p)

Wasserstein
(p,1-p)

1 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
2 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
3 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
4 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
5 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
6 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
7 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
8 (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
9 (0.77, 0.23) (0.75, 0.25) (0.71, 0.29) (0.14, 0.86) (0.05, 0.95)
10 (0.88, 0.12) (0.89, 0.11) (0.9, 0.1) (0.91, 0.09) (0.91, 0.09)

Optimal value 53.34 53.78 54.01 61.62 62.19

set by solving corresponding equivalent mixed-integer optimization problem using the
existing solvers mentioned in Section 2.3. The optimal policies corresponding to all
the uncertainty sets are summarized in Table 5, where p is the probability of ”repair”
action and 1−p is the probability of ”do not repair” action. It is clear that the optimal
repair policy corresponding to all the uncertainty sets for first eight states is same. At
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state 9, the factory owner decides to repair for moments based uncertainty sets with
high probability whereas for statistical distance based uncertainty sets repair action is
taken with small probability. At last state repair action is taken with high probability
for all types of uncertainty sets. The optimal value of the DRCCDMP problem is
more for statistical distance based uncertainty sets as compared to moments based
uncertainty sets. We present the time analysis by considering the number of states
for all the uncertainty sets between 10 and 5000. All the parameters are taken similar
to the case of 10 states. The results are presented in Figure 2 which shows that
DRCCMDP problem with statistical distance based uncertainty sets can be solved
efficiently up to 5000 states while it takes significantly longer computation time to
solve the model with moments based uncertainty sets. For uncertainty set D1, the
Gurobi solver perform efficiently up to 1000 states whereas for uncertainty sets D2

and D3 CUTSDP solver manages only up to 100 states.

Fig. 2 CPU time (in seconds) vs number of states.

4 Conclusions

We study a DRCCMDP problem with random transition probabilities under various
moments and statistical distance based uncertainty sets defined using ϕ-divergence
and Wasserstein distance metric. We propose equivalent MIBP problems and MISDP
problem with bilinear constraints for the DRCCMDP problem depending on the choice
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of the uncertainty set. All these optimization problems can be solved efficiently using
commercial solver GUROBI, except ones with both bilinear and positive semidefinite
constraints. Using randomly generated data, the numerical experiments are performed
on a machine replacement problem up to 5000 states which shows that a DRCCMDP
problem with statistical distance based uncertainty sets can be solved very efficiently,
while it takes more time in the case of moments based uncertainty sets.
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A Proof of Lemma 2 - Case Hellinger distance

Given a policy f ∈ POS and y ∈ R, let O = {p ∈ Ep | Vα(f, p) ≥ y}. From Table 1,
the conjugate of ϕ has the following form

ϕ∗(r) =

{
r

1−r , if r < 1,

∞, if r ≥ 1.
(39)

Let

L = sup
λ>0,β∈R

{
β − λθϕ − λϕ∗

(
−1 + β

λ

)
Pν(O)− λϕ∗

(
β

λ

)
(1− Pν(O))

}
. (40)

The constraint (i) of (5) is equivalent to

L ≥ 1− ϵ. (41)

We consider two cases as follows:
Case 1: Let β

λ < 1. Since λ > 0, the following inequality holds

β − 1

λ
<

β

λ
< 1.

From (39), we have: ϕ∗
(

β
λ

)
= β

λ−β , ϕ
∗
(

β−1
λ

)
= β−1

λ+1−β . Consequently, it follows from

(40) that: L = supλ>0,β<λ

{
Pν(O) λ2

(λ−β)(λ−β+1) −
β2

λ−β − λθϕ

}
. Let η = λ− β. Then,

we can write

L = sup
λ>0,η>0

{
λ2

(
Pν(O)

η(η + 1)
− 1

η

)
+ λ(2− θϕ)− η

}
.

Let g(λ, η) = λ2
(

Pν(O)
η(η+1) −

1
η

)
+ λ(2 − θϕ) − η. It is a second-order polynomial of λ

and the coefficient of λ2 is negative because 0 ≤ Pν(O) ≤ 1 and η > 0. It is well
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known that the maximum value of a second order polynomial f(x) = ax2+bx+c with

a < 0 is c − b2

4a and it holds at x = −b
2a . Hence, the maximum value of g(λ, η) holds

at λ∗ =
η(η+1)(2−θϕ)
2(1+η−Pν(O)) . Since θϕ < 2, λ∗ > 0. Therefore, for a given η > 0, the optimal

value L holds at λ∗ and L = c− b2

4a , where c = −η, b = 2− θϕ, a = Pν(O)
η(η+1) −

1
η , which

implies that

L = sup
η>0

{
−η +

(2− θϕ)
2η(η + 1)

4(η + 1− Pν(O))

}
. (42)

Let u = η + 1− Pν(O), then η > 0 is equivalent to u > 1− Pν(O) and we can write

L = sup
u>1−Pν(O)

{(
(2− θϕ)

2

4
− 1

)
u+

(2− θϕ)
2Pν(O)(Pν(O)− 1)

4

1

u

+ 1− Pν(O) +
(2− θϕ)

2(2Pν(O)− 1)

4

}
= sup

u>1−Pν(O)

G(u),

where G(u) = a1u+ b1
u + c1 such that

a1 =
(2− θϕ)

2

4
− 1, b1 =

(2− θϕ)
2Pν(O)(Pν(O)− 1)

4
,

c1 = 1− Pν(O) +
(2− θϕ)

2(2Pν(O)− 1)

4
.

Since 0 < θϕ < 2 and 0 ≤ Pν(O) ≤ 1, a1 < 0 and b1 ≤ 0. It is clear that G is
decreasing on (u∗,∞), increasing on (−u∗, u∗) and decreasing on (−∞,−u∗), where

u∗ =

√
b1
a1

=

√
(2− θϕ)2

4− (2− θϕ)2
Pν(O)(1− Pν(O)), (43)

G(u∗) = a1u
∗ +

b1
u∗ + c1 = −2

√
a1b1 + c1.

If u∗ ≤ 1−Pν(O), we deduce that (1−Pν(O),∞) ⊂ (u∗,∞). Since G is decreasing on
(u∗,∞), it implies that G is decreasing on (1 − Pν(O),∞). Hence, the optimal value
of G is attained when u = 1 − Pν(O), i.e, η = 0. From (42), L = 0 which violates
the constraint (41). Therefore, u∗ > 1− Pν(O) > 0. Since, G is decreasing on (u∗,∞)
and increasing on (1 − Pν(O), u∗), then u = u∗ is the optimal solution of G(u) and
L = −2

√
a1b1 + c1. Therefore,

L =−2

√
(2− θϕ)2

4

(
1− (2− θϕ)2

4

)
Pν(O)(1− Pν(O))

+ 1− Pν(O) +
(2− θϕ)

2(2Pν(O)− 1)

4
.
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Then, (41) is rewritten equivalently as follows

−2

√
(2− θϕ)2

4

(
1− (2− θϕ)2

4

)
Pν(O)(1− Pν(O))

≥
(
1− (2− θϕ)

2

2

)
Pν(O) +

(2− θϕ)
2

4
− ϵ. (44)

By taking the square on both side of (44), we get

(2− θϕ)
2

(
1− (2− θϕ)

2

4

)
Pν(O)(1− Pν(O))

≤

[(
1− (2− θϕ)

2

2

)
Pν(O) +

(2− θϕ)
2

4
− ϵ

]2
. (45)

By rewriting (45), we get the following second-order inequality in Pν(O)(
Pν(O)

)2
+B Pν(O) + C ≥ 0,

which is equivalent to:
(
Pν(O) − xmax

)(
Pν(O) − xmin

)
≥ 0, where xmax = −B+

√
∆

2 ,

xmin = −B−
√
∆

2 and B,C,∆ are given in Table 2. It is clear that (44) is equivalent to
either Pν(O) ≥ xmax or Pν(O) ≤ xmin. Moreover, xmax and xmin are solutions of the
following two equalities

−2

√
(2− θϕ)2

4

(
1− (2− θϕ)2

4

)
x(1− x) =

(
1− (2− θϕ)

2

2

)
x+

(2− θϕ)
2

4
− ϵ, (46)

2

√
(2− θϕ)2

4

(
1− (2− θϕ)2

4

)
x(1− x) =

(
1− (2− θϕ)

2

2

)
x+

(2− θϕ)
2

4
− ϵ. (47)

Since θϕ < 2−
√
2, we deduce that 1− (2−θϕ)

2

2 < 0. Therefore, we have(
1− (2− θϕ)

2

2

)
xmin +

(2− θϕ)
2

4
− ϵ >

(
1− (2− θϕ)

2

2

)
xmax +

(2− θϕ)
2

4
− ϵ,

which implies that xmax is a solution of (46) and xmin is a solution of (47). Hence, the
condition Pν(O) ≤ xmin implies that(
1− (2− θϕ)

2

2

)
Pν(O) +

(2− θϕ)
2

4
− ϵ ≥

(
1− (2− θϕ)

2

2

)
xmin +

(2− θϕ)
2

4
− ϵ > 0,

which violates the constraint (44). Then, (44) is equivalent to Pν(O) ≥ xmax, i.e., the

constraint (i) of (5) is equivalent to: Pν(ρ
T R̂ ≥ y) ≥ −B+

√
∆

2 .
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Case 2: Let 1 ≤ β
λ . From (39), ϕ∗

(
β
λ

)
= ∞, which in turn implies that L = −∞ and

it violates the constraint (41).
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