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Abstract

AMarkov Decision Process (MDP) is a framework used for decision-making. In an
MDP problem, the decision maker’s goal is to maximize the expected discounted
value of future rewards while navigating through different states controlled by
a Markov chain. In this paper, we focus on the case where the transition prob-
abilities vector is deterministic, while the reward vector is uncertain and follow
a partially known distribution. We employ a distributionally robust chance con-
straints approach to model the MDP. This approach entails the construction
of potential distributions of reward vector, characterized by moments or statis-
tical metrics. We explore two situations for these uncertainty sets: one where
the reward vector has a real support and another where it is constrained to
be nonnegative. In the case of a real support, we demonstrate that solving the
distributionally robust chance-constrained Markov decision process is mathe-
matically equivalent to a second-order cone programming problem for moments
and ϕ-divergence uncertainty sets. For Wasserstein distance uncertainty sets,
it becomes a mixed-integer second-order cone programming problem. In con-
trast, when dealing with nonnegative reward vector, the equivalent optimization
problems are different. Moments-based uncertainty sets lead to a copositive opti-
mization problem, while Wasserstein distance-based uncertainty sets result in a
biconvex optimization problem. To illustrate the practical application of these

1



methods, we examine a machine replacement problem and present results con-
ducted on randomly generated instances to showcase the effectiveness of our
proposed methods.

Keywords: Markov decision process, Distributionally robust chance constraints,
Second-order cone programming, Copositive optimization, Mix-integer second-order
cone programming, Biconvex optimization

1 Introduction

An MDP serves as a foundational framework for decision-making in modeling the
dynamic of a randomized system that changes as time progresses under the influence
of a managed Markov chain. We assume that the system comprises a finite set of
states. At the initial time step, designated as t = 0, the system commences from an
initial state s0, drawn from a finite state space S, in accordance with a predetermined
initial distribution ϱ. Subsequently, a decision maker selects an action, denoted as a0,
from the set of feasible actions at state s0, represented as A(s0). This choice of action
yields a reward, denoted as R(s0, a0). Following this, at t = 1, the system does a
transition to a new state, s1, with a probability p(s0, a0, s1). This process perpetuates
indefinitely into the future.

The decisions made at each time step, t, whether deterministic or stochastic, may
depend on the historical record available up to that point, denoted as ht. This historical
record, ht, encompasses information regarding the observed states and actions up to
time t, represented as ht = (s0, . . . , at−1, st). We denote the set of all histories at time
t as Ht. A decision rule at time t, denoted as ft, is characterized by ft(ht) ∈ ℘(A(st)),
where ℘(A(st)) is the set of all probability measures over the action set A(st).

A sequence of decision rules contingent upon history, referred to as a history-
dependent policy, is symbolized as fh = (f0, f1, . . .). A policy is stationary if there is
a single decision policy, represented as f , such that f = ft for any t. In this context,
we informally denote a stationary policy as f and stipulate f = (f(s))s ∈ S, with
f(s) ∈ ℘(A(s)) for every state s ∈ S. Under a stationary policy f , at each state s, the
decision maker selects an action a with a probability determined by f(s, a).

We designate the set of all stationary policies as POS . A stationary policy f ∈
POS , combined with an initial distribution ϱ, gives rise to a probability distribution
P f
ϱ governing the trajectories of states and actions. The expectation value associated

with this probability measure is denominated as Ef
ϱ . The expected discounted reward

with a discount factor α ∈ (0, 1) is defined as [1, 21]

Vα(ϱ, f) = (1− α)Ef
ϱ

( ∞∑
t=0

αtR(Xt, At)

)
. (1)

Here, we introduce the notations Xt and At to represent the state and action at time
t. When the running rewards and the transition probabilities are stationary, we can
restrict to stationary policies without loss of optimality [1, 21]. It follows from Theorem
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3.2 of [1] that a stationary optimal policy of the MDP problem can be obtained by
solving following linear programming problem

max
χ∈Qα(ϱ)

χTR, (2)

where R = (R(s, a))s∈S,a∈A(s) is a running reward vector and T denotes the
transposition. The set Qα(ϱ) is defined as

Qα(ϱ) =

{
χ ∈ R|W| ∣∣ ∑

(s,a)∈W

χ(s, a)
(
− αp(s, a, s′) + δ(s′, s)

)
= (1− α)ϱ(s′), s′ ∈ S,

χ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A(s)

}
,

where δ(s′, s) is the Kronecker delta and W = {(s, a) | s ∈ S, a ∈ A(s)}. When χ∗

stands as an optimal solution to (2), the stationary optimal policy f∗ can be formulated
as follows

f∗(s, a) =
χ∗(s, a)∑

a∈A(s) χ
∗(s, a)

, ∀ s ∈ S, a ∈ A(s),

This formulation holds true as long as the denominator is non-zero. If not, we arbi-
trarily select f∗(s) from the set of probability distributions over A(s) [1]. In practical
applications, the parameters of the MDP model, R(·) and p(·), are typically not
known in advance. Instead, they are estimated based on historical data. However, this
process introduces inaccuracies into the optimal policies [15]. Consequently, address-
ing this uncertainty has been an important point in the study of robust MDPs. In
these robust MDPs, we focus on scenarios where either the transition probabilities
or the rewards are assumed to belong to predefined uncertainty sets, as discussed in
the literature [12, 18, 25, 29, 30]. However, Delage and Mannor [5] made a signifi-
cant observation that the robust MDP often results in overly conservative policies.
To address this issue, they introduced the concept of a chance-constrained Markov
Decision Process (CCMDP) in their work, wherein the controller seeks to achieve an
expected discounted reward with a certain level of confidence. In their research [5],
they delved into two distinct cases, random transition probabilities random rewards
are studied independently. They stated that a CCMDP can be effectively reformulated
as an SOCP problem if the reward vector follows a multivariate Gaussian distribution
and the transition probabilities are known. However, in situation where the transition
probabilities follow a Dirichlet distribution while the reward vector is known, solving
the CCMDP problem is computationally challenging, necessitating the use of approx-
imation methods to obtain optimal policies. In a related development, Varagapriya et
al. [26] examined a CMDP problem with a joint chance constraint. In this scenario,
the running cost vectors are treated as random vectors, while the transition proba-
bilities are known. They proposed lower and upper bounds for the CMDP problem,
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assuming that the cost vectors follow multivariate elliptical distributions and that the
dependence between constraints is governed by an Archimedean copula.

In numerous practical scenarios, we often encounter situations where we possess
only partial information about the underlying distribution, typically derived from
historical data. In such cases, a distributionally robust approach serves as a tool to
model uncertainties. This methodology has found extensive application in modeling
uncertainties in various optimization and game-related problems [13, 14, 23].

There are two methods for constructing an uncertainty set. The first method relies
on partial information regarding the moments of the true distribution, while the sec-
ond method employs statistical distances to measure the difference between the true
distribution and a nominal distribution. Moments-based uncertainty sets make specific
assumptions about the first two moments of the distribution [4, 6, 20]. On the other
hand, statistical distance-based uncertainty sets encompass all distributions lying
within a small-radius ball centered at the nominal distribution. This nominal distribu-
tion is often a Gaussian distribution or an empirical distribution [7, 13]. To quantify
the distance between distributions, either a ϕ−divergence [2, 13] or the Wasserstein
distance metric is commonly employed [7, 8, 32].

We consider an infinite horizon MDP with a discounted reward criterion, as intro-
duced in Section 1. In this setting, the reward vector is characterized as a random
vector, while the transition probabilities are assumed to be known. The distribution
of the reward vector is not entirely known and assumed to belong to a predefined
uncertainty set. Our primary objective is to formulate the problem of random dis-
counted rewards while incorporating a distributionally robust chance constraint. This
constraint is designed to ensure that a given policy maximizes the reward with a
specified level of confidence. This particular class of MDPs is referred to as a dis-
tributionally robust chance-constrained Markov Decision Process (DRCCMDP). The
random reward vector has either a full support or a nonnegative support. Our primary
contributions are as follows.

1. We consider three types of moments based uncertainty sets based on the full/partial
information on the first two moments of the random reward vector. For the case of
full support and nonnegative support, a DRCCMDP problem is equivalent to an
SOCP problem and a copositive optimization problem, respectively.

2. We consider four different types of ϕ-divergences to construct statistical distance
based uncertainty sets. We show that a DRCCMDP problem is equivalent to an
SOCP problem when the nominal distribution is a normal distribution.

3. We consider the nominal distribution to be an empirical distribution when statisti-
cal distance based uncertainty set is defined with Wasserstein distance metric. For
the case of full support and nonnegative support, we show that a DRCCMDP prob-
lem is equivalent to a mixed integer second-order cone programming (MISOCP)
problem and a biconvex optimization problem, respectively.

The structure of the paper is as follows. In Section 2, we present the definition of
a DRCCMDP under a discounted reward criterion. Section 3 contains a DRCCMDP
under moments based uncertainty sets and their equivalent reformulations for the
case of full and nonnegative supports. A DRCCMDP under statistical distance based
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uncertainty sets defined using ϕ-divergence distance metric and Wasserstein distance
metric and their equivalent reformulations are presented in Section 4. We present
numerical results in Section 5 and conclude the paper in Section 6.

2 The model

We consider an infinite horizon MDP defined in Section 1 where the transition prob-
abilities are exactly known and the running reward vector is a random vector defined
on a probability space (Ω,F ,P) which is denoted as R̂. Therefore, for each realization
ω ∈ Ω, R̂(s, a, ω) represents a real valued reward received at state s when an action a
is taken. We assume that the random vector R̂ does not vary with time. Since R̂ is a
random vector, for a given policy fh and initial distribution ϱ, the expected discounted
reward defined by (1) becomes a random variable. The controller wants to maximize
the discounted reward which can be achieved with at least a specified confidence level
(1− ϵ), where ϵ ∈ (0, 1). This leads to the following CCMDP problem

sup
y∈R, fh∈FHD

y

s.t. P
(
Vα(s, f

h) ≥ y
)
≥ 1− ϵ. (3)

Since the transition probabilities are exactly known and random reward vector does
not depend on time, we can represent the CCMDP problem (3) equivalently in terms
of decision vector (y, χ) as follows

sup y

s.t. (i) P
(
χTR̂ ≥ y

)
≥ 1− ϵ, (ii) χ ∈ Qα(ϱ). (4)

If then vector R̂ follows a multivariate normal distribution, the optimization problem
(4) is equivalent to an SOCP problem [5]. The above result can be generalized for
elliptically symmetric distributions because the linear chance constraint (i) present in
(4) is equivalent to a second order cone constraint [10].

Nevertheless, in most of practical scenarios, we are confronted with limited infor-
mation about the true probability distributions at hand. To address this, we use the
distributionally robust optimization approach, where the distribution of R̂ falls within
an uncertainty set. This formulation leads us to the subsequent problem, namely the
Distributionally Robust Chance-Constrained Markov Decision Process (DRCCMDP)
problem

sup y

s.t. (i) inf
F∈D

PF

(
χTR̂ ≥ y

)
≥ 1− ϵ, (ii)χ ∈ Qα(ϱ), (5)

where F is the distribution of R̂ and D is a given uncertainty set. Note that PF (χ
TR̂ ≤

y − θ) ≤ PF (χ
TR̂ < y) ≤ PF (χ

TR̂ ≤ y) for every θ > 0. Therefore, we can replace
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supF∈D PF

(
χTR̂ < y

)
by supF∈D PF

(
χTR̂ ≤ y

)
. Then, the problem (5) is equivalent

to the following problem

sup y

s.t. (i) sup
F∈D

PF

(
χTR̂ ≤ y

)
≤ ϵ, (ii) χ ∈ Qα(ϱ). (6)

In the following sections, we study different types of uncertainty sets of R̂ which
are defined using i) partial information of moments of R̂, ii) ϕ-divergence distance,
and iii) Wasserstein distance. For each uncertainty set, we consider the cases of full
and nonnegative supports of R̂. We derive equivalent reformulations of DRCCMDP
problem (5) (or (6) equivalently) for each uncertainty set.

3 Uncertainty sets based on moments

Let µ ∈ R|K| be the mean vector and Σ ≻ 0 be a |K|× |K| positive definite matrix. We
consider 3 types of moments based uncertainty sets of the distribution of R̂ defined as
follows:

1. Known mean and known covariance uncertainty set: The uncertainty set of
the distribution of R̂ in this case is defined by

D1(φ, µ,Σ) =

F ∈ M+

∣∣∣∣∣∣∣
E(1{R̂∈φ}) = 1,

E(R̂) = µ,

E[(R̂− µ)(R̂− µ)T] = Σ.

 , (7)

2. Known mean and unknown covariance uncertainty set: The uncertainty set
of the distribution of R̂ in this case is defined by

D2(φ, µ,Σ, δ0) =

F ∈ M+

∣∣∣∣∣∣∣
E(1{R̂∈φ}) = 1,

E(R̂) = µ,

E[(R̂− µ)(R̂− µ)T] ⪯ δ0Σ.

 , (8)

3. Unknown mean and unknown covariance uncertainty set: The uncertainty
set of the distribution of R̂ in this case is defined by

D3(φ, µ,Σ, δ1, δ2) =

F ∈ M+

∣∣∣∣∣∣∣
E(1{R̂∈φ}) = 1,

[E(R̂)− µ]TΣ−1[E(R̂)− µ] ≤ δ1,

E[(R̂− µ)(R̂− µ)T] ⪯ δ2Σ.

 , (9)

where φ ⊂ R|W| is the support of R̂ which we assume to be a convex set, M+ is
the set of all probability measures on R|W| with Borel σ−algebra, δ1 ≥ 0, δ2, δ0 ≥ 1,
µ ∈ RI(φ); RI(φ) denotes the relative interior of φ. The notation C ⪯ D implies that
D − C is a positive semidefinite matrix and 1{·} denotes the indicator function.
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3.1 DRCCMDP with moments based uncertainty sets under
full support

We consider the case when the random vector R̂ has full support, i.e., φ = R|W|. We
show that the DRCCMDP problem is equivalent to an SOCP problem.
Theorem 1. Consider the DRCCMDP problem (5) where the distribution of R̂ belongs
to the uncertainty sets defined by (7), (8), (9), and the support φ = R|W|. Then, the
DRCCMDP (5) can be reformulated equivalently as the following SOCP problem

max y

s.t. (i) µTχ− κ∥Σ 1
2χ∥2 ≥ y, (ii) χ ∈ Qα(ϱ), (10)

where || · ||2 denotes the Euclidean norm and κ is a real number whose value for each
uncertainty set is given in Table 1.

Table 1 Value of κ for moments based uncertainty set

Uncertainty set D = D1(φ, µ,Σ) D = D2(φ, µ,Σ, δ0) D = D3(φ, µ,Σ, δ1, δ2)

κ
√

1−ϵ
ϵ

√
(1−ϵ)δ0

ϵ

√
(1−ϵ)δ2

ϵ +
√
δ1

Proof. The proof follows from the fact that for each uncertainty set the distributionally
robust chance constraint (i) of (5) is equivalent to a second-order cone constraint. The
uncertainty set (7) has been widely studied in the literature [3, 9]. For the uncertainty
sets (8) and (9), it can be proved using similar arguments used in Lemma 3.1 and
Lemma 3.2 of [16] which are based on the one-sided Chebyshev inequality [14].

3.2 DRCCMDP with moments based uncertainty sets under
nonnegative support

We consider the case where the support of the random vector R̂ is a nonnega-

tive orthant of |W|-dimensional Euclidean space, i.e., φ = R|W|
+ . We show that the

DRCCMDP problem (6) is equivalent to a copositive optimization problem.

Theorem 2. Consider a DRCCMDP problem (6) with φ = R|W|
+ . Then, the following

results hold.

1. If the uncertainty set is defined by (7), the DRCCMDP problem (6) is equivalent
to the following copositive optimization problem

max y

s.t. (i) − t̄− Q̄ ◦ Σ− q̄Tµ ≤ sϵ,

(ii)

(
−Q̄ − 1

2 q̄ + Q̄µ
− 1

2 q̄
T + µTQ̄ −t̄− µTQ̄µ

)
∈ COP|W|+1,
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(iii)

(
−Q̄ − 1

2 q̄ + Q̄µ+ χ
− 1

2 q̄
T + µTQ̄+ χT −t̄− µTQ̄µ− s− y

)
∈ COP|W|+1,

(iv) Q̄ ∈ S |W|, s ≥ 0, χ ∈ Qα(ϱ). (11)

2. If the uncertainty set is defined by (8), the DRCCMDP problem (6) is equivalent
to the following copositive optimization problem

max y

s.t. (i) − t̄− µTq̄ − µTQ̄µ+ δ0Σ ◦ Q̄ ≤ sϵ,

(ii)

(
Q̄ − 1

2 q̄ − Q̄µ
− 1

2 q̄
T − µTQ̄ −t̄

)
∈ COP|W|+1,

(iii)

(
Q̄ 1

2 (−q̄ + χ)− Q̄µ
1
2 (−q̄ + χ)T − µTQ̄ −t̄− s− y

)
∈ COP|W|+1,

(iv) Q̄ ∈ S |W|
+ , s ≥ 0, χ ∈ Qα(ϱ). (12)

3. If the uncertainty set is defined by (9), the DRCCMDP problem (6) is equivalent
to the following copositive optimization problem

max y

s.t. (i) r̄ + t̄ ≤ sϵ,

(ii)

(
Q̄ 1

2 q̄
1
2 q̄

T r̄

)
∈ COP|W|+1,

(iii) t̄ ≥ (δ2Σ+ µχT) ◦ Q̄+ χTq̄ +
√

δ1||Σ
1
2 (q̄ + 2Q̄µ)||2,

(iv)

(
Q̄ 1

2 (q̄ + χ)
1
2 (q̄ + χ)T r̄ − s− y

)
∈ COP|W|+1,

(v) Q̄ ∈ S |W|
+ , s ≥ 0, χ ∈ Qα(ϱ), (13)

where COP|W|+1 =
{
M ∈ S |W|+1 | xTMx ≥ 0, ∀ x ∈ R|W|+1

+

}
, Sn is the set of

all real symmetric matrix of size n×n, Sn
+ is the set of positive semidefinite matrices

of size n × n, ◦ denotes the Frobenius inner product and

( )
denotes a block

matrix (or a partitioned matrix).

In order to prove the first result of Theorem 2, we need the following lemma.
Lemma 1. Consider an optimization problem

sup
F∈D1(φ,µ,Σ)

PF (χ
TR̂ ≤ y), (14)

where φ = R|W|
+ . If the feasible set of (14) is non-empty, the dual of (14) is given by

inf −t−Q ◦ Σ− qTµ
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s.t. (i) 1{χTξ≤y} + qTξ + ξTQξ − 2ξTQµ+ µTQµ+ t ≤ 0, ∀ ξ ∈ R|W|
+ ,

(ii) Q ∈ S |W|,

such that strong duality holds.

Proof. The proof is given in Appendix A.

Proof of Theorem 2. 1. Let the distribution of R̂ belongs to the uncertainty set
D1(ϕ, µ,Σ). Using Lemma 1, the optimization problem (6) is equivalent to the
following problem

sup y

s.t. (i) − t−Q ◦ Σ− qTµ ≤ ϵ,

(ii) qTξ + ξTQξ − 2ξTQµ+ µTQµ+ t ≤ 0, ∀ ξ ∈ R|W|
+ ,

(iii) 1 + qTξ + ξTQξ − 2ξTQµ+ µTQµ+ t ≤ 0, ∀ ξ ∈ R|W|
+ , χTξ ≤ y,

(iv) Q ∈ S |W|, χ ∈ Qα(ϱ).

(15)

The constraint (ii) of (15) is equivalent to:

(ξT, 1)U(ξT, 1)T ≥ 0, ∀ ξ ∈ R|W|
+ ,

where U ∈ S |W|+1 such that

U =

(
−Q − 1

2q +Qµ
− 1

2q
T + µTQ −t− µTQµ

)
.

Here, (ξT, 1) denotes the row vector of size 1× (|W|+ 1) with the last component
equals 1 and the first |W| components are the components of ξ. The above inequality
can be rewritten as

xTUx ≥ 0, ∀ x ∈ R|W|+1
+ , ||x||2 = 1.

Using Proposition 5.1 in [11], we deduce that the constraint (ii) of (15) is equivalent

to U ∈ COP|W|+1. The constraint (iii) of (15) is equivalent to:

−1 + (ξT, 1)U(ξT, 1)T ≥ 0, ∀ ξ ∈ R|W|
+ , χTξ ≤ y. (16)

Define, 
sP = min

ξ∈R|W|
+

max
λ≥0

L(λ, ξ, U, χ, y).

sD = max
λ≥0

min
ξ∈R|W|

+

L(λ, ξ, U, χ, y).
(17)
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where L(λ, ξ, U, χ, y) = −1+ (ξT, 1)U(ξT, 1)T + λ(χTξ− y). In [4], the authors use
the Sion’s minimax theorem [24] to interchange the minimum and the maximum.
However, since φ is not compact, we cannot apply the Sion’s minimax theorem
directly in this case. We show that φ can be restricted to a compact set without
loss of optimality. For a given U and χ, we have

sP ≤ max
λ≥0

L(λ, 0, U, χ, y)

= max
λ≥0

(−t− µTQµ− λy − 1) = −t− µTQµ− 1 < ∞ (18)

Therefore, using the min-max inequality sD ≤ sP < ∞. Let Ui = U + 1
2i I|W|+1 and

χi = χ + 1
2i1, for every i ∈ N, where I|W|+1 denotes the identity matrix of size

|W| + 1, 1 denotes the vector with all components equal to 1. It is clear from the
construction that χi > 0 componentwise. Since, L is a continuous function w.r.t U
and χ, we have

L(λ, ξ, Ui, χi, y)
i→∞−−−→ L(λ, ξ, U, χ, y), ∀ ξ ∈ R|W|

+ , λ ≥ 0.

Since, the min and max operators preserve the continuity, we have

min
ξ∈R|W|

+

max
λ≥0

L(λ, ξ, Ui, χi, y)
i→∞−−−→ min

ξ∈R|W|
+

max
λ≥0

L(λ, ξ, U, χ, y).

max
λ≥0

min
ξ∈R|W|

+

L(λ, ξ, Ui, χi, y)
i→∞−−−→ max

λ≥0
min

ξ∈R|W|
+

L(λ, ξ, U, χ, y).

This implies that, if sP = sD holds for any Ui, χi, i ∈ N, it also holds for U, χ.
For an arbitrary Ui and χi, let the the optimal solutions of minimax and maximin
problems defined by (17) are (ξP, λP) and (ξD, λD), respectively. We prove that ξP
and ξD are bounded, i.e., there exists ΥP > 0 and ΥD > 0 depending on Ui, χi and
y such that ||ξP||2 ≤ ΥP and ||ξD||2 ≤ ΥD. It is clear that λP = 0 and χT

i ξP−y ≤ 0.
Hence, we have

sP = −1 + (ξTP , 1)Ui(ξ
T
P , 1)

T,

= −1 + (ξTP , 1)U(ξTP , 1)
T +

1

2i
||ξP||22 +

1

2i
.

From constraint (ii) of (15), it follows that (ξTP , 1)U(ξTP , 1)
T ≥ 0. Therefore, if

||ξP||2 → ∞, sP → ∞. Therefore, ||ξP||2 is bounded by some real number ΥP > 0

which depends on Ui, χi and y. As ξ ∈ R|W|
+ and χi > 0, componentwise, we have

lim inf
||ξ||2→∞

λ(ξ)(χT
i ξ − y) ≥ 0,

for any λ(ξ) ≥ 0. Then,

sD = −1 + (ξTD, 1)Ui(ξ
T
D, 1)

T + λD(χ
T
i ξD − y),
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= −1 + (ξTD, 1)U(ξTD, 1)
T +

1

2i
||ξD||22 +

1

2i
+ λD(χ

T
i ξD − y).

It is clear that 1
2i ||ξD||

2
2 → ∞ and the other terms are lower bounded by some

nonnegative number. Therefore, sD → ∞ when ||ξD||2 → ∞. Hence, ||ξD||2 is
bounded by some real number ΥD > 0 which depends on Ui, χi and y. Let Υ =
max(ΥP,ΥD). Then, (17) is equivalent to

sP = min
ξ∈R|W|

+ ,||ξ||2≤Υ

max
λ≥0

L(λ, ξ, U i, χi, y).

sD = max
λ≥0

min
ξ∈R|W|

+ ,||ξ||2≤Υ

L(λ, ξ, U i, χi, y).

Note that the set
{
ξ | ξ ∈ R|W|

+ , ||ξ||2 ≤ Υ
}
is compact. Therefore, from Sion’s min-

imax theorem sP = sD for every Ui, χi, i ∈ N. For any ξ such that χTξ > y, it is
easy to see that

max
λ≥0

L(λ, ξ, U, χ, y) = ∞

The condition sP < ∞ gives χTξ ≤ y and λ = 0 which in turn implies that

sP = min
χTξ≤y

L(0, ξ, U, χ, y) ≥ 0.

Therefore, (16) is equivalent to sD ≥ 0. Then, there exists a sequence of nonnegative
numbers λj ≥ 0 and a decreasing sequence of positive numbers θj > 0, such that
θj → 0 as j → ∞, for which the following condition holds{

− 1 + (ξT, 1)U(ξT, 1)T + λj(χ
Tξ − y) ≥ −θj , ∀ ξ ∈ R|W|

+ , j ∈ N,
λj ≥ 0, ∀ j ∈ N.

(19)

For each j ∈ N, define

Fea(θj) = {(U, χ, y, λ) | −1 + (ξT, 1)U(ξT, 1)T + λ(χTξ − y) ≥ −θj , λ ≥ 0}.

The feasible region defined by (19) is equivalent to
⋂
j∈N

Fea(θj). For any i < j,

Fea(θj) ⊂ Fea(θi). Therefore, Fea(θj) ↓
⋂
i∈N

Fea(θi) as j → ∞. The feasible set

Fea(θj) as j → ∞ is given by{
(ξT, 1)Z(ξT, 1)T ≥ 0, ∀ ξ ∈ R|W|

+ ,

λ ≥ 0,
(20)
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where Z ∈ S |W|+1 and Z =

(
−Q − 1

2q +Qµ+ λχ
− 1

2q
T + µTQ+ λχT −t− µTQµ− 1− λy

)
. Using

similar arguments as above, the constraint (20) is equivalent to

Z ∈ COP|W|+1, λ ≥ 0. (21)

This implies that the constraint (iii) of (15) is equivalent to (21). Hence,
DRCCMDP problem (6) is equivalent to the following optimization problem

max y

s.t. (i) − t−Q ◦ Σ− qTµ ≤ ϵ,

(ii)

(
−Q − 1

2q +Qµ
− 1

2q
T + µTQ −t− µTQµ

)
∈ COP|W|+1,

(iii)

(
−Q − 1

2q +Qµ+ λχ
− 1

2q
T + µTQ+ λχT −t− µTQµ− 1− λy

)
∈ COP|W|+1,

(iv) Q ∈ S |W|, λ ≥ 0, χ ∈ Qα(ϱ). (22)

If λ = 0 is an optimal solution of (22), it is clear that either (22) is infeasible or its
optimal value is ∞, which leads to contradiction. Then, we can restrict to λ > 0.
Let t̄ = t

λ , Q̄ = Q
λ , q̄ = q

λ , s = 1
λ , we deduce that (6) is equivalent to (11).

2. Let the distribution of R̂ belongs to the uncertainty set D2(φ, µ,Σ, δ0). From

Theorem 3.4 [4], the dual of the optimization problem supF∈D PF

(
χTR̂ ≤ y

)
can

be written as

inf (−t− µTq − µTQµ+ δ0Σ ◦Q)

s.t. (i) 1{χTξ≤y} + t+ qTξ − ξTQξ + 2µTQξ ≤ 0, ∀ ξ ∈ R|W|
+ ,

(ii) Q ∈ S |W|
+ ,

and the strong duality holds. We follow the same arguments used for the case of
the uncertainty set D1(φ, µ,Σ).

3. If the distribution of R̂ belongs to the uncertainty set D3(φ, µ,Σ, δ1, δ2), using

Lemma 1 of [6] the dual of the problem supF∈D PF

(
χTR̂ ≤ y

)
is given by

inf (r + t)

s.t. (i) r ≥ 1{χTξ≤y} − ξTQξ − ξTq, ∀ ξ ∈ R|W|
+ ,

(ii) t ≥ (δ2Σ+ µχT) ◦Q+ χTq +
√

δ1||Σ
1
2 (q + 2Qµ)||2,

(iii) Q ∈ S |W|
+ ,

and strong duality holds. Again, the rest of the proof follows using similar arguments
used in the case of D1(φ, µ,Σ).
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Remark 1. The optimization problems (11)-(13) are similar as they have the same
objective function and same copositive constraints of the form A ∈ COPn, for some
n. To the best of our knowledge, there is no commercial solver, which can solve
optimization problems with copositive constraints. We propose relaxing the copositive
constraints by an SDP constraint and a linear constraint, i.e., A ≻ 0 and A ≥ 0, com-
ponentwise. It is clear that these two cases are special cases of the copositive constraint,
that leads to an outer approximation of the copositive problem (lower bound).

4 Uncertainty sets based on statistical distance

4.1 Uncertainty set with ϕ -divergence distance

We consider an uncertainty set defined using statistical distance metric called ϕ-
divergence. In such uncertainty set, a nominal distribution is known to the decision
maker relied on the available estimated data. The decision maker thinks that the true
distribution of R̂ belongs to a ball of radius θϕ and centered at a nominal distribution
ν and the distance between the true distribution and ν is given by a ϕ-divergence. We
show that the DRCCMDP problem (5) is equivalent to an SOCP problem for various
ϕ-divergences.
Definition 1. The ϕ−divergence distance between two probability measures ν1 and ν2
with densities fν1 and fν2 , respectively, and full support R|W| is given by

Iϕ(ν1, ν2) =

∫
R|W|

ϕ

(
fν1

(ξ)

fν2(ξ)

)
fν2

(ξ)dξ.

For different choices of ϕ, we refer to [2] and [19]. Let ν ∈ M+ be a nominal
distribution with a density function fν . The uncertainty set of the distribution of R̂
based on ϕ-divergence is defined by

D4(ν, θϕ) =
{
F ∈ M+ | Iϕ(F, ν) ≤ θϕ

}
, (23)

where θϕ > 0.
Definition 2. A function ϕ∗ : R → R ∪∞ is the conjugate of ϕ, where

ϕ∗(r) = sup
t≥0

{rt− ϕ(t)} , ∀ r ∈ R.

Lemma 2. Consider an optimization problem

inf
F∈D4(ν,θϕ)

PF (χ
TR̂ ≥ y). (24)

Then, the dual problem of (24) is given by

sup
λ>0,β∈R

{
β − λθϕ − λϕ∗

(
−1 + β

λ

)
Pν(O)− λϕ∗

(
β

λ

)
(1− Pν(O))

}
,
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where O =
{
ξ ∈ R|W| | χTξ ≥ y

}
, such that the strong duality holds.

Proof. We rewrite the primal problem (24) as a following semi-infinite programming
problem

vP = inf
F≥0

∫
R|W|

1O(ξ)F (ξ)dξ

s.t. (i)

∫
R|W|

fν(ξ)ϕ

(
F (ξ)

fν(ξ)

)
dξ ≤ θϕ, (ii)

∫
R|W|

F (ξ)dξ = 1. (25)

The dual problem of (25) is given by

vD =

sup
λ≥0,β∈R

{
β − λθϕ + inf

F (ξ)≥0

{∫
R|W|

(
1O(ξ)F (ξ)− βF (ξ) + λfν(ξ)ϕ

(
F (ξ)

fν(ξ)

))
dξ

}}
,

where λ is the dual variable of the constraint (i) of (25) and β is the dual variable of
the constraint (ii) of (25). Since θϕ > 0, the Slater’s condition holds which implies that
the strong duality holds, i.e., vP = vD. The rest of the proof follows from Theorem 1
of [13].

We study 4 cases of ϕ−divergences whose conjugates are given in Table 2. Using

Table 2 List of selected ϕ−divergences with their conjugate

Divergence ϕ(u), u ≥ 0 ϕ∗(v)
Kullback-Leibler u log(u)− u+ 1. ev − 1

Variation distance |u− 1|.
−1, v ≤ −1,

v, −1 ≤ v ≤ 1,
∞, v > 1.

Modified χ2 - distance (u− 1)2.
−1, v ≤ −2,

v + v2

4 , v > −2.

Hellinger distance (
√
u− 1)2.

v
1−v , v < 1,

∞, v ≥ 1.

Lemma 2, the following result holds.
Theorem 3. Consider the DRCCMDP problem (5), where the uncertainty set is
defined by (23) for the ϕ-divergences listed in Table 3. If the reference distribution ν
is a normal distribution with mean vector µν and positive definite covariance matrix
Σν , the DRCCMDP problem (5) is equivalent to the following SOCP problem

max y

s.t. (i) χTµν − Φ(−1)[f(θϕ, ϵ)]∥Σ
1
2
ν χ∥2 ≥ y, (ii) χ ∈ Qα(ϱ), (26)
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where Φ(−1) is the quantile of the standard normal distribution and the values of θϕ,
ϵ and f(θϕ, ϵ) for different choices of divergences are given in Table 3.

Table 3 The function f for selected ϕ−divergences

Divergence f(θϕ, ϵ) θϕ, ϵ

K-L infx∈(0,1)
e−θϕx1−ϵ−1

x−1 θϕ > 0, 0 < ϵ < 1

Variation 1− ϵ+
θϕ
2 θϕ > 0, 0 < ϵ < 1

Modified χ2
1− ϵ+

√
θ2
ϕ+4θϕ(ϵ−ϵ2)−(1−2ϵ)θϕ

2θϕ+2
θϕ > 0, 0 < ϵ < 1

2

Hellinger

−B+
√
∆

2 ,

where B = −(2− (2− θϕ)
2)ϵ− (2−θϕ)

2

2 ,

C =
(
(2−θϕ)

2

4 − ϵ
)2

,

∆ = B2 − 4C = (2− θϕ)
2
[
4− (2− θϕ)

2
]
ϵ(1− ϵ).

0 < θϕ < 2−
√
2, 0 < ϵ < 1

Proof. Using Lemma 2, we prove that the constraint (i) of (5) is equivalent to the
following constraint

Pν(χ
TR̂ ≥ y) ≥ f(θϕ, ϵ). (27)

Since ν is a normal distribution with mean vector µν and covariance matrix Σν , it is
well known that (27) is equivalent to the constraint (i) of (26). The Hellinger distance
case proof is given in [17], where the Kullback-Leibler, Variation distance and Modified
χ2 - distance ones follow from Propositions 2, 3 and 4 of [13].

4.2 Uncertainty set with Wasserstein distance

We consider an uncertainty set defined using statistical distance metric called Wasser-
stein distance. We show that the DRCCMDP problem (6) is tractable if the reference
distribution ν follows a discrete distribution whose scenarios are taken from historical
data. We refer to Villani [27, 28] for more details of the Wasserstein distance metric.

Let φ be a closed, convex subset of R|W| and p ∈ [1,∞). Let B(φ) denotes the
Borel σ− algebra on φ. Let P(φ) be the set of all probability measures defined on
B(φ) and Pp(φ) denote the subset of P(φ) with finite p− moment and it is defined as

Pp(φ) =

{
µ ∈ P(φ) |

∫
ξ∈φ

||ξ − ξ0||p2µ(dξ) < ∞ for some ξ0 ∈ φ

}
.

It follows from the triangle inequality that the above definition of Pp(φ) does not
depend on ξ0.
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Definition 3 (Wasserstein distance). The Wasserstein distance Wp(µ, ν) between
ν1, ν2 ∈ Pp(φ) is defined by

Wp(ν1, ν2) =

(
inf

ϱ∈Pν1,ν2
(φ×φ)

∫
φ×φ

||x− z||p2ϱ(dx, dz)
) 1

p

,

where Pν1,ν2
(φ × φ) denotes the set of all probability measures defined on B(φ × φ)

such that the marginal laws are ν1 and ν2.
The uncertainty set using Wasserstein distance is defined by

D5(φ, ν, p, θW ) = {F ∈ Pp(φ) | Wp(F, ν) ≤ θW } , (28)

where ν ∈ Pp(φ) and θW > 0.
Lemma 3. Consider an optimization problem

sup
F∈D5(φ,ν,p,θW )

PF (χ
TR̂ ≤ y). (29)

Then, the dual problem of (29) is given by

inf
λ≥0

{
λθpW −

∫
φ

inf
z∈φ

[
λ||x− z||p2 − 1{χTz≤y}

]
ν(dx)

}
, (30)

such that the strong duality holds and the optimal values of the primal and the dual
problems are finite.

Proof. Let Ξ be a Polish space with metric d, P(Ξ) be the set of Borel probability
measures on Ξ, ν ∈ P(Ξ) and Ψ ∈ L1(ν), where L1(ν) represents the L1 space of
ν - measurable functions. It follows from Theorem 1 of [8] that the following strong
duality holds

sup
µ∈P(Ξ)

{∫
Ξ

Ψ(ξ)µ(dξ) | Wp(µ, ν) ≤ θW

}
= inf

λ∈R,λ≥0

{
λθpW −

∫
Ξ

inf
ξ∈Ξ

[λdp(ξ, ζ)−Ψ(ξ)] ν(dζ)

}
< ∞, (31)

provided the growth factor given by Definition 4 of [8] is finite. We apply this result
in our case by choosing Ξ = φ, d as an Euclidean metric and Ψ(ξ) = 1{χTξ≤y} for all
ξ ∈ φ. For this choice of Ψ(ξ), it is easy to see from Definition 4 of [8] that the growth
factor is zero. Since

{
ξ ∈ φ | χTξ ≤ y

}
is a closed set, it is a Borel measurable set.

Hence, it is clear that Ψ ∈ L1(ν) for all ν ∈ P(φ). Then, (31) reduces to

sup
F∈D5(φ,ν,p,θW )

PF

(
χTR̂ ≤ y

)
= inf

λ≥0

{
λθpW −

∫
φ

inf
ξ∈φ

[
λ||ζ − ξ||p2 − 1{χTξ≤y}

]
ν(dζ)

}
.
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We consider the case when p = 1 and ν is a data-driven reference distribution, i.e.,
it is a discrete distribution with H scenarios ξ̃1, . . . , ξ̃H , where ξ̃i ∈ φ, for every i =
1, . . . ,H. Using Lemma 3, we propose a deterministic reformulation of the DRCCMDP
problem (6).
Lemma 4. If the distribution of R̂ belongs to the uncertainty set defined by (28), the
DRCCMDP (6) can be reformulated equivalently as the following deterministic problem

sup y

s.t. (i) θW − 1

H

H∑
i=1

gi ≤ lϵ,

(ii) inf
z∈φ,χTz≤y

||ξ̃i − z||2 ≥ l + gi, ∀ i = 1, . . . ,H,

(iii) l > 0, χ ∈ Qα(ϱ), gi ≤ 0, ∀ i = 1, . . . ,H. (32)

Proof. Using Lemma 3, since ν is a discrete distribution with H scenarios ξ̃1, ..., ξ̃H ,
the constraint (i) of (6) can be equivalently written as

λθW − 1

H

H∑
i=1

inf
z∈φ

[
λ||ξ̃i − z||2 − 1{χTz≤y}

]
≤ ϵ, λ ≥ 0.

By introducing auxiliary variables ti, i = 1, ...,H, the above constraint can be rewritten
as {

(i) λθW − 1
H

∑H
i=1 ti ≤ ϵ, λ ≥ 0

(ii) infz∈φ

[
λ||ξ̃i − z||2 − 1{χTz≤y}

]
≥ ti, ∀ i = 1, . . . ,H.

(33)

The constraint (ii) of (33) is equivalent to the following two constraints{
(i) infz∈φ λ||ξ̃i − z||2 ≥ ti, ∀ i = 1, . . . ,H,

(ii) infz∈φ,χTz≤y λ||ξ̃i − z||2 − 1 ≥ ti, ∀ i = 1, . . . ,H.
(34)

Since λ ≥ 0, infz∈φ λ||ξ̃i − z||2 = 0. Then, the constraint (i) of (34) is equivalent to
ti ≤ 0, for every i = 1, . . . ,H. Moreover, if λ = 0, from the constraint (ii) of (34),

ti ≤ −1, for every i = 1, . . . ,H, which in turn implies − 1
H

∑H
i=1 ti ≥ 1. This violates

the constraint (i) of (33). Hence, λ > 0. Let l = 1
λ and gi =

ti
λ , for every i = 1, . . . ,H.

Therefore, the constraint (i) of (6) is equivalent to the following constraints
(i) θW − 1

H

∑H
i=1 gi ≤ lϵ,

(ii) infz∈φ,χTz≤y ||ξ̃i − z||2 ≥ l + gi, ∀ i = 1, . . . ,H,

(iii) l > 0, gi ≤ 0, ∀ i = 1, . . . ,H.

(35)

This implies that the DRCCMDP (6) is equivalent to (32).

17



The constraint (ii) of (32) includes inf term which makes it difficult to solve the
problem directly. We show that the optimization problem (32) is equivalent to a MIS-
OCP problem and a biconvex optimization problem for the case of full support and
nonnegative support, respectively.

4.2.1 DRCCMDP under Wasserstein distance based uncertainty
set with full support

Theorem 4. Consider the DRCCMDP problem (6). We assume that the distribu-
tion of R̂ belongs to the uncertainty set defined by (28) and φ = R|W|. Then, the
DRCCMDP problem (6) is equivalent to the following MISOCP

max y

s.t. (i) βθW − 1

H

H∑
i=1

bi ≤ tϵ,

(ii) Mηi ≥ bi + t, ∀ i = 1, . . . ,H,

(iii) M(1− ηi) + χTξ̃i − y ≥ bi + t, ∀ i = 1, . . . ,H,

(iv) ηi ∈ {0, 1} , ∀ i = 1, . . . ,H,

(v) ||χ||2 ≤ β, t ≥ 0, β > 0, χ ∈ Qα(ϱ), bi ≤ 0, ∀ i = 1, . . . ,H. (36)

Proof. The proof follows from Theorem 2 [31].

4.2.2 DRCCMDP under Wasserstein distance based uncertainty
set with nonnegative support

Lemma 5. Let φ = R|W|
+ and consider an optimization problem

inf
z∈φ,χTz≤y

||ξ̃i − z||2. (37)

The dual problem of (37) is given by

max λi(χ
Tξ̃i − y)− ζTi ξ̃i

s.t. ||ζi − λiχ||2 ≤ 1, ζi ∈ R|W|
+ , λi ≥ 0,

such that the strong duality holds.

Proof. The proof is given in Appendix B.

Theorem 5. Consider the DRCCMDP problem (6). We assume that the distribu-

tion of R̂ belongs to the uncertainty set defined by (28) and φ = R|W|
+ . Then, the

DRCCMDP (6) is equivalent to the following biconvex optimization problem

max y
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s.t. (i) θW − 1

H

H∑
i=1

gi ≤ lϵ,

(ii) λi(χ
Tξ̃i − y)− ζTi ξ̃i ≥ l + gi, ∀ i = 1, . . . ,H,

(iii) ||ζi − λiχ||2 ≤ 1, ∀ i = 1, . . . ,H,

(iv) λi ≥ 0, ζi ∈ R|W|
+ , l > 0, gi ≤ 0, χ ∈ Qα(ϱ), ∀ i = 1, . . . ,H. (38)

Proof. The proof follows directly from Lemma 4 and Lemma 5.

5 Machine replacement problem

In this section, we address a machine replacement problem which involves a factory
machine with a lifespan of N years. At each stage, maintenance is scheduled for the
machine , and the factory owner must decide whether to repair it or leave it unrepaired.
If repaired, the machine might function as a new one, while not repairing it reduces
its remaining lifespan by one year. Repairing the machine incurs a maintenance cost,
which can be modeled as an MDP problem with the machine’s lifespan representing
the states of the underlying Markov chain, resulting in a total of N + 1 states. The
initial state corresponds to a new machine, and at each state, there are two actions:
i) ”repair” and ii) ”do not repair”. The transition probabilities of the Markov chain
corresponding to each action, are detailed in Figure 5. The maintenance cost for each
state-action pair is uncertain and realized after the decision is decided. For every state-
action pair (s, a), the maintenance cost is defined as ĉ(s, a) = K + Ẑ(s, a), with K
representing a fixed cost and Ẑ(s, a) representing a random variable for the variable
cost. Additionally, the machine generates revenue L(s, a) for each state-action pair
(s, a) and the profit for each (s, a) ∈ W is given by

R̂(s, a) = L(s, a)−K − Ẑ(s, a). (39)

The factory owner aims to maximize the expected discounted profit. We assume that
the factory owner possesses a finite number of identical machines, all of which are
modeled using the same Markov chain. Consequently, we calculate the optimal repair
policy for a single machine, and this identical repair policy can be applied to all other
machines in the fleet.

Fig. 1 Machine replacement with 10 states and 2 actions: ”repair” (with continuous lines) and ”no
repair” (with dotted lines)
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We compare the performance of DRCCMDP for each uncertainty set with the
CCMDP model (4) where the distribution of R̂ is assumed to be a normal distribution.
In our numerical experiments, we consider a set of 10 states, ϵ = 0.15, the discount
parameter α = 0.8 and the initial distribution of states ϱ to be uniformly distributed.
For the above instance, |W| = 20 and R̂ is a 20× 1 random vector with mean vector
µ given by

µ(s, a) = L(s, a)−K − µẐ(s, a), (40)

where µẐ is the mean vector of the random cost vector Ẑ. We takeK = 10, the function
L and the mean cost µẐ corresponding to each state-action pair are summarized in

Table 4. The covariance matrix Σ of R̂ is randomly generated using the following
formula

Σ =
AAT

20
+D20, (41)

where A is a 20× 20 random matrix whose all the entries are real numbers belonging
to [0, 1], and D20 is a 20× 20 diagonal matrix with D20(10, 10) = 4, D20(20, 20) = 9,
D20(i, i) = 1, for every i ̸= 10, 20 and all other entries equal to zero. We use the above µ
and Σ for all the moments based uncertainty sets. For ϕ-divergence based uncertainty

Table 4 Random cost Ẑ and Revenue L

State(s)
Action(a) ”Repair”

µ
Ẑ
(s, 1)

”Do not
repair”
µ
Ẑ
(s, 2)

”Repair”
L(s, 1)

”Do not
repair”
L(s, 2)

1 10.1 0 30 29.9

2 10.2 0 30 29.8

3 10.3 0 30 29.7

4 10.4 0 30 29.6

5 10.5 0 30 29.5

6 10.6 0 30 29.4

7 10.7 0 30 29.3

8 10.8 0 30 29.2

9 10.9 0 30 29.1

10 11 5 30 29.0

Table 5 Other
parameters

K-U δ0 = 0.9

U-U δ1 = δ2 = 1

ϕ−divergence θϕ = 0.01

Wasserstein
θW = 0.01
H = 1000

set, we take the nominal distribution ν as a normal distribution with mean µν = µ and
covariance matrix Σν = Σ where µ and Σ are defined by (40) and (41), respectively.
For Wasserstein distance based uncertainty set, we take the number of observations
H = 1000. The scenarios (ξ̃i)

H
i=1 are randomly generated by taking ξ̃i = Bx + µν ,

where x is a standard normal vector, µν is defined by (40) and B is the Cholesky
factorization of Σν defined by (41). We summarize the other parameters in Table 5.

We compute an optimal policy of the CCMDP problem (4), where R̂ follows a
normal distribution with mean vector and covariance matrix defined by (40) and (41),
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Table 6 Optimal policies of CCMDP and DRCCMDP with full and nonnegative supports

State(s)
Policies

CCMDP
Normal
(1-q,q)

Full support
K-K

(1-q,q)

Full support
K-U

(1-q,q)

Full support
U-U

(1-q,q)

Modified χ2

(1-q,q)
variation
(1-q,q)

1 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
2 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
3 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
4 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
5 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
6 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
7 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
8 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
9 (1, 0) (0.36, 0.64) (0.36, 0.64) (0.3, 0.7) (0.73, 0.27) (0.95, 0.05)
10 (0.1, 0.9) (0.09, 0.91) (0.09, 0.91) (0.09, 0.91) (0.1, 0.9) (0.1, 0.9)

Optimal
discounted reward

89.3 74 74 71.9 84.2 88.1

Table 7 Optimal policies of CCMDP and DRCCMDP with full and nonnegative supports (continued)

Kullbach-Leibler
(1-q,q)

Hellinger
(1-q,q)

Full support
Wasserstein

(1-q,q)

Nonnegative K-K
(1-q,q)

Nonnegative
K-U

(1-q,q)

Nonnegative
U-U

(1-q,q)

Nonnegative
Wasserstein

(1-q,q)
(1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
(1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
(1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
(1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
(1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
(1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
(1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
(1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

(0.75, 0.25) (0.72, 0.28) (0.98, 0.02) (0.39, 0.61) (0.39, 0.61) (0.34, 0.66) (0.99, 0.01)
(0.1, 0.9) (0.1, 0.9) (0.1, 0.9) (0.09, 0.91) (0.09, 0.91) (0.09, 0.91) (0.1, 0.9)

85 84 88.9 75.3 75.3 73.1 89.1

by solving an equivalent SOCP problem [5]. The optimal policies of the DRCCMDP
problem for all the uncertainty sets are computed by solving the proposed equivalent
optimization problems. We present the optimal policies of CCMDP and DRCCMDP
with full support and nonnegative support in Tables 6 and 7, where q is the probability
of ”repair” and 1− q is the probability of ”no repair”. It is clear from Tables 6 and 7
that the optimal repair policy corresponding to all the uncertainty sets for first eight
states is same. At state 9 the probability of repair is greater than the probability
of do not repair for moments based uncertainty sets whereas for statistical distance
based uncertainty sets the probability of repair is less than the probability of do not
repair. By comparing the optimal discounted reward of all uncertainty models with
the CCMDP model, it is easy to see that the statistical distance based uncertainty
sets give better optimal policy as compared to moments based uncertainty sets and
the nonnegative support uncertainty sets give better optimal policy as compared to
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full support uncertainty sets. At the last state, the optimal policy is to choose repair
action with a very high probability for all the uncertainty sets. We conduct a time
analysis by examining the number of states within the range of 1000 to 10000 for all
uncertainty sets. All the parameters are taken similar to the case of 10 states. The
results are presented in Figure 5 which shows that the CPU time is almost always the

same to solve SOCP (10) with κ =
√

1−ϵ
ϵ and the MISOCP (36) while additional CPU

time is required to solve the SDP + LP relaxations of the copositive optimization
problem (11) and the biconvex optimization problem (38).

Fig. 2 CPU time (in seconds) to solve SOCP (10) with κ =
√

1−ϵ
ϵ

, MISOCP (36), copositive

optimization problem (11) and biconvex optimization problem (38) with different number of states.

6 Conclusions

We consider a DRCCMDP problem under various uncertainty sets. We propose equiv-
alent SOCP, MISOCP, copositive optimization problem and biconvex optimization
problem, depending on the choice of the uncertainty set, for the DRCCMDP problem.
All these optimization problems except biconvex optimization problems and coposi-
tive optimization problems can be solved efficiently using known optimization solvers.
We perform numerical experiments, using the optimization solvers in python, on a
machine replacement problem using randomly generated data. The numerical exper-
iments are performed on the DRCCMDP problem up to 10000 states and it is very
clear from our time analysis that these problems can be solved very efficiently.
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A Proof of Lemma 1

Consider the optimization problem

vP(µ,Σ) = sup
F∈C+

∫
φ

1{χTR̂≤y}dF (R̂)

s.t. (i)

∫
φ

dF (R̂) = 1, (ii)

∫
φ

(R̂− µ)(R̂− µ)TdF (R̂) = Σ,

(iii)

∫
φ

R̂dF (R̂) = µ, (42)

where C+ is the set of all positive measures on R|W|
+ . The dual problem of (42) is given

by

vD(µ,Σ) = inf −t−Q ◦ Σ− qTµ

s.t.. (i) 1{χTξ≤y} + qTξ + ξTQξ − 2ξTQµ+ µTQµ+ t ≤ 0, ∀ ξ ∈ R|W|
+ ,

(ii) Q ∈ S |W|, (43)

where t, q, and Q are the dual variables associated with the constraints (i), (ii) and
(iii) of (42), respectively. In Theorem 3.4 of [4], under the assumption µ ∈ RI(φ),
the authors show that the Dirac distribution δµ lies in the relative interior of the
distributional uncertainty set which implies that the weaker condition of Proposition
3.4 of [22] holds. However, it is not trivial to find a strictly feasible point inside our
distributional uncertainty set. Let (t∗j , Q

∗
j , q

∗
j )j∈N be a sequence of feasible solutions of

(43) such that

−t∗j −Q∗
j ◦ Σ− q∗Tj µ → vD(µ,Σ), as j → ∞. (44)

For each j ∈ N, let r∗j = max(0, q∗j )− q∗j , where max(0, q∗j ) denotes a |W|-dimensional

vector with ith component equal to the maximum value between 0 and the ith compo-
nent of q∗j , for every i = 1, . . . , |W|. Let ϵj be a strictly positive decreasing sequence
such that ϵjr

∗
j → 0 componentwise and ϵj → 0, when j → ∞. Let xj = ϵj1, where 1

denotes the vector with all components equal to 1. Then, r∗Tj xj → 0 as j → ∞. For
each j ∈ N, consider the following conic optimization problem

vjP(µ,Σ) = sup
F∈C+

∫
φ

1{χTR≤y}dF (R)

s.t. (i)

∫
φ

dF (R) = 1, (ii)

∫
φ

(R− µ)(R− µ)TdF (R) = Σ,
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(iii) µ ≤
∫
φ

RdF (R) ≤ µ+ xj . (45)

The dual problem of (45) is given by

vjD(µ,Σ) = inf −t−Q ◦ Σ+ (r − h)Tµ+ rTxj

s.t. (i) 1{χTξ≤y} + (h− r)Tξ + ξTQξ − 2ξTQµ+ µTQµ+ t ≤ 0, ∀ ξ ∈ R|W|
+ ,

(ii) h, r ∈ R|W|
+ , Q ∈ S |W|, (46)

where t, Q, r and h are the dual variables of the constraint (i), (ii) and (iii) of (45),
respectively. The vector (t, Q, h, r) such that t = t∗j , Q = Q∗

j , h = max(0, q∗j ), r = r∗j
is a feasible solution of (46). Hence,

vjD(µ,Σ) ≤ −t∗j −Q∗
j ◦ Σ− q∗Tj µ+ r∗Tj xj , ∀ j ∈ N. (47)

Since the feasibility set of (14) is non-empty, there exists a nonnegative distribution
F ∗ such that E(F ∗) = µ and Cov(F ∗) = Σ. Let Fj be a distribution with support
φj :=

{
ξ ∥ ξ ∈ RW

+ , ξ ≥ xj

2 , componentwise
}
, defined by

F ∗(ξ) = Fj(ξ +
xj

2
), ∀ ξ ∈ RW

+ .

It is clear that Fj is a feasible solution of (45) and φj ⊂ RI(φ). Hence, Fj belongs
to the relative interior of the distributional uncertainty set which implies that strong
duality holds, i.e., vjP(µ,Σ) = vjD(µ,Σ) for all j ∈ N. Since the objective function of

(45) is a continuous function of F and xj → 0 as j → ∞, then vjP(µ,Σ) → vP(µ,Σ)

as j → ∞. Therefore, it is sufficient to prove that vjD(µ,Σ) → vD(µ,Σ) as j → ∞. It
is clear that the feasible sets of (46) and (43) are equivalent and objective function of
(46) has additional positive term. Therefore,

vjD(µ,Σ) ≥ vD(µ,Σ), ∀ j ∈ N. (48)

Using (44), (47) and (48) and the fact that r∗Tj xj → 0 as j → ∞, we have vjD(µ,Σ) →
vD(µ,Σ) as j → ∞.

that: L = supβ<λ,λ>0

{
λ2

(λ−β)(λ−β+1)Pν(O)− β2

λ−β − λθϕ

}
. Let η = λ − β. Then,

we can write

B Proof of Lemma 5

The optimization problem inf
z∈R|W|

+ ,χTz≤y
||ξ̃i − z||2 can be reformulated as following

SOCP problem

min t

s.t. χTz ≤ y, t ≥ ||ξ̃i − z||2, z ∈ R|W|
+ . (49)
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The Lagrangian dual problem of (49) is given by

max
λi≥0,ζi∈R|W|

+ ,β≥0

min
t∈R,z∈R|W|

L(t, χ, z, λi, β, ζi),

where L(t, z, λi, β, ζi) = t+λi(χ
Tz−y)−ζTi z+β(||ξ̃i−z||2−t). The inner minimization

problem can be written as

J(λi, ζi, β) = min
t∈R,z∈R|W|

{
t(1− β) + β||ξ̃i − z||2 + λiχ

Tz − ζTi z − λiy
}
. (50)

It is easy to see that J(λi, ζi, β) = −∞ if β ̸= 1 and it implies that the dual objective
function value is −∞. By using the strong duality of a primal-dual pair of SOCPs, the
objective function value of primal problem is −∞, i.e., inf

z∈R|W|
+ ,χTz≤y

||ξ̃i−z||2 = −∞

which is a contradiction. Therefore, β = 1 and using a change of variable z1 = ξ̃i − z,
we have

J(λi, ζi, 1) = min
z1∈R|W|

{
||z1||2 + (ζi − λiχ)

Tz1
}
+ λi(χ

Tξ̃i − y)− ζTi ξ̃i.

The above minimization problem is unbounded unless ||ζi −λiχ||2 ≤ 1 and it leads to
the following dual problem of (49).

max λi(χ
Tξ̃i − y)− ζTi ξ̃i

s.t. ||ζi − λiχ||2 ≤ 1, λi ≥ 0, ζi ∈ R|W|
+ . (51)
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