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In this paper, we study an 𝑛 player game where the payoffs as well as the strategy sets are defined using random variables. The payoff function of each player is defined using expected value function and his/her strategy set is defined using a linear joint chance constraint. The random constraint vectors defining the joint chance constraint are independent and follow normal mean-variance mixture distributions. For each player, we reformulate the joint chance constraint in order to prove the existence of a Nash equilibrium using the Kakutani fixed-point theorem under mild assumptions. We illustrate our theoretical results by considering a game between two competing firms in financial market.

Introduction

In 1950, Nash [START_REF] Jr | Equilibrium points in n-person games[END_REF] showed that there exists a mixed strategy equilibrium point in any finite strategic game, which is called Nash equilibrium nowadays. In [START_REF] Jr | Equilibrium points in n-person games[END_REF], the players' payoffs and strategy sets are deterministic, which are not suitable in real life applications. We can deal with the randomness in the players' payoffs in at least two different ways. First, the expectation value of the random payoffs of the players [START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games[END_REF] often used for risk neutral games. Second, the risk measure CVaR [START_REF] Kannan | Addressing supply-side risk in uncertain power markets: stochastic Nash models, scalable algorithms and error analysis[END_REF] and the chance constraint optimization framework [START_REF] Vikas | Existence of Nash equilibrium for chance-constrained games[END_REF]Singh and Lisser, 2018) used as an alternative payoff criterion. A natural way to deal with random constraints in the strategy sets is to replace them with chance constraints which is quite popular in real life applications, e.g., risk constraints in portfolio optimization [START_REF] Ji | Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints[END_REF], resource constraints in stochastic shortest path problem [START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF], renewable energy aggregators in the local market [START_REF] Li | A risk-averse energy sharing market game for renewable energy microgrid aggregators[END_REF]. The games involving chance constraint either in payoffs or in strategy sets are called chance-constrained games (CCGs). Several studies exist in the literature on chance-constrained games, e.g., [START_REF] Vikas | Existence of Nash equilibrium for chance-constrained games[END_REF] showed the existence of Nash equilibrium for the case where the payoff vector is elliptically distributed. Also, (Singh and Lisser, 2018) showed the equivalence between Nash equilibrium of a CCG and the global optimal solution of a mathematical program. The CCGs where strategy sets are defined using individual/joint chance constraint have been widely studied in the literature [START_REF] Peng | General sum games with joint chance constraints[END_REF][START_REF] Peng | Chance-constrained games with mixture distributions[END_REF][START_REF] Vikas | A second-order cone programming formulation for two player zero-sum games with chance constraints[END_REF]Singh et al., 2021;[START_REF] Hoang | Random games under elliptically distributed dependent joint chance constraints[END_REF].

To the best of our knowledge, the random constraint vectors in the CCGs are often assumed to be elliptically distributed or follow a mixture of elliptical distributions. These families include many known distributions, e.g., Normal distributions, t-distributions, Laplace distributions, Kotz-type distributions, Pearson distributions. However, it is interesting to consider different distributions for the constraint vectors since these families of distributions are not suitable for some practical situations. In power system scheduling problems, both wind power forecast errors and load forecasting errors can be better fitted by generalized hyperbolic (GH) distributions [START_REF] Hodge | Comparison of wind power and load forecasting error distributions[END_REF], which are neither elliptically distributed nor a mixture of elliptical distributions. This family belongs to a more general family of distributions, namely normal mean-variance mixture, which is often used to model many financial applications [START_REF] Eberlein | The generalized hyperbolic model: Financial derivatives and risk measures[END_REF][START_REF] Bauer | Value at risk using hyperbolic distributions[END_REF][START_REF] Todorov | Handbook of Heavy Tailed Distributions in Finance: Handbooks in Finance[END_REF][START_REF] Rostislav | Em-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed 𝜆[END_REF]. In this paper, we study an 𝑛 player CCG where the players' payoffs are defined using the expectation value and the strategy set of each player is defined by a joint chance constraint. We assume that the random constraint vectors are independent and follow normal mean-variance mixture distributions which generalize the family of GH distributions [START_REF] Barndorff-Nielsen | Normal variance-mean mixtures and z distributions[END_REF]. We derive a new reformulation of the joint chance constraint and show that there exists a Nash equilibrium under mild assumptions, by proving the convexity of the feasible strategy set of each player. In [START_REF] Hoang | Convexity conditions for normal mean-variance mixture distribution in joint probabilistic constraints[END_REF], the authors give some sufficient conditions under which joint chance constraint is convex when the constraint vectors are independent and follow normal mean-variance mixture distribution. In this paper, we relax those conditions and provide a lower bound on the probability level vector for which the joint chance constraint is convex. As an application of these games we study a competition between two firms in a financial market and compute its Nash equilibria using a best response algorithm.

The remainder of this paper is organized as follows. In Section 2, we introduce the game model and some basic concepts used in the paper. In Section 3, we show the existence of a Nash equilibrium. In section 4, we illustrate our theoretical results using a game between two firms from a financial market. We conclude the paper in Section 5.

The Game Model and Basic Concepts

Game Model

In this section, we define a chance-constrained game model. Let 𝐻 = {1, 2, .., 𝑛} be the set of players and 𝑆 𝑖 be the strategy set of player 𝑖 ∈ 𝐻 which is assumed to be a non-empty, convex and compact subset of R 𝑑 𝑖 . The set 𝑆 = 𝑛 𝑖=1 𝑆 𝑖 is called the set of strategy profiles of the game. For any player 𝑖 ∈ 𝐻, a strategy profile 𝑥 = (𝑥 1 , 𝑥 2 , . . . , 𝑥 𝑛 ) ∈ 𝑆 can be written as (𝑥 𝑖 , 𝑥 -𝑖 ), where 𝑥 𝑖 ∈ 𝑆 𝑖 and 𝑥 -𝑖 ∈ 𝑆 -𝑖 . Here, 𝑆 -𝑖 denote the set of vectors of strategies of all players, except player 𝑖. We consider the case where the strategies of each player 𝑖 further satisfy the following joint chance constraint

P(𝑉 𝑖 𝑥 𝑖 ≤ 𝐷 𝑖 ) ≥ 𝛼 𝑖 , (1) 
where 𝛼 𝑖 is a real number defined in [0, 1], 𝐷 𝑖 = (𝐷 𝑖,1 , . . . , 𝐷 𝑖,𝐾 𝑖 ) ⊤ ∈ R 𝐾 𝑖 is a real vector and 𝑉 𝑖 = [𝑉 𝑖,1 , . . . , 𝑉 𝑖,𝐾 𝑖 ] ⊤ is a 𝐾 𝑖 × 𝑑 𝑖 random matrix, 𝑉 𝑖,𝑘 is the 𝑘 th row of 𝑉 𝑖 and ⊤ denotes the transposition. Let 𝐽 𝑖 = {1, 2, . . . , 𝐾 𝑖 } be the index set of 𝑖 th player's constraints. Then, for any 𝑖 ∈ 𝐻, the feasible strategy set 𝑆 𝑖 𝛼 𝑖 of player 𝑖 is the set of all 𝑥 𝑖 ∈ 𝑆 𝑖 such that 𝑥 𝑖 satisfies the chance constraint (1). We assume that for each 𝑖 ∈ 𝐻, 𝑆 𝑖 𝛼 𝑖 is a non-empty set. Let 𝛼 = (𝛼 𝑖 ) 𝑖 ∈ 𝐻 and 𝑆 𝛼 = 𝑛 𝑖=1 𝑆 𝑖 𝛼 𝑖 be the set of all feasible strategy profiles. For each feasible strategy profile 𝑥 ∈ 𝑆 𝛼 , we assume that player 𝑖 gains a random payoff given by 𝑘 𝑖 (𝑥, 𝜁), where 𝜁 is an 𝑚-dimensional random vector. We define the payoff function of player 𝑖 by taking the expected value of the random payoff given by

𝑝 𝑖 (𝑥) = E[𝑘 𝑖 (𝑥, 𝜁)], ∀ 𝑥 ∈ 𝑆 𝛼 .
The tuple (𝑆 𝑖 𝛼 𝑖 , 𝑝 𝑖 ) 𝑖 ∈ 𝐻 is called a CCG. We assume that the CCG is of complete information, i.e., the vector 𝛼, the payoff function 𝑝 𝑖 and the feasible strategy set 𝑆 𝑖 𝛼 𝑖 for all 𝑖 ∈ 𝐻, are known to all the players. Nash equilibrium is commonly used stability notion for non-cooperative games. For the CCG, a strategy profile 𝑧 * is said to be a Nash equilibrium at given confidence level vector 𝛼 if for any player 𝑖 ∈ 𝐻, the following inequality holds

𝑝 𝑖 (𝑧 𝑖 * , 𝑧 -𝑖 * ) ≥ 𝑝 𝑖 (𝑥 𝑖 , 𝑧 -𝑖 * ), ∀ 𝑥 𝑖 ∈ 𝑆 𝑖 𝛼 𝑖 .
The proof of the existence of a Nash equilibrium for a non-cooperative game is mostly done in the literature using fixed point theorems. In this paper, we use the Kakutani fixed-point theorem, which requires the payoff function of each player 𝑖 to be a continuous function with respect to the strategies of all the players and a concave function with respect to their strategies, where the strategies of other players are fixed, for any player 𝑖 ∈ 𝐻. [START_REF] Peng | Chance-constrained games with mixture distributions[END_REF] show that under the following assumption, the abovementioned properties hold.

Assumption 1. For each player 𝑖 ∈ 𝐻, the following conditions hold: (i) 𝑘 𝑖 (•, 𝑥 -𝑖 , 𝜁) is concave of 𝑥 𝑖 , for every

(𝑥 -𝑖 , 𝜁) ∈ 𝑆 -𝑖 × R 𝑚 , (ii) 𝑘 𝑖 (•) is continuous, (iii) 𝑝 𝑖 (𝑥) < ∞, for every 𝑥 ∈ 𝑆.

Basic Concepts

In this section, we present some basic definitions, which are useful in the paper.

Definition 1. The function 𝑓 : R → R, is said to be an 𝑟-decreasing function for some real number 𝑟 ∈ R, if 𝑓 is continuous on (0, +∞) and there exists some strictly positive real number 𝑡 * such that the function 𝑡 ↦ → 𝑡 𝑟 𝑓 (𝑡) is strictly decreasing on (𝑡 * , +∞).

Definition 2. Let 𝑄 be a convex subset of R 𝑠 and 𝑓 : 𝑄 → (0, +∞). For a real number 𝑟 ∈ (-∞, +∞), 𝑓 is said to be 𝑟-concave on 𝑄 if for any 𝑥, 𝑦 ∈ 𝑄 and 𝛼 ∈ [0, 1], 

𝑓 (𝛼𝑥 + (1 -𝛼)𝑦) ≥ [𝛼 𝑓 (𝑥) 𝑟 + (1 -𝛼) 𝑓 (𝑦) 𝑟 ] 1 𝑟 , if 𝑟 ≠ 0, 𝑓 (𝛼𝑥 + (1 -𝛼)𝑦) ≥ 𝑓 (𝑥) 𝛼 𝑓 (𝑦)
𝑈 d = 𝜇 + 𝛾𝑊 + √ 𝑊Σ 1 2 𝑍,
where: (i) 𝑍 is an 𝑛-dimension standard Gaussian distribution with mean vector 𝜇 𝑍 = 0 and covariance matrix Σ 𝑍 = I 𝑛 , where I 𝑛 is the 𝑛 × 𝑛 identity matrix.

(ii) 𝑊 is a positive random variable with a density function independent of 𝑍.

(iii) Σ ∈ R 𝑛×𝑛 is an 𝑛 × 𝑛 positive definite matrix and Σ 1 2 ∈ R 𝑛×𝑛 is an 𝑛 × 𝑛 matrix such that Σ 1 2 (Σ 1 
2 ) ⊤ = Σ. (iv) 𝜇 and 𝛾 are 𝑛-dimensional real vectors and d = implies that the both sides have the same distribution.

Normal mean-variance mixture distribution can be used to model chance-constraints due to its flexibility, robustness, scalability, optimization capabilities, and simulation abilities [START_REF] Naderi | Robust mixture regression modeling based on the normal mean-variance mixture distributions[END_REF][START_REF] Lee | On mean and/or variance mixtures of normal distributions[END_REF]. In the following section, we study the existence of a Nash equilibrium of the CCG where the random constraint vectors follow normal mean-variance mixture distributions.

Existence of Nash Equilibrium

For each player 𝑖 ∈ 𝐻, we assume that the row vectors of 𝑉 𝑖 follow normal mean-variance mixture distributions, i.e., 𝑉 𝑖,𝑘 ∼ NMVM(𝜇 𝑖,𝑘 , 𝛾 𝑖,𝑘 , Σ 𝑖,𝑘 , 𝑊 𝑖,𝑘 ) for all 𝑘 ∈ 𝐽 𝑖 . Moreover, the row vectors {𝑉 𝑖,𝑘 | 𝑘 ∈ 𝐽 𝑖 } are mutually independent and the support of 𝑊 𝑖,𝑘 is an open interval (𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ), where 0 < 𝑤 𝑖,𝑘

l ≤ 𝑤 𝑖,𝑘 u < ∞. Let S𝑖 𝛼 𝑖 = 𝑆 𝑖 𝛼 𝑖 \ {0}, then for 𝑥 𝑖 ∈ S𝑖 𝛼 𝑖 , let 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) = -(𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 √︁ 𝑊 𝑖,𝑘 + 𝐷 𝑖,𝑘 -(𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 √ 𝑊 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 , 𝜉 𝑖,𝑘 (𝑥 𝑖 ) = 𝑍 ⊤ ((Σ 𝑖,𝑘 ) 1 2 ) ⊤ 𝑥 𝑖 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 , (2) 
where 𝑍 refers to Definition 3. It is well known that 𝜉 𝑖,𝑘 (𝑥 𝑖 ) follows 1-dimensional standard Gaussian distribution [START_REF] Fang | Symmetric multivariate and related distributions[END_REF], for any 𝑖 ∈ 𝐻 and 𝑘 ∈ 𝐽 𝑖 . Using the independence of the row vectors 𝑉 𝑖,𝑘 , the constraint (1) can be written as 𝑘 ∈ 𝐽 𝑖 P (𝑉 𝑖,𝑘 ) ⊤ 𝑥 𝑖 ≤ 𝐷 𝑖,𝑘 ≥ 𝛼 𝑖 , which implies that

𝑘 ∈ 𝐽 𝑖 P 𝑊 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 (𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 + √︁ 𝑊 𝑖,𝑘 𝑍 ⊤ ((Σ 𝑖,𝑘 ) 1 2 ) ⊤ 𝑥 𝑖 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ≤ 𝐷 𝑖,𝑘 -(𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ≥ 𝛼 𝑖 . (3) 
Using the notations in (2), we rewrite (3) as follows

𝑘 ∈ 𝐽 𝑖 P 𝜉 𝑖,𝑘 (𝑥 𝑖 ) ≤ 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ≥ 𝛼 𝑖 . (4) 
Using the independence between 𝑉 𝑖,𝑘 , the constraint (4) can be reformulated as

𝑘 ∈ 𝐽 𝑖 E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ≥ 𝛼 𝑖 , (5) 
or equivalently

∑︁ 𝑘 ∈ 𝐽 𝑖 log E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ≥ log(𝛼 𝑖 ), (6) 
where Φ be the cumulative distribution function of an 1-dimensional standard Gaussian distribution. The main idea for the proof of the existence of Nash equilibrium is based on the Kakutani fixed-point theorem, which requires the convexity of the feasible strategy set 𝑆 𝑖 𝛼 𝑖 . We show that there exists a real number 𝛼 𝑖 , 𝑗 = 1, 2, 3, are given by

𝛼 (1) 𝑖 = max 𝑘 ∈ 𝐽 𝑖 Φ ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u . 𝛼 (2) 𝑖 = max 𝑘 ∈ 𝐽 𝑖 Φ 4 √︃ 𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u + ||𝜇 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l . 𝛼 (3) 𝑖 = max 𝑘 ∈ 𝐽 𝑖 Φ √︃ 3𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l ,
where || • || 2 denotes the Euclidean norm and 𝜆 𝑖,𝑘,min is the smallest eigenvalue of the positive definite matrix Σ 𝑖,𝑘 .

Lemma 1. Let Assumption 2 hold. Assume that 𝑥 𝑖 ∈ S𝑖 𝛼 𝑖 , for all 𝑖 ∈ 𝐻. Then, 𝐷 𝑖,𝑘 > (𝜇 𝑖,𝑘 ) ⊤ 𝑥 𝑖 , for all 𝑖 ∈ 𝐻 and 𝑘 ∈ 𝐽 𝑖 .

Proof. For each 𝑖 ∈ 𝐻, let 𝑥 𝑖 ∈ S𝑖 𝛼 𝑖 . Since E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ∈ [0, 1] and 𝛼 𝑖 > 𝛼 (1) 𝑖 , for any 𝑘 ∈ 𝐽 𝑖 , the constraint (5) implies that

E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) > 𝛼 (1)
𝑖 . It follows from the definition of 𝑔 𝑖,𝑘 in (2) that

E 𝑊 𝑖,𝑘 Φ -(𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 √︁ 𝑊 𝑖,𝑘 + 𝐷 𝑖,𝑘 -(𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 √ 𝑊 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 > 𝛼 (1) 𝑖 . (7) 
Due to the following three inequalities

(i) |(𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 | ≤ ||𝑥 𝑖 || 2 ||𝛾 𝑖,𝑘 || 2 , (ii) √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ≥ √︁ 𝜆 𝑖,𝑘,min ||𝑥 𝑖 || 2 , (iii) √︁ 𝑊 𝑖,𝑘 ≤ √︃ 𝑤 𝑖,𝑘 u , (8) 
we deduce that

-(𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 √︁ 𝑊 𝑖,𝑘 ≤ ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u . (9) 
From ( 7) and ( 9), by applying the increasing monotonicity of Φ, we get

E 𝑊 𝑖,𝑘 Φ ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u + 𝐷 𝑖,𝑘 -(𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 √ 𝑊 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 > 𝛼 (1) 𝑖 .
It is clear from the definition of 𝛼 (1)

𝑖

in Assumption 2 that the following condition holds

𝛼 (1) 𝑖 ≥ Φ ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u ,
which in turn implies that

E 𝑊 𝑖,𝑘 Φ ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u + 𝐷 𝑖,𝑘 -(𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 √ 𝑊 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 > Φ ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u . ( 10 
)
If 𝐷 𝑖,𝑘 -(𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 ≤ 0, using the increasing monotonicity of Φ and (10), we get

E 𝑊 𝑖,𝑘 Φ ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u > Φ ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u , which gives a contradiction. Therefore, 𝐷 𝑖,𝑘 -(𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 > 0. □ Lemma 2. For 𝑖 ∈ 𝐻, let 𝑥 𝑖 ∈ S𝑖 𝛼 𝑖 . Then, for any 𝑘 ∈ 𝐽 𝑖 and 𝑧 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ],
we have

E 𝑊 𝑖,𝑘        Φ √ 𝑧 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l        ≥ 𝛼 𝑖 . Proof. For 𝑖 ∈ 𝐻 and 𝑘 ∈ 𝐽 𝑖 , let 𝑥 𝑖 ∈ S𝑖 𝛼 𝑖 and 𝑧 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ]. It is clear from the definition of 𝑔 𝑖,𝑘 in (2) that the following condition holds for any 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ] 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) = √ 𝑧 𝑖,𝑘 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) + (𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 𝑧 𝑖,𝑘 -𝑊 𝑖,𝑘 √ 𝑊 𝑖,𝑘
.

By applying the inequalites (i) -(iii) of ( 8) and the fact that |𝑧 𝑖,𝑘 -𝑊 𝑖,𝑘 | ≤ 𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l , we deduce the following inequality

(𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 𝑧 𝑖,𝑘 -𝑊 𝑖,𝑘 √ 𝑊 𝑖,𝑘 ≤ ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l which in turn implies that 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ≤ √ 𝑧 𝑖,𝑘 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l , ∀ 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ]. (11) 
Taking the expectation value E 𝑊 𝑖,𝑘 (Φ(•)) on both sides of (11), we get

E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ≤ E 𝑊 𝑖,𝑘        Φ √ 𝑧 𝑖,𝑘 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l       
.

Since E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ∈ [0, 1], for any 𝑘 ∈ 𝐽 𝑖 , the constraint (5) implies that

E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ≥ 𝛼 𝑖 ,
which in turn implies that

E 𝑊 𝑖,𝑘        Φ √ 𝑧 𝑖,𝑘 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l        ≥ 𝛼 𝑖 . □ Lemma 3. Let Assumption 2 hold. Then, for all 𝑖 ∈ 𝐻 Conv( S𝑖 𝛼 𝑖 ) ⊂ 𝑘 ∈ 𝐽 𝑖 Ω 𝑖,𝑘 ,
where Conv represents the convex hull and

Ω 𝑖,𝑘 =                      𝑥 𝑖 ∈ 𝑆 𝑖 -(𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 √ 𝑊 𝑖,𝑘 + 𝐷 𝑖,𝑘 -(𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 √ 𝑊 𝑖,𝑘 ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u + ||𝜇 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min 1 √︃ 𝑤 𝑖,𝑘 l > 4 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 , ∀ 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ].                      , ( 12 
) Proof. For 𝑖 ∈ 𝐻, let 𝑥 𝑖 ∈ S𝑖 𝛼 𝑖 . It follows from Lemma 2 that for any 𝑧 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ] E 𝑊 𝑖,𝑘        Φ √ 𝑧 𝑖,𝑘 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l        ≥ 𝛼 𝑖 . (13) 
Since 𝛼 𝑖 > 𝛼 (2) 𝑖 , the constraint (13) implies that

E 𝑊 𝑖,𝑘        Φ √ 𝑧 𝑖,𝑘 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l        > 𝛼 (2) 𝑖 .
It follows from the definition of 𝛼 (2)

𝑖

in Assumption 2 that the following condition holds

𝛼 (2) 𝑖 ≥ Φ        4 √︃ 𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u + ||𝜇 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l        .
which in turn implies that

E 𝑊 𝑖,𝑘        Φ √ 𝑧 𝑖,𝑘 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l        > Φ        4 √︃ 𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u + ||𝜇 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l        . ( 14 
)
If 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) ≤ 0, the constraint ( 14) implies that

Φ ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l > Φ        4 √︃ 𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u + ||𝜇 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l       
, which derives a contradiction due to the increasing monotonicity of Φ. Therefore, 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) > 0. Then, the following inequality holds for any

𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ] √ 𝑧 𝑖,𝑘 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) ≤ √︃ 𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ). ( 15 
)
It follows from ( 14) and ( 15) that

Φ √︃ 𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 𝑖,𝑘 ) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l > Φ        4 √︃ 𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u + ||𝜇 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l        . ( 16 
)
By applying the increasing monotonicity of Φ, ( 16) is equivalent to the following inequality 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑧 Proof.

For 𝑥 𝑖 ∈ 𝑄 𝑖 and 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ], let 𝑓 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) = 1 (𝑔 𝑖,𝑘 ( 𝑥 𝑖 ,𝑊 𝑖,𝑘 )) 2 . It follows from the definition of 𝑔 𝑖,𝑘 in (2) that 𝑓 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) = ((𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ).𝑀 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) -1 , where 𝑀 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) = 𝑊 𝑖,𝑘 [(𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 ] 2 + 1 𝑊 𝑖,𝑘 [𝐷 𝑖,𝑘 -(𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 ] 2 + 2[(𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 ] [(𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 -𝐷 𝑖,𝑘 ].
In order to simplify the notation, for the rest of the proof, we write 𝑀 𝑖,𝑘 (resp. 𝑓 𝑖,𝑘 ) instead of 𝑀 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) (resp.

𝑓 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 )). It is clear that the (-2)concavity of 𝑔 𝑖,𝑘 is equivalent to the convexity of 𝑓 𝑖,𝑘 on 𝑄 𝑖 . In order to prove the convexity of 𝑓 𝑖,𝑘 , we prove that the Hessian matrix of 𝑓 𝑖,𝑘 with respect to 𝑥 𝑖 is positive semidefinite on 𝑄 𝑖 , for any 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ]. Let ∇ 𝑥 𝑖 𝑓 𝑖,𝑘 be the gradient vector of 𝑓 𝑖,𝑘 with respect to 𝑥 𝑖 and 𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 be the Hessian matrix of 𝑓 𝑖,𝑘 with respect to 𝑥 𝑖 . Let ℎ(𝑥 𝑖 ) = (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 . The gradient vector of ℎ is given as follows

∇ 𝑥 𝑖 ℎ(𝑥 𝑖 ) = 2Σ 𝑖,𝑘 𝑥 𝑖 ,
and the gradient vector of 𝑀 𝑖,𝑘 with respect to 𝑥 𝑖 is given as follows

∇ 𝑥 𝑖 𝑀 𝑖,𝑘 = 2[𝑊 𝑖,𝑘 (𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 + (𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 -𝐷 𝑖,𝑘 ]. 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 .
Since 𝑓 𝑖,𝑘 = ℎ(𝑥 𝑖 ).𝑀 -1 𝑖,𝑘 , the gradient vector of 𝑓 𝑖,𝑘 with respect to 𝑥 𝑖 can be written as follows

∇ 𝑥 𝑖 𝑓 𝑖,𝑘 = ∇ 𝑥 𝑖 ℎ(𝑥 𝑖 ).𝑀 -1 𝑖,𝑘 + ℎ(𝑥 𝑖 ).∇ 𝑥 𝑖 (𝑀 -1 𝑖,𝑘 ).
We can write 𝑀 -1 𝑖,𝑘 = 𝑢 • 𝑀 𝑖,𝑘 , where 𝑢(𝑥) = 1 𝑥 . By the chain rule of composite function in calculus, the gradient vector of 𝑀 -1 𝑖,𝑘 is given by

∇ 𝑥 𝑖 (𝑀 -1 𝑖,𝑘 ) = 𝑢 ′ (𝑀 𝑖,𝑘 ).∇ 𝑥 𝑖 𝑀 𝑖,𝑘 = -1 𝑀 2 𝑖,𝑘 .2[𝑊 𝑖,𝑘 (𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 + (𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 -𝐷 𝑖,𝑘 ]. 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 ,
which in turn implies that, for any

(𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ∈ 𝑄 𝑖 × [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ] ∇ 𝑥 𝑖 𝑓 𝑖,𝑘 = 2𝑀 -1 𝑖,𝑘 Σ 𝑖,𝑘 𝑥 𝑖 -2𝑀 -2 𝑖,𝑘 .ℎ(𝑥 𝑖 ).[𝑊 𝑖,𝑘 (𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 + (𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 -𝐷 𝑖,𝑘 ]. 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 . (19) 
Note that the Hessian matrix of 𝑓 𝑖,𝑘 with respect to 𝑥 𝑖 can be written equivalently as follows

𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 = ∇ 𝑥 𝑖 ∇ 𝑥 𝑖 𝑓 𝑖,𝑘 ⊤ .
Then, it suffices to derive the term on the right of ( 19) by 𝑥 𝑖 . Let 𝑣(𝑥) = 1 𝑥 2 , 𝑟 (𝑥 𝑖 ) = Σ 𝑖,𝑘 𝑥 𝑖 , 𝑠(𝑥 𝑖 ) = 𝑊 𝑖,𝑘 (𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 + (𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 -𝐷 𝑖,𝑘 , then the gradient vector of 𝑓 𝑖,𝑘 with respect to 𝑥 𝑖 is given by

∇ 𝑥 𝑖 𝑓 𝑖,𝑘 = 2.𝑀 -1 𝑖,𝑘 .𝑟 (𝑥 𝑖 ) -2.𝑣 • 𝑀 𝑖,𝑘 .ℎ(𝑥 𝑖 ).𝑠(𝑥 𝑖 ). 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 . (20) 
Using (20), we get the Hessian matrix as

𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 =2.∇ 𝑥 𝑖 (𝑀 -1 𝑖,𝑘 ).[𝑟 (𝑥 𝑖 )] ⊤ + 2.𝑀 -1 𝑖,𝑘 .∇ 𝑥 𝑖 𝑟 (𝑥 𝑖 ) -2.𝑣 • 𝑀 𝑖,𝑘 .ℎ(𝑥 𝑖 ).∇ 𝑥 𝑖 𝑠(𝑥 𝑖 ). 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 ⊤ -2.∇ 𝑥 𝑖 (𝑣 • 𝑀 𝑖,𝑘 ).ℎ(𝑥 𝑖 ).𝑠(𝑥 𝑖 ). 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 ⊤ -2.𝑣 • 𝑀 𝑖,𝑘 ∇ 𝑥 𝑖 ℎ(𝑥 𝑖 ).𝑠(𝑥 𝑖 ). 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 ⊤ =𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸,
where

𝐴 = 2.∇ 𝑥 𝑖 (𝑀 -1 𝑖,𝑘 ).[𝑟 (𝑥 𝑖 )] ⊤ , 𝐵 = 2.𝑀 -1 𝑖,𝑘 .∇ 𝑥 𝑖 𝑟 (𝑥 𝑖 ), 𝐶 = -2.𝑣 • 𝑀 𝑖,𝑘 .ℎ(𝑥 𝑖 ).∇ 𝑥 𝑖 𝑠(𝑥 𝑖 ). 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 ⊤ , 𝐷 = -2.∇ 𝑥 𝑖 (𝑣 • 𝑀 𝑖,𝑘 ).ℎ(𝑥 𝑖 ).𝑠(𝑥 𝑖 ). 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 ⊤ , 𝐸 = -2.𝑣 • 𝑀 𝑖,𝑘 .∇ 𝑥 𝑖 ℎ(𝑥 𝑖 ).𝑠(𝑥 𝑖 ). 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 ⊤ .
We can verify that the following equations hold

(i) ∇ 𝑥 𝑖 (𝑀 -1 𝑖,𝑘 ) = -1 𝑀 2 𝑖,𝑘 .2𝑠(𝑥 𝑖 ). 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 , ∇ 𝑥 𝑖 𝑟 (𝑥 𝑖 ) = Σ 𝑖,𝑘 , (ii) ∇ 𝑥 𝑖 𝑠(𝑥 𝑖 ) = 𝑊 𝑖,𝑘 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 , ∇ 𝑥 𝑖 ℎ(𝑥 𝑖 ) = 2Σ 𝑖,𝑘 𝑥 𝑖 (iii) ∇ 𝑥 𝑖 (𝑣 • 𝑀 𝑖,𝑘 ) = 𝑣 ′ (𝑀 𝑖,𝑘 ).∇ 𝑥 𝑖 𝑀 𝑖,𝑘 = -2 𝑀 3 𝑖,𝑘
.2[𝑊 𝑖,𝑘 (𝑥 𝑖 ) ⊤ 𝛾 𝑖,𝑘 + (𝑥 𝑖 ) ⊤ 𝜇 𝑖,𝑘 -𝐷 

⊤

. Therefore, the Hessian matrix of 𝑓 𝑖,𝑘 with respect to 𝑥 𝑖 can be rewritten as

𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 =𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸 = -4𝑠(𝑥 𝑖 ) 𝑀 2 𝑖,𝑘 1 𝑊 𝑖,𝑘 Σ 𝑖,𝑘 𝑥 𝑖 (𝜇 𝑖,𝑘 ) ⊤ + 1 𝑊 𝑖,𝑘 𝜇 𝑖,𝑘 (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 + Σ 𝑖,𝑘 𝑥 𝑖 (𝛾 𝑖,𝑘 ) ⊤ + 𝛾 𝑖,𝑘 (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 + 2 𝑀 𝑖,𝑘 Σ 𝑖,𝑘 + 6ℎ(𝑥 𝑖 ) 𝑀 2 𝑖,𝑘
𝑊 𝑖,𝑘 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 . 𝛾 

-2𝑠(𝑥 𝑖 ) 1 𝑊 𝑖,𝑘 Σ 𝑖,𝑘 𝑥 𝑖 (𝜇 𝑖,𝑘 ) ⊤ + 1 𝑊 𝑖,𝑘 𝜇 𝑖,𝑘 (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 + Σ 𝑖,𝑘 𝑥 𝑖 (𝛾 𝑖,𝑘 ) ⊤ + 𝛾 𝑖,𝑘 (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 . (21) 
We prove that the quadratic form of 𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 at 𝑧 𝑖 ∈ R 𝑑 𝑖 is positive, for any 𝑧 𝑖 ∈ R 𝑑 𝑖 and (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ∈ 𝑄 𝑖 × [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ], i.e.,

(𝑧 𝑖 ) ⊤ 𝐻 𝑥 𝑓 𝑖,𝑘 𝑧 𝑖 ≥ 0. ( 22 
)
In fact, by taking the quadratic from of (21) at 𝑧 𝑖 , we have

(𝑧 𝑖 ) ⊤ (𝑀 𝑖,𝑘 ) 2 2 .𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 𝑧 𝑖 = 𝑀 𝑖,𝑘 (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 + 3ℎ(𝑥 𝑖 ) √︁ 𝑊 𝑖,𝑘 ((𝑧 𝑖 ) ⊤ 𝛾 𝑖,𝑘 ) + 1 √ 𝑊 𝑖,𝑘 ((𝑧 𝑖 ) ⊤ 𝜇 𝑖,𝑘 ) 2 -4𝑠(𝑥 𝑖 ) ((𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ) (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 + 1 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 . ( 23 
)
Note that the following inequalities hold

(i) -4𝑠(𝑥 𝑖 ) ((𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ) (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 + 1 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 ≥ -4|𝑠(𝑥 𝑖 )|.|(𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 |. (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 + 1 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 , (ii) |(𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 | ≤ √︁ (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 , (iii) (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 + 1 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 ≤ (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 + 1 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 , (24) 
where (i) and (iii) are trivial. In order to prove (ii), let 𝑒 1 = (𝑧 𝑖 ) ⊤ (Σ 𝑖,𝑘 ) 1 2 , 𝑒 2 = (𝑥 𝑖 ) ⊤ (Σ 𝑖,𝑘 ) 1 2 , then by Cauchy-Schwarz inequality, (ii) is rewritten as

|𝑒 1 (𝑒 2 ) ⊤ | ≤ ∥𝑒 1 ∥ 2 ∥𝑒 2 ∥ 2 .
It follows from (i) -(iii) of ( 24) that

-4𝑠(𝑥 𝑖 ) ((𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ) (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 + 1 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 ≥ -4|𝑠(𝑥 𝑖 )|. √︁ (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 . (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 + 1 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 . ( 25 
)
Then, from ( 23) and ( 25), we get

(𝑧 𝑖 ) ⊤ (𝑀 𝑖,𝑘 ) 2 2 .𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 𝑧 𝑖 ≥ 𝑀 𝑖,𝑘 (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 + 3ℎ(𝑥 𝑖 ) √︁ 𝑊 𝑖,𝑘 ((𝑧 𝑖 ) ⊤ 𝛾 𝑖,𝑘 ) + 1 √ 𝑊 𝑖,𝑘 ((𝑧 𝑖 ) ⊤ 𝜇 𝑖,𝑘 ) 2 -4 𝑠(𝑥 𝑖 ) √︁ (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 + 1 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 . Note that |𝑠(𝑥 𝑖 )| = √︁ 𝑊 𝑖,𝑘 𝑀 𝑖,𝑘 and 3ℎ(𝑥 𝑖 ) √ 𝑊 𝑖,𝑘 ((𝑧 𝑖 ) ⊤ 𝛾 𝑖,𝑘 ) + 1 √ 𝑊 𝑖,𝑘 ((𝑧 𝑖 ) ⊤ 𝜇 𝑖,𝑘 ) 2 ≥ 0, which in turn implies that (𝑧 𝑖 ) ⊤ (𝑀 𝑖,𝑘 ) 2 2 .𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 𝑧 𝑖 ≥ 𝑀 𝑖,𝑘 (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 -4 √︁ 𝑀 𝑖,𝑘 √︁ (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 √︁ (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 √︁ 𝑊 𝑖,𝑘 |(𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 | + 1 √ 𝑊 𝑖,𝑘 |(𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 | . ( 26 
)
Assume that 𝑧 𝑖 ≠ 0. Dividing both sides of ( 26) by ((𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 ) ((𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ), we have

(𝑧 𝑖 ) ⊤ ( 𝑀 𝑖,𝑘 ) 2 2 .𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 𝑧 𝑖 ((𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 ) ((𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ) ≥ 𝑀 𝑖,𝑘 (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 -4 √︄ 𝑀 𝑖,𝑘 (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 √︁ 𝑊 𝑖,𝑘 (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 √︁ (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 + 1 √ 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 √︁ (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 . ( 27 
)
Note that 𝑀 𝑖,𝑘 ( 𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 = [𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 )] 2 . Since 𝑥 𝑖 ∈ 𝑄 𝑖 and 𝑄 𝑖 is a subset of 𝑘 ∈ 𝐽 𝑖 Ω 𝑖,𝑘 , then 𝑥 𝑖 ∈ Ω 𝑖,𝑘 , for any 𝑘 ∈ 𝐽 𝑖 . Then, for any 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ], it follows from the definition of Ω 𝑖,𝑘 in (12) that 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) > 0.

Therefore, we can write √︃ 𝑀 𝑖,𝑘 ( 𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 = 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) and ( 27) is equivalent to the following inequality

(𝑧 𝑖 ) ⊤ ( 𝑀 𝑖,𝑘 ) 2 2 .𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 𝑧 𝑖 ((𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 ) [(𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ] ≥ 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) 2 -4𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) √︁ 𝑊 𝑖,𝑘 (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 √︁ (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 + 1 √ 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 √︁ (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 .
It is easy to see that the following inequalities hold

(i) (𝛾 𝑖,𝑘 ) ⊤ 𝑧 𝑖 √︁ (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 ≤ ||𝛾 𝑖,𝑘 || 2 .||𝑧 𝑖 || 2 √︁ 𝜆 𝑖,𝑘,min .||𝑧 𝑖 || 2 = ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min , (ii) (𝜇 𝑖,𝑘 ) ⊤ 𝑧 𝑖 √︁ (𝑧 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑧 𝑖 ≤ ||𝜇 𝑖,𝑘 || 2 .||𝑧 𝑖 || 2 √︁ 𝜆 𝑖,𝑘,min .||𝑧 𝑖 || 2 = ||𝜇 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min , (iii) √︁ 𝑊 𝑖,𝑘 ≤ √︃ 𝑤 𝑖,𝑘 u , 1 √ 𝑊 𝑖,𝑘 ≤ 1 √︃ 𝑤 𝑖,𝑘 l , which in turn implies that √︁ 𝑊 𝑖,𝑘 (𝛾 𝑖,𝑘 ) ⊤ 𝑧 √ 𝑧 ⊤ Σ 𝑖,𝑘 𝑧 + 1 √ 𝑊 𝑖,𝑘 (𝜇 𝑖,𝑘 ) ⊤ 𝑧 √ 𝑧 ⊤ Σ 𝑖,𝑘 𝑧 ≤ ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u + ||𝜇 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min 1 √︃ 𝑤 𝑖,𝑘 l . ( 28 
)
Then, from ( 27) and ( 28), we get

𝑧 ⊤ ( 𝑀 𝑖,𝑘 ) 2 2 .𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 𝑧 (𝑧 ⊤ Σ 𝑖,𝑘 𝑧) [(𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 𝑥 𝑖 ] ≥ [𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 )] 2 -4𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) ||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 u + ||𝜇 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min 1 √︃ 𝑤 𝑖,𝑘 l . ( 29 
)
Since 𝑥 𝑖 ∈ Ω 𝑖,𝑘 , for any 𝑘 ∈ 𝐽 𝑖 , the term on the right-hand side of ( 29) is positive, which implies that (𝑧 𝑖 ) ⊤ 𝐻 𝑥 𝑖 𝑓 𝑖,𝑘 𝑧 𝑖 ≥ 0. □

Using the abovementioned lemmas, we prove the following convexity result.

Lemma 5. Let Assumption 2 hold. Then, 𝑆 𝑖 𝛼 𝑖 is a convex set, for all 𝑖 ∈ 𝐻. Proof. Let 𝛼 𝑖 ∈ (𝛼 * 𝑖 , 1], 𝜆 ∈ (0, 1) and 𝑦 1 , 𝑦 2 ∈ 𝑆 𝑖 𝛼 𝑖 . We will show that 𝜆𝑦 1 + (1 -𝜆)𝑦 2 ∈ 𝑆 𝑖 𝛼 𝑖 . Consider 4 cases as follows Case 1: Let 𝑦 1 = 0 or 𝑦 2 = 0. Without loss of generality, we assume that 𝑦 2 = 0. Since 𝑦 0 = 0 ∈ 𝑆 𝑖 𝛼 𝑖 , then P(0 ≤ 𝐷 𝑖 ) ≥ 𝛼 𝑖 . Since 𝛼 𝑖 > 0 and 𝐷 𝑖 is a real vector, we have that 𝐷 𝑖 ≥ 0, which implies that

P(𝑉 𝑖 𝜆𝑦 1 ≤ 𝐷 𝑖 ) ≥ P(𝑉 𝑖 𝑦 1 ≤ 𝐷 𝑖 ) ≥ 𝛼 𝑖 . Therefore, 𝜆𝑦 1 + (1 -𝜆)𝑦 2 ∈ 𝑆 𝑖 𝛼 𝑖 . Case 2: Let 𝑦 1 ≠ 0, 𝑦 2 ≠ 0 and 𝜆𝑦 1 + (1 -𝜆)𝑦 2 = 0. In this case, 𝑦 2 = -𝜆 1-𝜆 𝑦 1 ∈ S𝑖 𝛼 𝑖 and 𝑦 1 ∈ S𝑖 𝛼 𝑖 . It follows from Lemma 1 that (𝜇 𝑖,𝑘 ) ⊤ 𝑦 1 > 𝜆 -1 𝜆 𝐷 𝑖,𝑘 , (𝜇 𝑖,𝑘 ) ⊤ 𝑦 1 < 𝐷 𝑖,𝑘 , ∀ 𝑘 ∈ 𝐽 𝑖 .
This implies that 𝐷 𝑖,𝑘 ≥ 0 for all 𝑘 ∈ 𝐽 𝑖 . Hence,

𝜆𝑦 1 + (1 -𝜆)𝑦 2 = 0 ∈ 𝑆 𝑖 𝛼 𝑖 . Case 3: Let 𝑦 1 ≠ 0, 𝑦 2 ≠ 0 and 0 ∈ Seg(𝑦 1 , 𝑦 2 ), where Seg(𝑦 1 , 𝑦 2 ) = {𝑦 1 + 𝑙 (𝑦 2 -𝑦 1 ), 0 ≤ 𝑙 ≤ 1} .
Then, for any point 𝑥 ∈ Seg(𝑦 1 , 𝑦 2 ), either 𝑥 ∈ Seg(𝑦 1 , 0) or 𝑥 ∈ Seg(0, 𝑦 2 ). It follows from Case 1 that Seg(𝑦 1 , 0) and Seg(0, 𝑦 2 ) are subset of 𝑆 𝑖 𝛼 𝑖 . Therefore,

𝜆𝑦 1 + (1 -𝜆)𝑦 2 ∈ 𝑆 𝑖 𝛼 𝑖 for all 𝜆 ∈ [0, 1]. Case 4: Let 𝑦 1 ≠ 0, 𝑦 2 ≠ 0 such that 0 ∉ Seg(𝑦 1 , 𝑦 2 ). It is clear that Seg(𝑦 1 , 𝑦 2 ) ⊂ Conv( S𝑖 𝛼 𝑖 ).
From Lemmas 3 and 4, 𝑔 𝑖,𝑘 (•, 𝑊 𝑖,𝑘 ) is defined and (-2)-concave on Seg(𝑦 1 , 𝑦 2 ), for all 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ], which implies that

𝑔 𝑖,𝑘 (𝜆𝑦 1 + (1 -𝜆)𝑦 2 , 𝑊 𝑖,𝑘 ) ≥ 𝜆(𝑔 𝑖,𝑘 (𝑦 1 ), 𝑊 𝑖,𝑘 ) -2 + (1 -𝜆) (𝑔 𝑖,𝑘 (𝑦 2 ), 𝑊 𝑖,𝑘 ) -2 -1 2 . ( 30 
)
Since, 𝑦 1 ∈ S𝑖 𝛼 𝑖 and 𝛼 𝑖 > 𝛼 (3) 𝑖 , using Lemma 2, for any 𝑧 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ], the following condition holds

E 𝑊 𝑖,𝑘        Φ √ 𝑧 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑦 1 , 𝑧) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l        > 𝛼 (3) 𝑖 .
Moreover, it follows from the definition of 𝛼 (3)

𝑖

in Assumption 2 that

𝛼 (3) 𝑖 ≥ Φ √︃ 3𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l ,
which in turn implies that

E 𝑊 𝑖,𝑘        Φ √ 𝑧 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑦 1 , 𝑧) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l        > Φ √︃ 3𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l . (31) 
If 𝑔 𝑖,𝑘 (𝑧 1 , 𝑧) ≤ 0, (31) implies that

Φ ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l > Φ √︃ 3𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l ,
which gives a contradiction by the increasing monotonicity of Φ. Therefore, 𝑔 𝑖,𝑘 (𝑦 1 , 𝑧) ≥ 0. For any 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ], we have

√ 𝑧 √ 𝑊 𝑖,𝑘 𝑔 𝑖,𝑘 (𝑦 1 , 𝑧) ≤ √︃ 𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l 𝑔 𝑖,𝑘 (𝑦 1 , 𝑧). (32) 
From ( 31) and ( 32), for any 𝑧 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ], we get

Φ √︃ 𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l 𝑔 𝑖,𝑘 (𝑦 1 , 𝑧) + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l > Φ √︃ 3𝑤 𝑖,𝑘 u √︃ 𝑤 𝑖,𝑘 l + ||𝛾 𝑖,𝑘 || 2 (𝑤 𝑖,𝑘 u -𝑤 𝑖,𝑘 l ) √︁ 𝜆 𝑖,𝑘,min √︃ 𝑤 𝑖,𝑘 l , which in turn implies that 0 < 𝑔 𝑖,𝑘 (𝑦 1 , 𝑊 𝑖,𝑘 ) -2 < 1 3 , ∀ 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ].
Similarly,

0 < 𝑔 𝑖,𝑘 (𝑦 2 , 𝑊 𝑖,𝑘 ) -2 < 1 3 , ∀ 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ].
By applying the non-decreasing function Φ(•) on both side of (30), we can write

Φ 𝑔 𝑖,𝑘 𝜆𝑦 1 + (1 -𝜆)𝑦 2 , 𝑊 𝑖,𝑘 ≥ Φ 𝜆(𝑔 𝑖,𝑘 (𝑦 1 , 𝑊 𝑖,𝑘 )) -2 + (1 -𝜆) (𝑔 𝑖,𝑘 (𝑦 2 , 𝑊 𝑖,𝑘 )) -2 -1 2 , ∀ 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ]. (33) 
Since, Φ(•) is the cumulative distribution function of a standard Normal distribution, it follows from Proposition 4.1 of [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF] that Φ(•) has 𝑟-decreasing density, for any 𝑟 > 0 and 𝑡 * = √ 𝑟, where 𝑡 * refers to Definition 1. By choosing 𝑟 = 3, it follows from Lemma 3.1 of [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF], the function

𝑡 ↦ → Φ 𝑡 -1 2 is concave on (0, 1 
3 ). Therefore, for any 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ], we obtain

Φ 𝜆(𝑔 𝑖,𝑘 (𝑦 1 , 𝑊 𝑖,𝑘 )) -2 + (1 -𝜆) (𝑔 𝑖,𝑘 (𝑦 2 , 𝑊 𝑖,𝑘 )) -2 -1 2 ≥ 𝜆 Φ 𝑔 𝑖,𝑘 (𝑦 1 , 𝑊 𝑖,𝑘 ) + (1 -𝜆) Φ 𝑔 𝑖,𝑘 (𝑦 2 , 𝑊 𝑖,𝑘 ) . (34) 
For any 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ], it follows from ( 33) and (34) that

Φ 𝑔 𝑖,𝑘 (𝜆𝑦 1 + (1 -𝜆)𝑦 2 , 𝑊 𝑖,𝑘 ) ≥ 𝜆 Φ 𝑔 𝑖,𝑘 (𝑦 1 , 𝑊 𝑖,𝑘 ) + (1 -𝜆) Φ 𝑔 𝑖,𝑘 (𝑦 2 , 𝑊 𝑖,𝑘 ) , (35) 
which implies that Φ 𝑔 𝑖,𝑘 (•, 𝑊 𝑖,𝑘 ) is a concave function on Seg(𝑦 1 , 𝑦 2 ), for any 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ]. By taking the expectation value E 𝑊 𝑖,𝑘 on both sides of (35), we deduce that

E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (𝜆𝑦 1 + (1 -𝜆)𝑦 2 , 𝑊 𝑖,𝑘 ) ≥ 𝜆 E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (𝑦 1 , 𝑊 𝑖,𝑘 + (1 -𝜆) E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (𝑦 2 , 𝑊 𝑖,𝑘 (36) 
which in turn implies that the function E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (•, 𝑊 𝑖,𝑘 ) is a concave function on Seg(𝑦 1 , 𝑦 2 ). It follows from the discussion in Definition 2.1 of [START_REF] Henrion | Convexity of chance constraints with independent random variables[END_REF] that log-concavity is a weaker property than concavity.

Therefore, E 𝑊 𝑖,𝑘 Φ 𝑔 𝑖,𝑘 (•, 𝑊 𝑖,𝑘 ) is also a log-concave function on Seg(𝑦 1 , 𝑦 2 ). Then, 𝜆𝑦 1 + (1 -𝜆)𝑦 2 ∈ 𝑆 𝑖 𝛼 𝑖 . □ The convexity of 𝑆 𝑖 𝛼 𝑖 under normal mean-variance mixture distribution was shown in Theorem 2.3 of (Nguyen and Lisser, 2021) when 𝑥 𝑖 satisfy certain conditions (e.g. condition 3 and 4 of Theorem 2.3 (Nguyen and Lisser, 2021)). In the numerical section of (Nguyen and Lisser, 2021), it is shown that these assumptions hold under some strict conditions, e.g., 𝐷 𝑖,𝑘 ≥ 𝑁 × 𝑑 𝑖 , for any 𝑖 ∈ 𝐻, 𝑘 ∈ 𝐽 𝑖 , where 𝑑 𝑖 is the dimension of 𝑥 𝑖 and 𝑁 is a large number (𝑁 ≥ 200 in general). In Lemma 5, we relax the strong conditions on 𝑥 𝑖 used in Theorem 2.3 of [START_REF] Hoang | Convexity conditions for normal mean-variance mixture distribution in joint probabilistic constraints[END_REF] 

𝑖

tends to Φ( √ 3). Therefore, the best possible value of the lower bound on probability level is around 0.96. The earlier work [START_REF] Hoang | Convexity conditions for normal mean-variance mixture distribution in joint probabilistic constraints[END_REF] does not give any theoretical lower bound of 𝛼 𝑖 . The authors presented few examples where the lower bound can go up to 0.99. In practice, a high probability level value (≥ 0.95) for the chance constraints is desirable as it ensures the reliability of the solution. In the next section, we consider a competition between two financial firms whose loss vectors follow normal mean-variance mixture distributions for which 𝛼 * 𝑖 = 0.96, i.e., it attains the best possible theoretical lower bound. The closeness of 𝑆 𝑖 𝛼 𝑖 is a consequence of Proposition 3.1 in [START_REF] Römisch | Stability analysis for stochastic programs[END_REF]. Since 𝑆 𝑖 𝛼 𝑖 is a subset of 𝑆 𝑖 , which is a compact set, we deduce that 𝑆 𝑖 𝛼 𝑖 is a compact set. We show that there exists a Nash equilibrium of the CCG by the following theorem.

Theorem 1. Consider an 𝑛-player CCG defined in Section 1, where 1. Assumptions 1 and 2 hold.

2. For each 𝑖 ∈ 𝐻, we assume that 𝑉 𝑖,𝑘 ∼ 𝑁 𝑀𝑉 𝑀 (𝜇 𝑖,𝑘 , 𝛾 𝑖,𝑘 , Σ 𝑖,𝑘 , 𝑊 𝑖,𝑘 ) and the vectors 𝑉 𝑖,𝑘 are mutually independent, 𝑘 ∈ 𝐽 𝑖 .

Then, there exists a Nash equilibrium of the CCG for any 𝛼 ∈ (𝛼 [START_REF] Ky | Applications of a theorem concerning sets with convex sections[END_REF]. □

Competition of two firms in financial market

We consider a competition model of two firms in a same financial market. Let 𝐽 = {1, . . . , 𝐾 } be the set of portfolios and A 𝑘 be the set of assets in portfolio 𝑘, for 𝑘 ∈ 𝐽. We assume that both firms invest in the same set of portfolios from 𝐽 and the portfolios are pairwise disjoint. Each firm 𝑖 invests its money in the assets. Let 𝑥 𝑖 𝑘 𝑗 be the amount of money that firm 𝑖 invests in asset 𝑗 of portfolio 𝑘. Let 𝑥 𝑖 𝑘 = 𝑥 𝑖 𝑘 𝑗 𝑗 ∈ A 𝑘 be the investment vector of firm 𝑖 in portfolio 𝑘 and 𝑥 𝑖 = 𝑥 𝑖 𝑘 𝑘 ∈ 𝐽 be the strategy vector of firm 𝑖. The strategy set of firm 𝑖 (or the set of investments) is defined as

𝑆 𝑖 =      𝑥 𝑖 | ∑︁ 𝑗 ∈ A 𝑘 , 𝑘 ∈ 𝐽 𝑥 𝑖 𝑘 𝑗 ≤ 𝐵 𝑖 , 𝑥 𝑖 𝑘 𝑗 ≥ 𝜖 𝑖 𝑘 𝑗 , for any 𝑘 ∈ 𝐽, 𝑗 ∈ A 𝑘     
, where 𝐵 𝑖 is the budget of firm 𝑖 and 𝜖 𝑖 𝑘 𝑗 > 0 is the minimal amount firm 𝑖 must invest in asset 𝑗 of portfolio 𝑘. It is clear that 𝑆 𝑖 is a convex and compact set with strictly positive components, for any 𝑖 = 1, 2. The vector (𝑥 1 , 𝑥 

) ⊤ 𝐿 𝑖 𝑘 ≤ 𝐷 𝑖 𝑘 , 𝑘 ∈ 𝐽 ≥ 𝛼 𝑖 , ∀ 𝑖 = 1, 2.
Hence, the feasible strategy set of firm 𝑖 is defined as

𝑆 𝑖 𝛼 𝑖 = 𝑥 𝑖 ∈ 𝑆 𝑖 | P (𝑥 𝑖 𝑘 ) ⊤ 𝐿 𝑖 𝑘 ≤ 𝐷 𝑖 𝑘 , 𝑘 ∈ 𝐽 ≥ 𝛼 𝑖
We assume that for any 𝑖 = 1, 2 and 𝑘 ∈ 𝐽, the random loss vector 𝐿 𝑖 𝑘 follows a normal mean-variance mixture distribution. Let 𝑅 𝑖 𝑘 = -𝐿 𝑖 𝑘 be the random return vector of firm 𝑖 from portfolio 𝑘. We consider the case where each firm wants to minimize their transaction cost which is incurred due to trades from multiple firms. The transaction cost of a firm usually also depends on the investment of other firms [START_REF] Lampariello | Equilibrium selection for multi-portfolio optimization[END_REF]. Therefore, for a given strategy profile (𝑥 1 , 𝑥 2 ), we consider the quadratic transaction cost as follows

TC 𝑖 (𝑥 1 , 𝑥 2 ) = ∑︁ 𝑘 ∈ 𝐽 (𝑥 1 𝑘 + 𝑥 2 𝑘 ) ⊤ Ω 𝑖 𝑘 (𝑥 1 𝑘 + 𝑥 2 𝑘 ),
where TC 𝑖 (𝑥 1 , 𝑥 2 ) is the transaction cost of firm 𝑖 at strategy profile (𝑥 1 , 𝑥 2 ), the positive semidefinite matrix Ω 𝑖 𝑘 represents the market impact of portfolio 𝑘 on firm 𝑖 whose entry at position (𝑟, 𝑠) is the impact of the liquidity of asset 𝑟 on the liquidity of asset 𝑠. The same formulation of transaction cost has been considered in [START_REF] Lampariello | Equilibrium selection for multi-portfolio optimization[END_REF]. The payoff function of firm 𝑖 is defined as follows

𝑢 𝑖 (𝑥 1 , 𝑥 2 ) = ∑︁ 𝑘 ∈ 𝐽 E(𝑅 𝑖 𝑘 ) ⊤ 𝑥 𝑖 𝑘 -TC 𝑖 (𝑥 1 , 𝑥 2 ),
where 𝑘 ∈ 𝐽 E(𝑅 𝑖 𝑘 ) ⊤ 𝑥 𝑖 𝑘 is the expected return of firm 𝑖 at strategy profile (𝑥 1 , 𝑥 2 ). It is clear that the payoff function of firm 𝑖 is a continuous function of the strategy profile and concave with respect to its strategy vector, for every fixed strategy vector of the other firm.

In our case study, we consider two firms with three portfolios where each portfolio consists of three assets, i.e, 𝐽 = {1, 2, 3} and A 𝑘 = {1, 2, 3}, for any 𝑘 ∈ 𝐽. We assume that the random loss vectors follow normal mean-variance mixture distributions, i.e., for any 𝑖 = 1, 2 and 𝑘 ∈ 𝐽, 𝐿 𝑖 𝑘 ∼ NMVM(𝜇 𝑖,𝑘 , 𝛾 𝑖,𝑘 , Σ 𝑖,𝑘 , 𝑊 𝑖,𝑘 ), where 𝜇 𝑖,𝑘 is an 3 × 1 vector taken on [-0.35, 0] 3 and 𝛾 𝑖,𝑘 is a 3 × 1 vectors taken on [0, 0.02] 3 . Σ 𝑖,𝑘 is a 3 × 3 positive definite matrix with all eigen values belong to [5,10] and high values on the main diagonal and it is given by

Σ 𝑖,𝑘 = 𝐴𝐴 ⊤ 3 × max (1, 𝜆 max ) + 𝛽 × 𝐼 3 ,
where 𝐴 is a 3 × 3 random matrix whose all the entries are real numbers in [0, 1], 𝜆 max is the largest eigenvalue of the semidefinite positive matrix 𝐴𝐴 ⊤ 3 , 𝛽 is a real number taken on [5, 9] and 𝐼 3 is 3 × 3 identity matrix. We take negative values of location parameters 𝜇 𝑖,𝑘 and high values on the main diagonal of covariance matrix Σ 𝑖,𝑘 because the firms gain positive return in expectation if they decide to invest but they have to make risky decision. 𝑊 𝑖,𝑘 follows The numerical results below are performed using Python 3.8.8 on an Intel Core i5-1135G7, Processor 2.4 GHz (8M Cache, up to 4.2 GHz), RAM 16G, 512G SSD. We compute a Nash equilibrium using the well-known best response algorithm. The algorithm converges to a Nash equilibrium point (𝑥 1 * , 𝑥 2 * ) given by 𝑥 1 * = [(0.48, 0.51, 0.63), (0.47, 0.31, 0.55), (0.67, 0.25, 0.4)] ,

𝑥 2 * = [(0.52, 0.31, 0.73), (0.57, 0.54, 0.57), (0.47, 0.55, 0.3)] ,

Figure 1 shows that best response algorithm converges after few iterations.

Conclusion

We show that there exists a Nash equilibrium of an 𝑛 player CCG when the random constraint vectors of the joint chance constraint are independent and follow normal mean-variance mixture distributions. The convexity of joint chance constraint, which is crucial for the existence of Nash equilibrium, does not require two strong conditions used in an earlier work [START_REF] Hoang | Convexity conditions for normal mean-variance mixture distribution in joint probabilistic constraints[END_REF]. It only needs a theoretical lower bound on the probability level which is defined in terms of the parameter of the normal mean-variance mixture distribution.
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 1 Figure 1: Convergence of payoffs to a Nash equilibrium.

  1-𝛼 , otherwise.

	Definition 3. An 𝑛-dimensional random vector 𝑈 follows a normal mean-variance mixture distribution with parameters
	(𝜇, 𝛾, Σ, 𝑊), i.e., 𝑈 ∼ NMVM(𝜇, 𝛾, Σ, 𝑊), if we have the following representation:

  Let Assumption 2 hold. Then, for any convex subset 𝑄 𝑖 of 𝑘 ∈ 𝐽 𝑖 Ω 𝑖,𝑘 such that 0 ∉ 𝑄 𝑖 , 𝑔 𝑖,𝑘 (𝑥 𝑖 , 𝑊 𝑖,𝑘 ) is defined and (-2)-concave with respect to 𝑥 𝑖 on 𝑄 𝑖 , for all 𝑖 ∈ 𝐻, 𝑘 ∈ 𝐽 𝑖 and 𝑊 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ].

	𝑖,𝑘 ) > 4	||𝛾 𝑖,𝑘 || 2 √︁ 𝜆 𝑖,𝑘,min	√︃	𝑤 𝑖,𝑘 u +	||𝜇 𝑖,𝑘 || 2 𝜆 𝑖,𝑘,min √︁ √︃	l 𝑤 𝑖,𝑘	.	(17)
	Conv S𝑖 𝛼 𝑖 ⊂					

Since (17) holds for any 𝑧 𝑖,𝑘 ∈ [𝑤 𝑖,𝑘 l , 𝑤 𝑖,𝑘 u ] and 𝑥 𝑖 ∈ S𝑖 𝛼 𝑖 , we get

S𝑖 𝛼 𝑖 ⊂ 𝑘 ∈ 𝐽 𝑖 Ω 𝑖,𝑘 .

(18)

Note that Ω 𝑖,𝑘 is a convex set. Then, by taking the convex hull on both side of (18), 𝑘 ∈ 𝐽 𝑖 Ω 𝑖,𝑘 .

□

Lemma 4.

  𝑖,𝑘 ]. 𝛾 𝑖,𝑘 + 𝑊 𝑖,𝑘 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 . 𝛾 𝑖,𝑘 +

											𝜇 𝑖,𝑘
											𝑊 𝑖,𝑘
	=	-2 𝑀 3	.2𝑠(𝑥 𝑖 ). 𝛾 𝑖,𝑘 +	𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 ,		
			𝑖,𝑘							
	which in turn imply that					
	𝐴 =	-4𝑠(𝑥 𝑖 ) 𝑀 2 𝑖,𝑘	𝛾 𝑖,𝑘 +	𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 (𝑥 𝑖 ) ⊤ Σ 𝑖,𝑘 , 𝐵 =	2 𝑀 𝑖,𝑘	Σ 𝑖,𝑘 , 𝐶 =	𝑖,𝑘 -2ℎ(𝑥 𝑖 ) 𝑀 2	𝜇 𝑖,𝑘 𝑊 𝑖,𝑘	⊤	,
	𝐷 =		8ℎ(𝑥 𝑖 )𝑠 2 (𝑥 𝑖 ) 𝑀 3	𝛾 𝑖,𝑘 +	𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 𝛾 𝑖,𝑘 +	𝜇 𝑖,𝑘 𝑊 𝑖,𝑘	⊤	, 𝐸 =	-4𝑠(𝑥 𝑖 ) 𝑀 2
				𝑖,𝑘							𝑖,𝑘

.

Σ 𝑖,𝑘 𝑥 𝑖 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘 ⊤ . Note that 𝑠 2 (𝑥 𝑖 ) = 𝑊 𝑖,𝑘 𝑀 𝑖,𝑘 . Then, 𝐷 = 8ℎ( 𝑥 𝑖 ) 𝑀 2 𝑖,𝑘

. 𝑊 𝑖,𝑘 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 . 𝛾 𝑖,𝑘 + 𝜇 𝑖,𝑘 𝑊 𝑖,𝑘

  and give the lower bound 𝛼 * 𝑖 , defined in Assumption 2, on the probability level 𝛼 𝑖 for which 𝑆 𝑖 𝛼 𝑖 is a convex set. The lower bound 𝛼 * 𝑖 can be calculated using the parameters of normal mean-variance mixture distribution. If we set ||𝛾 𝑖,𝑘 || 2 and ||𝜇 𝑖,𝑘 || 2 small compared to √︁ 𝜆 𝑖,𝑘,min (which is relevant as shown in Section 4 due to high value of eigenvalue of covariance matrix to model risky decision) and 𝑤 𝑖,𝑘 u ≈ 𝑤 𝑖,𝑘 l , the lower bound of 𝛼 *

	Φ	√	3 ≈ 0.958 because 𝛼 (1) 𝑖	and 𝛼 (2) 𝑖	tend to Φ(0) and 𝛼 (3)	𝑖 tends to

  Given 𝛼 ∈ (𝛼 * 1 , 1] × . . . × (𝛼 * 𝑛 , 1], and subject to Assumption 1, the payoff function 𝑝 𝑖 (𝑥 𝑖 , 𝑥 -𝑖 ) is concave in terms of 𝑥 𝑖 for any 𝑥 -𝑖 ∈ 𝑆 -𝑖 and continuous with respect to 𝑥. By applying Lemma 5, it can be deduced that the feasible strategy set 𝑆 𝑖 𝛼 𝑖 , where 𝑖 ∈ 𝐻, is a convex set for all 𝛼 𝑖 ∈ (𝛼 * 𝑖 , 1]. Additionally, each 𝑆 𝑖 𝛼 𝑖 is a compact set. As a consequence, the existence of a Nash equilibrium in the context of the CCG follows from Theorem 4 presented in

* 1 , 1] × . . . × (𝛼 * 𝑛 , 1], where 𝛼 * 𝑖 𝑖 ∈ 𝐻 refers to Assumption 2. Proof.

  2 ) ∈ 𝑆 1 × 𝑆 2 represents a strategy profile (or an investment profile) of both firms. Let 𝐿 𝑖 𝑘 = 𝐿 𝑖 𝑘 𝑗 𝑗 ∈ A 𝑘 be a random loss vector of firm 𝑖 from portfolio 𝑘. Then, for a given investment vector 𝑥 𝑖 𝑘 , the random loss incurred by firm 𝑖 from portfolio 𝑘 is (𝐿 𝑖 𝑘 ) ⊤ 𝑥 𝑖 𝑘 . Let 𝐷 𝑖 𝑘 be the maximal loss level of firm 𝑖 from portfolio 𝑘 and firm 𝑖 wants to keep its random loss below this level at probability level 𝛼 𝑖 , i.e.,

	P (𝑥 𝑖 𝑘
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