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A B S T R A C T

In this paper, we study the convexity of the linear joint chance constraints. We assume that
the constraint row vectors are elliptically distributed. Further, the dependence of the rows is
modeled by a family of Archimedean copulas, namely, the Gumbel–Hougaard copulas. Under
mild assumptions, we prove the eventual convexity of the feasibility set.

. Introduction

We consider the following linear optimization with joint chance constraints

min 𝑐⊤𝑥

subject to P {𝑉 𝑥 ≤ 𝐷} ≥ 𝑝

𝑥 ∈ 𝑄. (1)

here 𝑄 is a closed convex subset of R𝑛 such that 𝛿l ≤ ‖𝑥‖ ≤ 𝛿u, for any 𝑥 ∈ 𝑄, ‖ ⋅ ‖ denotes the Euclidean norm, 𝛿l and 𝛿u
re strictly positive real numbers, 𝐷 = [𝐷1,… , 𝐷𝐾 ]⊤ ∈ R𝐾 is a deterministic vector, 𝑉 = [𝑣1,… , 𝑣𝐾 ]⊤ is a random matrix with
ize 𝐾 × 𝑛, where 𝑣𝑘 is a random vector in R𝑛, for any 𝑘 = 1, 2,… , 𝐾 and 𝑝 ∈ (0, 1). We denote 𝑆(𝑝) the feasibility set of (1). Let
= {1, 2,… , 𝐾}.
The convexity of chance constraints as well as the analytical properties of the probability function play an important role

n convex optimization which are difficult issues and scarcely studied in the literature. This problem was first introduced by
rékopa [1]. He considers the following chance constraints

P(ℎ(𝑥, 𝜉) ≥ 0) ≥ 𝑝, (2)

here 𝑥 ∈ R𝑛 is a decision vector, 𝜉 ∶ 𝛺 → R𝑚 is a random vector defined on a probability space (𝛺,,P), ℎ ∶ R𝑛 × R𝑚 → R𝑠 and
∈ [0, 1] is a given probability threshold. Theorem 10.2.1 in [1] states that the feasibility set of (2) is convex if P o 𝜉−1 of 𝜉 is a

og-concave probability measure on R𝑚 and the components of ℎ are quasi-concave, where P o 𝜉−1 is the pushforward measure (or
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image measure) of the probability measure P in R𝑚 induced by the random vector 𝜉, denoted by P o 𝜉−1. Mathematically, given a
Lebesgue measure set 𝐵 ⊂ R𝑚, the pushforward measure P o 𝜉−1 of 𝐵 is given by

P ◦ 𝜉−1(𝐵) = P(𝜔 ∈ 𝛺 | 𝜉(𝜔) ∈ 𝐵).

Henrion and Strugarek [2] studied a particular form of (2) by taking ℎ(𝑥, 𝜉) = 𝑔(𝑥) − 𝜉, where 𝑔 ∶ R𝑚 → R𝑛. Hence, they consider
the following form

P(𝜉 ≤ 𝑔(𝑥)) ≥ 𝑝, (3)

where they suppose that the components of 𝜉 are independent. They prove that if the cumulative distribution functions of the
components of 𝜉 have 𝑟− decreasing densities and the components of 𝑔 are 𝑟− concave, the feasibility set of (3) is convex. Henrion
and Strugarek [3] generalized this result to the case where the components of 𝜉 are dependent. He uses the theory of copulas
to model the dependence of the components of 𝜉. Marti [4] studied the differentiation of probability functions by an integral
transformation method. The derivatives of the probability function can be obtained by applying an integral transformation to its
integral representation. Some basic results on the differentiability of a probability function were studied by Kibzun et al. [5]. They
proposed new formulations of the gradient of probability functions in different forms, i.e., integral over the surface, volume, or sum
of surface and volume integrals. Lobo et al. [6] studied some applications of second-order cone program leading to a new approach
for solving chance constraints. A more developed direction was initialized by Henrion and Strugarek [2] which gave a full description
of the structure (not only the convexity) of a one-row linear optimization with a chance constraint by introducing a new notion of
𝑟-decreasing function. Henrion and Strugarek [2] studied the convexity in the case where the constraints are independent. To deal
with the dependent case, Henrion and Strugarek [3], Cheng et al. [7] and Van Ackooij [8,9] used the theory of copulas to model
the dependence of the constraints. They supposed that the distribution of the constraint row vectors are elliptically distributed.
Under high probability threshold 𝑝, they prove the convexity of 𝑆(𝑝). Hong et al. [10] proposed to solve joint chance-constrained
programs by sequential convex approximations. They proved that the solutions of the sequence of approximations converge to a
Karush–Kuhn–Tucker (KKT) point of the original problem. Farshbaf-Shaker et al. [11] proved some properties of chance constraints
in infinite dimensions. They supposed that the feasibility set belongs to a Banach space. Under mild conditions, they proved regularity
properties of the probability function with an application to PDE constrained optimization. Wim van Ackooij and Malick [12] studied
the convexity of the feasibility set in a general framework by using the radial representation of elliptical distributions.

The convexity of chance constraints has been used to show the existence of a Nash equilibrium in chance-constrained games
[13–15]. Nguyen et al. [13] assume that the random constraint vectors follow elliptical distributions and show that there exists a
Nash equilibrium of the chance-constrained game. Peng et al. [14,15] show a similar result by assuming that the random constraint
vectors follow either Normal distributions or mixture of elliptical distributions.

The convexity of chance constraints could significantly impact the fields of operations research, logistics, supply chain
management, financial risk management, and many others, by providing more effective ways to handle uncertainties. Here are
some of the advantages and potential real-world applications.

• Efficient Solution Methods: If chance constraints are shown to be convex, more efficient solution methods (such as interior-
point methods) can be applied to solve the problem, saving time and computational resources. This is particularly useful in
large-scale stochastic optimization problems where computational efficiency is critical.

• Quality of Solution: Convex problems have the property that any local optimum is also a global optimum. Therefore, if the
chance constraints are convex, we have the guarantee that if a local optimum is also a global optimum. This leads to better
decision making in practical situations.

• Robustness and Certainty: Convexity of chance constraints allows for a higher level of robustness and certainty in the
solutions obtained. Convex problems are less susceptible to changes in the data. This is especially beneficial in real-world
scenarios where data can often change.

• Modeling Flexibility: The convexity of chance constraints could increase the modeling flexibility, allowing researchers and
practitioners to model complex, real-world situations more accurately.

Chance constraints can be used in operations research to handle the uncertainty in decision-making processes. Here are a few
concrete examples

• In supply chain optimization problems, there can be uncertainty in demand, transportation costs, and delivery times. Using
chance constraints, a supply chain manager could design a distribution network so that the probability of meeting customer
demand is at least a certain percentage. This ensures that the supply chain is robust enough to meet demand under varying
conditions, which could reduce costs associated with stockouts or overstocking.

• In portfolio optimization, an investor may wish to ensure that the probability of the portfolio’s return falling below a certain
level is minimized. This can be formulated as a chance constraint optimization problem, where the objective is to maximize
the expected return subject to a chance constraint on the portfolio’s return.

• In renewable energy planning, power production from sources like wind and solar is uncertain. Chance constraints can be
used to ensure that a certain level of power demand is met with a high probability, given the uncertainty in renewable energy
production. For example, an energy planner might need to decide how much backup capacity to maintain, given the uncertainty
2

in wind power production.
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• In hospital resource allocation, chance constraints can be used to make sure there is a high probability of having enough
resources (beds, doctors, nurses, medical supplies) to meet patient demand. For example, a hospital could use chance
constraints to decide how many operating rooms to keep open, given the uncertainty in the number of surgeries that will
need to be performed.

In this paper, we study the convexity of the feasible set 𝑆(𝑝) when the row vectors 𝑣𝑖 follow an elliptical distribution and the
ependence of the random constraint vectors is captured by a Gumbel–Hougaard copula. We derive a new reformulation of the joint
hance constraints and prove the convexity of 𝑆(𝑝) under mild conditions. Our main contributions can be summarized as follows

• Compared with [3,8], we consider the chance constraints with random matrix.
• Compared with the convexity results in [2,12], we consider the dependent rows with copula.
• Cheng et al. [7] consider the joint chance constraints defined in (1). They assume that the dependence of the row vectors
𝑣⊤𝑖 , 𝑖 ∈ 𝐽 follows a copula independently of 𝑥 (cf. Assumption 2.21 [7]). In our paper, we prove the convexity of 𝑆(𝑝) without
this strong assumption.

his paper is organized as follows. In Section 2, we recall some basic concepts and preliminary results. We propose a new
eformulation of the joint chance constraints in Section 2.1. Next, we present some theoretical results in Section 2.2 and Section 3
hich are useful to prove the convexity of the feasibility set 𝑆(𝑝) in Section 4 and show some numerical results. We conclude the

paper in Section 5.

2. Basic concepts and preliminary results

In this section, we recall some useful definitions and propositions for our subsequent analysis.

Definition 1. An 𝑛-dimensional random vector 𝑋 follows a spherical distribution if there exists a function 𝛹 ∶ R → R such that
he characteristic function 𝜙𝑋 (𝑡) of 𝑋 is given by

𝜙𝑋 (𝑡) = E(𝑒𝑖𝑡⊤𝑋 ) = 𝛹 (𝑡⊤𝑡).

The function 𝛹 is called a characteristic generator of the spherical distribution.

Definition 2. An 𝑛-dimensional random vector 𝑈 follows an elliptical distribution with location parameter 𝜇, positive definite scale
matrix 𝛴 and characteristic generator 𝛹 (in short 𝑈 ∼ Ellip(𝜇,𝛴, 𝛹 )), if we have the following representation

𝑈 =̂𝜇 + 𝐴𝑋,

where 𝑋 follows a spherical distribution with a characteristic generator 𝛹 , 𝐴 ∈ R𝑛×𝑛 such that 𝐴𝐴⊤ = 𝛴 and 𝜇 ∈ R𝑛; =̂ implies that
the both sides have the same distribution.

The probability density function of all the distributions from elliptical family does not always exist. Whenever it exists, it is of
the form

𝑓𝑈 (𝑧) =
𝑐

√

det(𝛴)
𝑔den

(
√

(𝑧 − 𝜇)⊤𝛴−1(𝑧 − 𝜇)
)

,

where 𝑔den is a nonnegative function called radial density and 𝑐 > 0 is a normalization factor which makes 𝑓𝑈 a probability density
function.

Definition 3. A function 𝑓 ∶ 𝑄 → (0,+∞) is 𝑟-concave on a set 𝑄 ⊂ R𝑠 for a given 𝑟 ∈ (−∞,+∞) if for any 𝑥, 𝑦 ∈ 𝑄 and 𝑦 ∈ [0, 1],

𝑓 (𝑦𝑥 + (1 − 𝑦)𝑦) ≥ [𝑦𝑓 (𝑥)𝑟 + (1 − 𝑦)𝑓 (𝑦)𝑟]
1
𝑟 , when 𝑟 ≠ 0,

𝑓 (𝑦𝑥 + (1 − 𝑦)𝑦) ≥ 𝑓 (𝑥)𝑦𝑓 (𝑦)1−𝑦, otherwise.

Definition 4. A real function 𝑓 ∶ R → R is 𝑟-decreasing for some real number 𝑟 ∈ R, if 𝑓 is continuous on (0,+∞) and there exists
some strictly positive real number 𝑡∗ such that the function 𝑡 ↦ 𝑡𝑟𝑓 (𝑡) is strictly decreasing on (𝑡∗,+∞).

Table 1 presents some 1-dimensional spherical distributions with 𝑟-decreasing densities for some values of 𝑟 and their thresholds
𝑡∗ [13].

Definition 5. A function 𝐶 ∶ [0, 1]𝐾 → [0, 1] is a 𝐾-dimensional copula if 𝐶 is a joint CDF of a 𝐾-dimensional random vector, on
the unit cube [0, 1]𝐾 , whose marginals are uniformly distributed on [0, 1].

Proposition 1 (Sklar’s Theorem). Let 𝐹 ∶ R𝐾 → [0, 1] be a joint CDF of a 𝐾-dimensional random vector and 𝐹1,… , 𝐹𝐾 are the marginal
CDFs. Then, there exists a 𝐾-dimensional copula 𝐶 such that

𝐹 (𝑧) = 𝐶
(

𝐹 (𝑧 ),… , 𝐹 (𝑧 )
)

.

3

1 1 𝐾 𝐾
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Table 1
Typical 1-dimensional spherical distributions with 𝑟-decreasing densities and their thresholds 𝑡∗.
Distribution Radial density 𝑟 𝑡∗

Normal 𝑒−
1
2
𝑢2 𝑟 > 0

√

𝑟

𝑡
(

1 + 1
𝜈
𝑢2
)−(1+𝜈)∕2

, 𝜈 > 0, 𝜈 integer 0 < 𝑟 < 𝜈 + 1
√

𝑟𝜈
𝜈+1−𝑟

Laplace 𝑒−|𝑢| 𝑟 > 0 𝑟
√

2

Kotz type 𝑢2(𝑁−1)𝑒−𝑞𝑢2𝑠 , 𝑞, 𝑠 > 0, 𝑁 > 1
2

𝑟 > 2(1 −𝑁) 2𝑠
√

2(𝑁−1)+𝑟
2𝑞𝑠

Pearson type VII
(

1 + 𝑢2

𝑚

)−𝑁
, 𝑚 > 0, 𝑁 > 1

2
0 < 𝑟 < 2𝑁

√

𝑟𝑚
2𝑁−𝑟

Table 2
Selected types of strictly Archimedean copulas.
Type of copula Parameter 𝜃 Generator 𝜓𝜃 (𝑡)

Independent – -log(𝑡)
Gumbel–Hougaard 𝜃 ≥ 1 [− log(𝑡)]𝜃

Frank 𝜃 > 0 − log
(

𝑒−𝜃𝑡−1
𝑒−𝜃−1

)

Clayton 𝜃 > 0 1
𝜃
(𝑡𝜃 − 1)

Joe 𝜃 ≥ 1 − log[1 − (1 − 𝑡)𝜃 ]

Moreover, if 𝐹𝑖 is continuous for any 𝑖 = 1,… , 𝐾, then 𝐶 is uniquely given by

𝐶(𝑢) = 𝐹
(

𝐹 (−1)
1 (𝑢1),… , 𝐹 (−1)

𝐾 (𝑢𝐾 )
)

.

roposition 2 (Fréchet–Hoeffding Upper Bound). For any 𝐾−dimensional copula 𝐶 and 𝑢 = [𝑢1,… , 𝑢𝐾 ]⊤ ∈ [0, 1]𝐾 , we have

𝐶(𝑢) ≤ 𝐶𝑀 (𝑢) = min
𝑘=1,…,𝐾

𝑢𝑘.

Definition 6. A 𝐾-dimensional copula 𝐶 is strictly Archimedean if there exists a continuous and strictly decreasing function
𝜓 ∶ (0, 1] → [0,+∞), such that 𝜓(1) = 0, lim𝑡→0 𝜓(𝑡) = +∞, and for any 𝐾-dimensional vector 𝑢 = (𝑢1,… , 𝑢𝐾 ) ∈ [0, 1]𝐾 , we have

𝐶(𝑢) = 𝜓 (−1)

( 𝐾
∑

𝑖=1
𝜓(𝑢𝑖)

)

.

The function 𝜓 is called a generator of the copula 𝐶.

Table 2 presents a selection of some strictly Archimedean copulas with their generators [13].

Definition 7. A function 𝑓 ∶ R → R is 𝐾-monotonic on an open interval 𝐼 ⊆ R for some positive integer 𝐾 ≥ 2, if the following
three conditions hold:

1. 𝑓 is differentiable up to the order (𝐾 − 2) on 𝐼 ,
2. The derivatives of 𝑓 satisfy

(−1)𝑘 𝑑
𝑘

𝑑𝑡𝑘
𝑓 (𝑡) ≥ 0, 0 ≤ 𝑘 ≤ 𝐾 − 2,

for any 𝑡 ∈ 𝐼 ,
3. The function 𝑡 ↦ (−1)𝐾−2 𝑑𝐾−2

𝑑𝑡𝐾−2 𝑓 (𝑡) is nonincreasing and convex on 𝐼 .

Proposition 3 (Theorem 2.2, [16]). Let 𝜓 ∶ (0, 1] → [0,+∞) be a strictly decreasing function such that 𝜓(1) = 0 and lim𝑡→0 𝜓(𝑡) = +∞.
hen, 𝜓 is the generator of a 𝐾-dimensional strictly Archimedean copula if and only if the inverse function 𝜓 (−1) is 𝐾−monotonic on (0,+∞)
nd continuous on [0,+∞).

.1. Reformulation of the probability function

Assume that the random vectors 𝑣𝑖 ∼ Ellip(𝜇𝑖, 𝛴𝑖, 𝛹𝑖), for any 𝑖 ∈ 𝐽 . Let

𝜉𝑖(𝑥) ∶=
𝑣⊤𝑖 𝑥 − 𝜇

⊤
𝑖 𝑥

√

𝑥⊤𝛴𝑖𝑥
, 𝑔𝑖(𝑥) ∶=

𝐷𝑖 − 𝜇⊤𝑖 𝑥
√

𝑥⊤𝛴𝑖𝑥
. (4)

Using the notations in (4), the chance constraint in (1) can be rewritten as follows

P
{

𝜉 (𝑥) ≤ 𝑔 (𝑥), 𝑖 ∈ 𝐽
}

≥ 𝑝.
4

𝑖 𝑖
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It is well known that 𝜉𝑖(𝑥) follows 1−dimensional spherical distribution with characteristic generator 𝛹𝑖 [17]. Our aim is to
eformulate this function in order to study the convexity of 𝑆(𝑝). By Sklar’s Theorem, we have that, there exists a copula 𝐶𝑥 such
hat

𝐶𝑥[𝐹1(𝑔1(𝑥)),… , 𝐹𝐾 (𝑔𝐾 (𝑥))] ≥ 𝑝, (5)

where 𝐶𝑥 is the 𝐾− dimensional copula of the 𝐾-dimensional random vector 𝜉(𝑥) = [𝜉1(𝑥),… , 𝜉𝐾 (𝑥)]⊤ and 𝐹𝑖 is the cumulative
distribution function of 𝜉𝑖(𝑥), for 𝑖 = 1,… , 𝐾. In [7], the authors assume that 𝐶𝑥 does not depend on 𝑥, i.e., there exists a copula
𝐶 such that 𝐶𝑥 = 𝐶, for any 𝑥 ∈ 𝑄 (cf. Assumption 2.21 [7]). We study the general case, where 𝐶𝑥 is a copula, which depends on
𝑥. Assume that for any 𝑥 ∈ 𝑄, 𝐶𝑥 is a strictly Archimedean copula with generator 𝜓𝑥. Then, the constraint (5) can be rewritten as
follows

𝜓 (−1)
𝑥

( 𝐾
∑

𝑖=1
𝜓𝑥(𝐹𝑖(𝑔𝑖(𝑥)))

)

≥ 𝑝. (6)

Using the decreasing monotonicity of 𝜓𝑥, (6) is equivalent to
𝐾
∑

𝑖=1
𝜓𝑥(𝐹𝑖(𝑔𝑖(𝑥))) ≤ 𝜓𝑥(𝑝) (7)

By adding auxiliary variables
{

𝑦𝑖 ≥ 0, 𝑖 ∈ 𝐽
}

, we reformulate (7) into individual chance constraints [7,18]. Since 𝜓𝑥 is positive, (7)
is equivalent to the following constraints

⎧

⎪

⎨

⎪

⎩

(i) 𝜓𝑥(𝐹𝑖(𝑔𝑖(𝑥))) ≤ 𝑦𝑖𝜓𝑥(𝑝), 𝑖 ∈ 𝐽 ,
(ii) 𝑦𝑖 ≥ 0, 𝑖 ∈ 𝐽 ,
(iii) ∑𝐾

𝑖=1 𝑦𝑖 = 1.
(8)

This means that if 𝑥∗ ∈ 𝑆(𝑝) then there exists 𝑦∗ = [𝑦∗1 ,… , 𝑦∗𝐾 ]
⊤ ∈ R𝐾 such that (𝑥∗, 𝑦∗) satisfies constraints (8). On the other hand,

if (𝑥∗, 𝑦∗) is a feasible solution for constraints (8) and 𝑥∗ ∈ 𝑄, then 𝑥∗ ∈ 𝑆(𝑝). Moreover, for 𝑥∗ ∈ 𝑆(𝑝), we can choose 𝑦∗ in order to
satisfy constraints (8) as

𝑦∗𝑖 =
𝜓𝑥∗ (𝐹𝑖(𝑔𝑖(𝑥∗)))

∑𝐾
𝑗=1 𝜓𝑥∗ (𝐹𝑗 (𝑔𝑗 (𝑥∗)))

, ∀ 𝑖 ∈ 𝐽 . (9)

Using the decreasing monotonicity of the generator 𝜓𝑥, constraints (8) can be written as follows

⎧

⎪

⎨

⎪

⎩

(i) 𝐹𝑖(𝑔𝑖(𝑥)) ≥ 𝜓 (−1)
𝑥 (𝑦𝑖𝜓𝑥(𝑝)), 𝑖 ∈ 𝐽 ,

(ii) 𝑦𝑖 ≥ 0, 𝑖 = 1,… , 𝐾,
(iii) ∑𝐾

𝑖=1 𝑦𝑖 = 1.
(10)

In the rest of the paper, we assume that the following assumption holds.

Assumption 1. 𝐶𝑥 is a Gumbel–Hougaard copula, for any 𝑥 ∈ 𝑄, i.e., the generator 𝜓𝑥 is given by

𝜓𝑥(𝑡) = (− log 𝑡)
1
𝜅(𝑥) , (11)

or any (𝑥, 𝑡) ∈ 𝑄 × (0, 1], where 𝜅(𝑥) ∶ 𝑄 → (0, 1] is a strictly positive function.

emark 1. Our aim is to show the concavity of 𝐹𝑖(𝑔𝑖) w.r.t 𝑥 and the joint convexity of 𝜓 (−1)
𝑥 (𝑦𝑖𝜓𝑥(𝑝)) w.r.t (𝑦𝑖, 𝑥).

.2. Concavity of 𝐹𝑖(𝑔𝑖(⋅))

In this section, we will show our main result in Lemma 2 that under Assumption 2, 𝐹𝑖(𝑔𝑖(⋅)) is a concave function on 𝑆(𝑝). Define
n index set 𝐼𝜇 ⊂ 𝐽 such that 𝜇𝑖 ≠ 0 for any 𝑖 ∈ 𝐼𝜇 and 𝜇𝑖 = 0 otherwise. Define a set of real numbers

{

𝑟𝑖 ∣ 𝑖 ∈ 𝐽
}

such that
{

𝑟𝑖 > 1, if 𝑖 ∈ 𝐼𝜇 ,
𝑟𝑖 = 1, if 𝑖 ∉ 𝐼𝜇 .

ssumption 2 (i). The cumulative distribution function 𝐹𝑖 has (𝑟𝑖 + 1)− decreasing densities with the thresholds 𝑡∗𝑖 , for any 𝑖 ∈ 𝐽 .
ii) 𝑝 > 𝑝∗, where

𝑝∗ = max
{

1
2
,max
𝑗∈𝐼𝜇

𝐹𝑖

(

𝑟𝑖 + 1
𝑟𝑖 − 1

𝜆
− 1

2
𝑖,𝑚𝑖𝑛‖𝜇𝑖‖

)

,max
𝑖∈𝐽

𝐹𝑖[𝑡∗𝑖 (𝑟𝑖 + 1)]
}

, (12)

where 𝜆 is the smallest eigenvalue of the positive definite matrix 𝛴 , for any 𝑖 ∈ 𝐽 .
5
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Lemma 1. If Assumption 2 holds, then

Conv(𝑆(𝑝)) ⊂
⋂

𝑗∈𝐼𝜇
𝛺𝑗 ,

where

𝛺𝑗 =
{

𝑥 ∈ 𝑄 ∣ 𝐷𝑗 − 𝜇⊤𝑗 𝑥 >
𝑟𝑗 + 1
𝑟𝑗 − 1

𝜆
− 1

2
𝑗,𝑚𝑖𝑛‖𝜇𝑗‖

√

𝑥⊤𝛴𝑗𝑥
}

,

and 𝐶𝑜𝑛𝑣(𝑆(𝑝)) is the convex hull of 𝑆(𝑝). Moreover, for any 𝑖 = 1, 2,… , 𝐾, 𝑔𝑖 > 0 and 𝑔𝑖 is (−𝑟𝑖)− concave on any convex subset 𝑄𝑖 of
⋂

𝑗∈𝐼𝜇 𝛺
𝑗 .

Proof. The proof is given in Appendix A. □

Using Lemma 1, we prove the following lemma.

Lemma 2. If Assumption 2 holds, then 𝐹𝑖(𝑔𝑖(⋅)) is concave on 𝐶𝑜𝑛𝑣(𝑆(𝑝)), for any 𝑖 ∈ 𝐽 .

Proof. Using Lemma 1, 𝑔𝑖 is (−𝑟𝑖)− concave and 𝑔𝑖 > 0 on Conv(𝑆(𝑝)), for any 𝑖 ∈ 𝐽 . Hence, for any 𝑎 ∈ [0, 1] and 𝑥1, 𝑥2 ∈ 𝑆(𝑝),
we have

𝑔𝑖(𝑎𝑥1 + (1 − 𝑎)𝑥2) ≥ [𝑎𝑔−𝑟𝑖𝑖 (𝑥1) + (1 − 𝑎)𝑔−𝑟𝑖𝑖 (𝑥2)]
− 1
𝑟𝑖 . (13)

As 𝑥1 ∈ 𝑆(𝑝) and 𝑝 > 𝑝∗, the constraint (5) implies that

𝐶𝑥1 [𝐹1(𝑔1(𝑥1)),… , 𝐹𝐾 (𝑔𝐾 (𝑥1))] > 𝑝∗,

hich in turn implies from Proposition 2 and Assumption 2 that

𝐹𝑖(𝑔𝑖(𝑥1)) > 𝑝∗ ≥ 𝐹𝑖[𝑡∗𝑗 (𝑟𝑖 + 1)], ∀ 𝑖 ∈ 𝐽 .

ince, 𝐹𝑖(⋅) is monotonically increasing, we get

𝑔𝑖(𝑥1) > 𝑡∗𝑖 (𝑟𝑖 + 1) > 0,

hich implies that 0 < 𝑔𝑖(𝑥1)−𝑟𝑖 < (𝑡∗𝑖 (𝑟𝑖 +1))−𝑟𝑖 , for any 𝑖 ∈ 𝐽 . Similarly, we obtain the same inequality for 𝑥2. By taking 𝐹𝑖 on both
ides of (13),

𝐹𝑖(𝑔𝑖(𝑎𝑥1 + (1 − 𝑎)𝑥2)) ≥ 𝐹𝑖([𝑎𝑔
−𝑟𝑖
𝑖 (𝑥1) + (1 − 𝑎)𝑔−𝑟𝑖𝑖 (𝑥2)]

− 1
𝑟𝑖 ). (14)

ince 𝐹𝑖(⋅) has (𝑟𝑖 + 1)−decreasing density, from Lemma 3.1 of [2], the function 𝑡 ↦ 𝐹𝑖

(

𝑡−
1
𝑟𝑖

)

is concave on (0, (𝑡∗𝑖 )
−𝑟𝑖 ). Therefore,

e can write

𝐹𝑖([𝑎𝑔
−𝑟𝑖
𝑖 (𝑥1) + (1 − 𝑎)𝑔−𝑟𝑖𝑖 (𝑥2)]

− 1
𝑟𝑖 ) ≥ 𝑎𝐹𝑖(𝑔𝑖(𝑥1)) + (1 − 𝑎)𝐹𝑖(𝑔𝑖(𝑥2)). (15)

rom (14) and (15), we deduce that

𝐹𝑖(𝑔𝑖(𝑎𝑥1 + (1 − 𝑎)𝑥2)) ≥ 𝑎
(

𝐹𝑖(𝑔𝑖(𝑥1))
)

+ (1 − 𝑎)
(

𝐹𝑖(𝑔𝑖(𝑥2))
)

.

Therefore, 𝐹𝑖(𝑔𝑖(⋅)) is concave on Conv(𝑆(𝑝)). □

3. Convexity of 𝝍 (−𝟏)
𝒙 (𝒚𝒊𝝍𝒙(𝒑))

The main result of this section is Lemma 7 which shows that under Assumption 3, 𝑈 is jointly convex. In this section, we assume
that the feasibility set 𝑆(𝑝) is non empty. Let 𝑐l be a real number such that 0 < 𝑐l ≤ 1. Define an index set 𝐼𝐷 ⊂ 𝐽 such that 𝐷𝑖 > 0
for any 𝑖 ∈ 𝐼𝐷 and 𝐷𝑖 ≤ 0 otherwise. For any 𝑖 ∈ 𝐽 , let

𝐺𝑖 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

( log

(

𝐹𝑖

(

𝐷𝑖
√

𝜆𝑖,min 𝛿l
+

‖𝜇𝑖‖
√

𝜆𝑖,min

))

log 𝑝

)

1
𝑐l , if 𝑖 ∈ 𝐼𝐷,

( log

(

𝐹𝑖

(

𝐷𝑖
√

𝜆𝑖,max 𝛿u
+

‖𝜇𝑖‖
√

𝜆𝑖,min

))

log 𝑝

)

1
𝑐l , if 𝑖 ∈ 𝐽∖𝐼𝐷,

where 𝜆𝑖,max is the largest eigenvalue of the positive definite matrix 𝛴𝑖, for any 𝑖 ∈ 𝐽 . Let ℎl ∶= min1≤𝑗≤𝐾 (𝐺𝑗 ) and ℎu ∶= 1−(𝑛−1) ℎl.

emma 3. 0 < ℎ ≤ ℎ < 1. Moreover, given 𝑥 ∈ 𝑆(𝑝) and 𝑦 refers to (9). Hence, ℎ ≤ 𝑦 ≤ ℎ , for any 𝑖 ∈ 𝐽 .
6
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Proof. The proof is given in Appendix B. □

It follows from Lemma 3 that ℎl, ℎu belong to (0, 1). Therefore, we can define

𝜑∗
1 ∶= 𝑐l (logℎu) (log 𝑝) ℎl.

𝜑∗
2 ∶=

(logℎl)2

4𝑐l
+ max

(

[1 + logℎl (1 + (log 𝑝) ℎl)]2, [1 + logℎl 𝑐l (1 + log 𝑝)]2
)

.

𝜔 ∶=
𝜑∗
2

𝜑∗
1
. (16)

emark 2. Since 𝜑∗
1 > 0, then 𝜔 is well-defined. Moreover, 𝜔 does not depend on (𝑥, 𝑦𝑖).

In order to show the convexity of 𝑈 (𝑥, 𝑦𝑖) ∶= 𝜓 (−1)
𝑥 (𝑦𝑖𝜓𝑥(𝑝)), we first show that the Hessian matrix of 𝑈 is positive semidefinite.

The following lemma is a reformulation of the positive semidefiniteness of the Hessian matrix of 𝑈 .

Lemma 4. The positive semidefiniteness of the Hessian matrix of 𝑈 on the convex set 𝑄×[ℎ𝑙 , ℎ𝑢] is equivalent to the positive semidefiniteness
of the following 𝑛-dimensional symmetric matrix

𝑁(𝑥, 𝑦𝑖) =
𝜕2

𝜕𝑦2𝑖
𝑈 (𝑥, 𝑦𝑖) ×𝐻𝑥𝑈 (𝑥, 𝑦𝑖) −

(

▽𝑥
𝜕
𝜕𝑦𝑖

𝑈 (𝑥, 𝑦𝑖)
)(

▽𝑥
𝜕
𝜕𝑦𝑖

𝑈 (𝑥, 𝑦𝑖)
)⊤

, (17)

or any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎ𝑙 , ℎ𝑢], where

𝐻𝑥𝑈 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2𝑈
𝜕𝑥21

𝜕2𝑈
𝜕𝑥1𝜕𝑥2

… 𝜕2𝑈
𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑈
𝜕𝑥2𝜕𝑥1

𝜕2𝑈
𝜕𝑥22

… 𝜕2𝑈
𝜕𝑥2𝜕𝑥𝑛

. . … .

. . … .
𝜕2𝑈
𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑈
𝜕𝑥𝑛𝜕𝑥2

… 𝜕2𝑈
𝜕𝑥2𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, ▽𝑥 =
(

𝜕
𝜕𝑥1

,… , 𝜕
𝜕𝑥𝑛

)⊤
.

roof. The proof is given in Appendix C. □

ssumption 3. We assume that
(𝑖) 𝑝 ≥ 𝑒−1.
(𝑖𝑖) 0 < 𝑐𝑙 ≤ 𝜅(𝑥) ≤ 1, for any 𝑥 ∈ 𝑄.
(𝑖𝑖𝑖) 𝐻𝜅 (𝑥) − 𝜔▽𝑥𝜅(𝑥)(▽𝑥𝜅(𝑥))⊤ is a positive semidefinite matrix for any 𝑥 ∈ 𝑄, where 𝐻𝜅 (𝑥) is the Hessian matrix of 𝜅(𝑥);

▽𝑥𝜅(𝑥) is the gradient vector of 𝜅(𝑥).

Lemma 5. Let

𝜑1(𝑥, 𝑦𝑖) ∶= 𝜅(𝑥) (log 𝑦𝑖)
[

𝜅(𝑥) − 1 + 𝜅(𝑥)(log 𝑝) 𝑦𝜅(𝑥)𝑖

]

.

If Assumption 3 holds, then 𝜑1(𝑥, 𝑦𝑖) ≥ 𝜑∗
1 > 0, for any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎ𝑙 , ℎ𝑢], where 𝜑∗

1 refers to (16).

Proof. Since 0 < 𝑦𝑖 ≤ ℎu < 1, then

(− log 𝑦𝑖) ≥ (− logℎu) > 0. (18)

As 0 < ℎl ≤ 𝑦𝑖 < 1 and 0 < 𝜅(𝑥) ≤ 1, we deduce that 1 ≥ 𝑦𝜅(𝑥)𝑖 ≥ 𝑦𝑖 ≥ ℎl > 0. Note that 1 ≥ − log 𝑝 > 0 (because 𝑒−1 ≤ 𝑝 < 1 by (i) of
Assumption 3). Then, 1 ≥ −(log 𝑝) 𝑦𝜅(𝑥)𝑖 ≥ −(log 𝑝) ℎl > 0. Since 0 < 𝜅(𝑥) ≤ 1 and 1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 ≥ 0, we have

1 − 𝜅(𝑥) − 𝜅(𝑥) log(𝑝).𝑦𝜅(𝑥)𝑖 = 1 − 𝜅(𝑥)(1 + log 𝑝.𝑦𝜅(𝑥)𝑖 )

≥ 1 − (1 + log 𝑝.𝑦𝜅(𝑥)𝑖 ) = −(log 𝑝) 𝑦𝜅(𝑥)𝑖 ≥ −(log 𝑝) ℎl > 0, (19)

for any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎl, ℎu]. Moreover, by (ii) of Assumption 3, we have

𝜅(𝑥) ≥ 𝑐l > 0, ∀ 𝑥 ∈ 𝑄. (20)

Therefore, it suffices to multiply term by term the inequalities (18)–(20) to complete the proof. □

Lemma 6. Let 𝜑2(𝑥, 𝑦𝑖) ∶= 𝜅(𝑥) log(𝑦𝑖)2(1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 )
[

1 − 𝜅(𝑥) − 𝜅(𝑥) (log 𝑝) 𝑦𝜅(𝑥)𝑖

]

+
(

1 + 𝜅(𝑥) (log 𝑦𝑖) + (log 𝑝) (log 𝑦𝑖) 𝑦
𝜅(𝑥)
𝑖 𝜅(𝑥)

)2
. If Assumption 3 holds, 0 < 𝜑2(𝑥, 𝑦𝑖) ≤ 𝜑∗

2, for any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎ𝑙 , ℎ𝑢], where 𝜑∗
2

refers to (16).
7
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0
(

Proof. Since 𝑝 ≥ 𝑒−1, then 0 > log 𝑝 ≥ −1. Using 0 < 𝑦𝜅(𝑥)𝑖 < 1, we have 0 < 1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 < 1. Moreover, as 0 < 𝜅(𝑥) ≤ 1, then
< 𝜅(𝑥) (1+(log 𝑝) 𝑦𝜅(𝑥)𝑖 ) < 1. Let 𝑠 ∶= 𝜅(𝑥) (1+(log 𝑝) 𝑦𝜅(𝑥)𝑖 ). By applying the Cauchy–Schwarz inequality, we deduce that 𝑠(1−𝑠) ≤ 1

4
the equality holds if and only if 𝑠 = 1

2 ). Hence,

𝜅(𝑥)(1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 )
[

1 − 𝜅(𝑥) (1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 )
]

≤ 1
4
,

which in turn implies that

0 < (1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 )
[

1 − 𝜅(𝑥) (1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 )
]

≤ 1
4 𝜅(𝑥)

≤ 1
4 𝑐l

. (21)

Since 1 > 𝑦𝑖 ≥ ℎl > 0, we have 0 > log 𝑦𝑖 ≥ logℎl. Then,

0 < (log 𝑦𝑖)2 ≤ (logℎl)2. (22)

Moreover,

0 < 𝜅(𝑥) ≤ 1. (23)

By multiplying term by term the inequalities (21)–(23), we get

0 < 𝜅(𝑥) log(𝑦𝑖)2(1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 )
[

1 − 𝜅(𝑥) − 𝜅(𝑥) (log 𝑝) 𝑦𝜅(𝑥)𝑖

]

≤
(logℎl)2

4 𝑐l
, (24)

for any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎl, ℎu]. By Assumption 3, we have

(i) 0 < 𝑐l ≤ 𝜅(𝑥) ≤ 1, (ii) 0 < − logℎu ≤ − log 𝑦𝑖 ≤ − logℎl,

(iii) 0 ≤ 1 + log 𝑝 ≤ 1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 ≤ 1 + (log 𝑝) ℎl. (25)

Note that the condition (iii)(25) holds since log 𝑝 < 0 and 1 ≥ 𝑦𝜅(𝑥)𝑖 ≥ ℎl. By multiplying (i) − (iii) of (25) term by term, we get

− logℎl (1 + (log 𝑝) ℎl) ≥ −(log 𝑦𝑖) 𝜅(𝑥)(1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 ) ≥ −(logℎu) 𝑐l (1 + log 𝑝),

which is equivalent to

1 + (logℎl) (1 + (log 𝑝) ℎl) ≤ 1 + (log 𝑦𝑖) 𝜅(𝑥)(1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 ) ≤ 1 + (logℎu) 𝑐l(1 + log 𝑝),

which in turn implies that

0 ≤ [1 + (log 𝑦𝑖) 𝜅(𝑥)(1 + (log 𝑝) 𝑦𝜅(𝑥)𝑖 )]2

≤ max
(

(1 + (logℎl) (1 + (log 𝑝) ℎl))2, (1 + (logℎu) 𝑐l (1 + log 𝑝))2
)

. (26)

Adding (24) and (26) together, completes the proof. □

Lemma 7. If Assumption 3 holds, then 𝑈 is jointly convex on 𝑄 × [ℎ𝑙 , ℎ𝑢].

Proof. Using Lemma 4, it suffices to show the positive semidefiniteness of 𝑁(𝑥, 𝑦𝑖) in (17) for any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎl, ℎu]. Since
𝜓𝑥(𝑡) = (− log 𝑡)

1
𝜅(𝑥) , we have 𝜓 (−1)

𝑥 (𝑡) = 𝑒−𝑡𝜅(𝑥) . Then, we can write

𝑈 (𝑥, 𝑦𝑖) = 𝑒
−

{

𝑦𝑖(− log 𝑝)
1
𝜅(𝑥)

}𝜅(𝑥)

= 𝑝𝑦
𝜅(𝑥)
𝑖 . (27)

We calculate explicitly the partial derivatives of 𝑈 as follows

(i) 𝜕
𝜕𝑦𝑖

𝑈 (𝑥, 𝑦𝑖) = (log 𝑝) 𝑝𝑦
𝜅(𝑥)
𝑖 𝜅(𝑥) 𝑦𝜅(𝑥)−1𝑖 .

(ii) 𝜕2

𝜕𝑦2𝑖
𝑈 (𝑥, 𝑦𝑖) = 𝜅(𝑥) (log 𝑝) 𝑦𝜅(𝑥)−2𝑖 𝑝𝑦

𝜅(𝑥)
𝑖 [𝜅(𝑥) − 1 + 𝜅(𝑥) log(𝑝) 𝑦𝜅(𝑥)𝑖 ].

(iii) ▽𝑥𝑈 (𝑥, 𝑦𝑖) = (log 𝑝) 𝑝𝑦
𝜅(𝑥)
𝑖 (log 𝑦𝑖) 𝑦

𝜅(𝑥)
𝑖 ▽𝑥𝜅(𝑥).

(iv) ▽𝑥
𝜕
𝜕𝑦𝑖

𝑈 (𝑥, 𝑦𝑖) =

(log 𝑝) 𝑦𝜅(𝑥)−1𝑖 𝑝𝑦
𝜅(𝑥)
𝑖 [1 + 𝜅(𝑥) (log 𝑦𝑖) + (log 𝑝) (log 𝑦𝑖) 𝑦

𝜅(𝑥)
𝑖 𝜅(𝑥)] ▽𝑥𝜅(𝑥).

(v) 𝐻𝑥𝑈 (𝑥, 𝑦𝑖) =

𝑝𝑦
𝜅(𝑥)
𝑖 𝑦𝜅(𝑥)𝑖 (log 𝑝) (log 𝑦𝑖) [𝐻𝜅 (𝑥) + (log 𝑦𝑖 + (log 𝑦𝑖) (log 𝑝) 𝑦

𝜅(𝑥)
𝑖 ) ▽𝑥𝜅(𝑥)(▽𝑥𝜅(𝑥))⊤].

Hence, we obtain the following formulations

(i) 𝜕2
2
𝑈 (𝑥, 𝑦𝑖) ×𝐻𝑥𝑈 (𝑥, 𝑦𝑖) = 𝜅(𝑥)(log 𝑝)2𝑦2 𝜅(𝑥)−2𝑖 (log 𝑦𝑖) 𝑝

2 𝑦𝜅(𝑥)𝑖 ×
8

𝜕𝑦𝑖
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[

𝜅(𝑥) − 1 + 𝜅(𝑥) (log 𝑝) 𝑦𝜅(𝑥)𝑖

] [

𝐻𝜅 (𝑥) +▽𝑥𝜅(𝑥)(▽𝑥𝜅(𝑥))⊤(log 𝑦𝑖 + (log 𝑦𝑖) (log 𝑝) 𝑦
𝜅(𝑥)
𝑖 )

]

.

(ii)
(

▽𝑥
𝜕
𝜕𝑦𝑖

𝑈 (𝑥, 𝑦𝑖)
)(

▽𝑥
𝜕
𝜕𝑦𝑖

𝑈 (𝑥, 𝑦𝑖)
)⊤

= (log 𝑝)2 𝑦2 𝜅(𝑥)−2𝑖 𝑝2 𝑦
𝜅(𝑥)
𝑖 ×

(

1 + 𝜅(𝑥) (log 𝑦𝑖) + (log 𝑝) (log 𝑦𝑖) 𝑦
𝜅(𝑥)
𝑖 𝜅(𝑥)

)2
▽𝑥𝜅(𝑥)(▽𝑥𝜅(𝑥))⊤. (28)

Note that (log 𝑝)2 𝑦2𝜅(𝑥)−2𝑖 𝑝2 𝑦
𝜅(𝑥)
𝑖 is a positive common factor of 𝜕2

𝜕𝑦2𝑖
𝑈 (𝑥, 𝑦𝑖) × 𝐻𝑥𝑈 (𝑥, 𝑦𝑖) and

(

▽𝑥
𝜕
𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖)

)(

▽𝑥
𝜕
𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖)

)⊤
.

Then, it follows from (17) and (28) that the positive semidefiniteness of 𝑁(𝑥, 𝑦𝑖) is equivalent to the positive semidefiniteness of
he following matrix

𝑀(𝑥, 𝑦𝑖) =
[

𝜅(𝑥) − 1 + 𝜅(𝑥) (log 𝑝) 𝑦𝜅(𝑥)𝑖

] [

𝐻𝜅 (𝑥) +▽𝑥𝜅(𝑥)(▽𝑥𝜅(𝑥))⊤(log 𝑦𝑖 + (log 𝑦𝑖) (log 𝑝) 𝑦
𝜅(𝑥)
𝑖 )

]

× 𝜅(𝑥) (log 𝑦𝑖) −
(

1 + 𝜅(𝑥) (log 𝑦𝑖) + (log 𝑝) (log 𝑦𝑖) 𝑦
𝜅(𝑥)
𝑖 𝜅(𝑥)

)2
▽𝑥𝜅(𝑥)(▽𝑥𝜅(𝑥))⊤.

ote that 𝑀(𝑥, 𝑦𝑖) can be rewritten as follows

𝑀(𝑥, 𝑦𝑖) = 𝜑1(𝑥, 𝑦𝑖) 𝐻𝜅 (𝑥) − 𝜑2(𝑥, 𝑦𝑖) ▽𝑥𝜅(𝑥)(▽𝑥𝜅(𝑥))⊤,

here 𝜑1(𝑥, 𝑦𝑖) and 𝜑2(𝑥, 𝑦𝑖) refer to Lemmas 5 and 6. By (iii) of Assumption 3, we have 𝐻𝜅 (𝑥) − 𝜔▽𝑥𝜅(𝑥)(▽𝑥𝜅(𝑥))⊤ is a positive
semidefinite matrix for any 𝑥 ∈ 𝑄, where 𝜔 refers to (16). Since 𝜑∗

1 , 𝜑
∗
2 > 0, it is clear that 𝜔 > 0. Moreover, ▽𝑥𝜅(𝑥)(▽𝑥𝜅(𝑥))⊤ is a

positive semidefinite matrix. Hence, 𝐻𝜅 (𝑥) is also a positive semidefinite matrix. By Lemmas 5 and 6, we have that 𝜑1(𝑥, 𝑦𝑖) ≥ 𝜑∗
1 > 0

and 𝜑2(𝑥, 𝑦𝑖) ≤ 𝜑∗
2, for any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎl, ℎu]. Then,

𝑀(𝑥, 𝑦𝑖) ⪰ 𝜑∗
1𝐻𝜅 (𝑥) − 𝜑∗

2▽𝑥𝜅(𝑥)(▽𝑥𝜅(𝑥))⊤ ⪰ 0,

which completes the proof. □

4. Convexity of the feasibility set 𝑺(𝒑)

We showed that if Assumption 2 holds, then 𝐹𝑖(𝑔𝑖(⋅)) is concave on Conv(𝑆(𝑝)), for any 𝑖 ∈ 𝐽 . Moreover, given arbitrarily a real
number 𝑐l such that 0 < 𝑐l ≤ 1, if Assumption 3 holds, then 𝑈 is jointly convex on 𝑄 × [ℎl, ℎu]. We will apply these results to prove
the convexity of the feasibility set 𝑆(𝑝).

Theorem 1. If Assumptions 2 and 3 hold and the feasibility set 𝑆(𝑝) is non empty, then 𝑆(𝑝) is a convex set.

Proof. For any 𝑥1, 𝑥2 ∈ 𝑆(𝑝) and 𝛽 ∈ [0, 1], we show that 𝑥∗ ∶= 𝛽𝑥1 + (1 − 𝛽)𝑥2 ∈ 𝑆(𝑝). In fact, let 𝑦1 ∶= (𝑦11,… , 𝑦1𝐾 ) and
𝑦2 ∶= (𝑦21,… , 𝑦2𝐾 ), where 𝑦1𝑖 and 𝑦2𝑖 , 𝑖 ∈ 𝐽 , are the corresponding values of 𝑦∗𝑖 defined in (9) w.r.t 𝑥1 and 𝑥2, respectively. It
ollows from Lemma 3 that ℎl ≤ 𝑦1𝑖 , 𝑦

2
𝑖 ≤ ℎu, for any 𝑖 ∈ 𝐽 . Moreover, by Lemmas 2 and 7, we have 𝐹𝑖(𝑔𝑖(⋅)) is concave on Conv(𝑆(𝑝))

nd 𝑈 (⋅, ⋅) is jointly convex on 𝑄 × [ℎl, ℎu]. Then, for any 𝑖 ∈ 𝐽 , we have

𝐹𝑖(𝑔𝑖(𝑥∗)) ≥ 𝛽𝐹𝑖(𝑔𝑖(𝑥1)) + (1 − 𝛽)𝐹𝑖(𝑔𝑖(𝑥2))

≥ 𝛽 𝜓 (−1)
𝑥1

(

𝑦1𝑖 𝜓𝑥∗ (𝑝)
)

+ (1 − 𝛽) 𝜓 (−1)
𝑥2

(

𝑦2𝑖 𝜓𝑥∗ (𝑝)
)

= 𝛽𝑈 (𝑥1, 𝑦1𝑖 ) + (1 − 𝛽)𝑈 (𝑥2, 𝑦2𝑖 )

≥ 𝑈 (𝑥∗, 𝛽𝑦1𝑖 + (1 − 𝛽)𝑦2𝑖 ) = 𝜓 (−1)
𝑥∗

(

(𝛽𝑦1𝑖 + (1 − 𝛽)𝑦2𝑖 )𝜓𝑥∗ (𝑝)
)

,

hich in turn implies that (𝑥∗, 𝛽𝑦1 + (1 − 𝛽)𝑦2) satisfies (10). Then, 𝑥∗ ∈ 𝑆(𝑝). □

We are interested in finding an example which fits all the Assumptions in Theorem 1. In the following, we will study a specific
ase which fits Assumptions 3 and 2.

.1. An example of the function 𝜅

In this section, we give an example of 𝜅 which satisfies all the conditions in Assumption 3.

Remark 3. It is not necessary to verify the condition (i) of Assumption 3 since 𝑒−1 ≈ 0.37 and we consider high value of the
probability threshold 𝑝.

Lemma 8. Let 𝑑 be a real number such that 𝑑 < 𝑐𝑙 and 𝑞 ∶ 𝑄 → R be a real-valued function which satisfies the two following conditions.

1. 𝑞 is twice continuously differentiable and convex on 𝑄.
2. log(𝑐𝑙 − 𝑑) ≤ 𝑞(𝑥) ≤ log

[

min
(

1
𝜔 , 1 − 𝑑

)]

, for any 𝑥 ∈ 𝑄, where 𝜔 refers to (16).

𝑞(𝑥)
9

Then, 𝜅(𝑥) ∶= 𝑒 + 𝑑 is a function which satisfies Assumption 3.
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Table 3
Selected 1-dimensional elliptical distributions with 𝑟-decreasing densities and the
value of the threshold 𝑝∗ respectively.
Distribution 𝑝∗

Normal 0.92
Student’s 𝑡 with 2− degrees of freedom 0.84
Student’s 𝑡 with 3− degrees of freedom 0.87
Student’s 𝑡 with 4− degrees of freedom 0.88
Laplace 0.88

Proof. First we verify the condition (ii) of Assumption 3, which can be implied by the assumption log(𝑐l − 𝑑) ≤ 𝑞(𝑥) ≤ log(1 − 𝑑).
ince 𝑞(𝑥) ≤ log( 1𝜔 ), we have 𝑒𝑞(𝑥) ≤ 1

𝜔 , for any 𝑥 ∈ 𝑄. Let 𝜅∗(𝑥) ∶= 𝑒𝑞(𝑥). We have the following formulation

𝐻𝑥 log(𝜅∗(𝑥)) =
𝜅∗(𝑥)𝐻𝑥𝜅∗(𝑥) −▽𝑥𝜅∗(𝑥)(▽𝑥𝜅∗(𝑥))⊤

𝜅∗(𝑥)2
, (29)

where 𝐻𝑥 log(𝜅∗(⋅)) is the Hessian matrix of the function log(𝜅∗(⋅)). As 𝑞 is a convex function on 𝑄 and log(𝜅∗(.)) = 𝑞(.), we deduce
that 𝐻𝑥(log(𝜅∗(𝑥))) is a positive semidefinite matrix for any 𝑥 ∈ 𝑄. It follows from (29) that 𝜅∗(𝑥)𝐻𝑥𝜅∗(𝑥) −▽𝑥𝜅∗(𝑥)(▽𝑥𝜅∗(𝑥))⊤ is
a positive semidefinite matrix. Since 0 < 𝜅∗(𝑥) and ▽𝑥𝜅∗(𝑥)(▽𝑥𝜅∗(𝑥))⊤ is positive semidefinite, we deduce that 𝐻𝑥𝜅∗(𝑥) is positive
semidefinite, for any 𝑥 ∈ 𝑄. Moreover, 𝜅∗(𝑥) ≤ 1

𝜔 , which implies that

1
𝜔
𝐻𝑥𝜅

∗(𝑥) −▽𝑥𝜅
∗(𝑥)(▽𝑥𝜅

∗(𝑥))⊤

is a positive semidefinite matrix. On the other hand, since 𝜅(𝑥) = 𝜅∗(𝑥)+𝑑, then 𝐻𝑥𝜅∗(𝑥) = 𝐻𝑥𝜅(𝑥) and ▽𝑥𝜅∗(𝑥) = ▽𝑥𝜅(𝑥),∀ 𝑥 ∈ 𝑄.
Therefore, the condition (iii) of Assumption 3 holds. □

Next, we take an example function 𝑞 which meets the two conditions in Lemma 8.

Lemma 9. Let 𝑞(𝑥) = ‖𝑥‖2

𝐿 + 𝑧 where 𝐿 > 0, 𝑧 ∈ R are real numbers such that

log(𝑐𝑙 − 𝑑) ≤
1
𝐿
𝛿2𝑙 + 𝑧 ≤

1
𝐿
𝛿2𝑢 + 𝑧 ≤ log

[

min
( 1
𝜔
, 1 − 𝑑

)]

, (30)

where 𝛿𝑙 , 𝛿𝑙 are defined in (1). Then, 𝑞(𝑥) satisfies the two conditions in Lemma 8.

Proof. The first condition is trivial. Since
𝛿2l
𝐿 + 𝑧 = min𝑥∈𝑄 𝑞(𝑥) and 𝛿2u

𝐿 + 𝑧 = max𝑥∈𝑄 𝑞(𝑥), it is clear that the second condition
olds. □

By Lemmas 8 and 9, the function 𝜅(𝑥) = 𝑒
‖𝑥‖2
𝐿 +𝑧 + 𝑑 which satisfies (30) fits all conditions in Assumption 3. It suffices to choose

ppropriate parameters 𝐿, 𝑧 and 𝑑. In fact, (30) is a mild condition. Let 𝑑 be an arbitrary real number in (𝑐l −
1
𝜔 , 𝑐l). As 𝑑 < 𝑐l and

l ≤ 1, We have that log(𝑐l − 𝑑) is well defined and

log(𝑐l − 𝑑) ≤ log
[

min
( 1
𝜔
, 1 − 𝑑

)]

.

Let 𝐿 be an arbitrary real number in
[

𝛿2u−𝛿
2
l

log
[

min
(

1
𝜔 ,1−𝑑

)]

−log(𝑐l−𝑑)
,+∞

)

. We deduce from this condition that

log
[

min
( 1
𝜔
, 1 − 𝑑

)]

− log(𝑐l − 𝑑) ≥
( 1
𝐿
𝛿2u + 𝑧

)

−
( 1
𝐿
𝛿2l + 𝑧

)

> 0.

et 𝑧 be an arbitrary real number in
[

log(𝑐l − 𝑑) −
𝛿2l
𝐿 , log

[

min
(

1
𝜔 , 1 − 𝑑

)]

− 𝛿2u
𝐿

]

. We deduce from this condition that

⎧

⎪

⎨

⎪

⎩

log(𝑐l − 𝑑) ≤
1
𝐿 𝛿

2
l + 𝑧.

1
𝐿 𝛿

2
u + 𝑧 ≤ log

[

min
(

1
𝜔 , 1 − 𝑑

)]

.

Therefore, we can verify that this set of 𝑞(𝑥), 𝑑, 𝐿, 𝑧 satisfy (30).

4.2. Numerical experiments

To verify the 𝑟−decreasing property of a differentiable density 𝑓 (𝑡), we check whether the derivative of 𝑡𝑟𝑓 (𝑡) is strictly negative
for 𝑡 > 𝑡∗(𝑟) > 0, which is equivalent to 𝑟.𝑓 (𝑡) + 𝑡.𝑓 ′(𝑡) < 0, for any 𝑡 > 𝑡∗(𝑟). The thresholds for some typical 1−dimensional spherical
distributions are given in Table 1.

In this section, we study values of 𝑝∗ as defined in (12). All the numerical results are performed using Python 3.8.8 on a PC
with Intel i5 CPU (2.4 GHz), RAM 16G, 512G SSD. Assume that for any 𝑗 ∈ 𝐽 , 𝐹 has the same density. For the sake of illustration,
10

𝑗
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Fig. 1. Surface plot of the probability function 𝑓proba on [−1, 1]2.

Fig. 2. Contour line of the probability function 𝑓proba with 4 levels (0.6, 0.7, 0.8, 0.9).

we set 𝜆
− 1

2
𝑗,min small enough such that 𝐹𝑖

(

𝑟𝑖+1
𝑟𝑖−1

𝜆
− 1

2
𝑖,𝑚𝑖𝑛‖𝜇𝑖‖

)

≤ 𝐹𝑖[𝑡∗𝑖 (𝑟𝑖 + 1)] and take max
(

1
2 , 𝐹𝑖[𝑡

∗
𝑖 (𝑟𝑖 + 1)]

)

as an upper bound of 𝑝∗. We
show in Table 3 the bounds of 𝑝∗ for some typical elliptical distributions. We consider the case with 𝑛 = 2 and 𝐾 = 2, i.e. we have
2 constraints and 2-dimensional decision variable. The parameters are taken as follows: 𝑝 = 0.95, 𝑐l = 0.9, 𝐷1 = 1, 𝐷2 = 0.85, 𝜇1 =
(1, 20)⊤, 𝜇2 = (7, 2)⊤, 𝛿l = 0.2, 𝛿u = 1.5, 𝛴1 = 3 × I2, and 𝛴2 = 30 × I2, where I2 is the 2 × 2-identity matrix. ℎl and ℎu are calculated
as in Section 3. 𝜑∗

1 , 𝜑
∗
2 and 𝜔 are calculated by (16). Let 𝑑 = 𝑐l −

1
2𝜔 , 𝐿 =

𝛿2u−𝛿
2
l

log
(

min
(

1
𝜔 ,1−𝑑

))

−log(𝑐l−𝑑)
and 𝑧 = log

(

min
(

1
𝜔 , 1 − 𝑑

))

− 𝛿2u
𝐿 .

It is easy to see that this set of parameters fits the conditions in Lemmas 8 and 9.
In our simulations, we consider the probability function

𝑓proba(𝑥) = 𝜓 (−1)
𝑥

( 2
∑

𝑖=1
𝜓𝑥(𝐹𝑖(𝑔𝑖(𝑥)))

)

,

where 𝜓𝑥 is defined in (11), 𝐹1 is the cumulative distribution function of a 1− dimensional standard Student’s 𝑡 distribution with
3−degrees of freedom and 𝐹2 is the cumulative distribution function of a 1− dimensional standard Student’s 𝑡 distribution with
4−degrees of freedom, 𝑥 = (𝑥1, 𝑥2)⊤ where 𝑥1, 𝑥2 ∈ [−1, 1]. Fig. 1 shows the curve of function 𝑧 = 𝑓proba(𝑥) on the domain [−1, 1]
and Fig. 2 shows its contour lines with four different levels 0.6, 0.7, 0.8 and 0.9, respectively.
11
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5. Conclusion

In this paper, we studied the convexity of joint chance constraints in the case of elliptical distributions. Further, we modeled
he dependence of random variables in different rows by a Gumbel–Hougaard copula. We come up with new convexity results of
he feasibility set. We simulated our theoretical result by showing the surface plot of the probability function with its contour lines.
t is very clear that the feasibility set is eventually a convex set under high value of the probability level. Further research can be
edicated to other families of copulas.
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ppendix A. Proof of Lemma 1

Let 𝑖 ∈ 𝐼 and 𝑥0 ∈ 𝑆(𝑝). It follows from the constraint (5) that

𝐶𝑥0 [𝐹1(𝑔1(𝑥0)),… , 𝐹𝐾 (𝑔𝐾 (𝑥0))] ≥ 𝑝, ∀ 𝑖 ∈ 𝐽 . (A.1)

By applying Proposition 2, we get 𝐹𝑖(𝑔𝑖(𝑥0)) ≥ 𝑝, ∀𝑖 ∈ 𝐽 , which in turn implies by Assumption 2 that

𝐹𝑖(𝑔𝑖(𝑥0)) > 𝑝∗ ≥ 𝐹𝑖

(

𝑟𝑖 + 1
𝑟𝑖 − 1

𝜆
− 1

2
𝑖,min‖𝜇𝑖‖

)

, ∀𝑖 ∈ 𝐽

ince 𝐹𝑖(⋅) is an increasing function, we have

𝑔𝑖(𝑥0) >
𝑟𝑖 + 1
𝑟𝑖 − 1

𝜆
− 1

2
𝑖,min‖𝜇𝑖‖,

which implies that

𝐷𝑖 − 𝜇⊤𝑖 𝑥0 >
𝑟𝑖 + 1
𝑟𝑖 − 1

𝜆
− 1

2
𝑖,min‖𝜇𝑖‖

√

𝑥⊤0𝛴𝑖𝑥0.

herefore, 𝑆(𝑝) ⊂ ⋂

𝑗∈𝐼 𝛺
𝑗 . For each 𝑗 ∈ 𝐼 , 𝛺𝑗 is a convex set which implies that Conv(𝑆(𝑝)) ⊂ ⋂

𝑗∈𝐼 𝛺
𝑗 . We prove the second part

of Lemma 1 by considering the following two cases:

Case 1: Let 𝑖 ∉ 𝐼𝜇 , then 𝜇𝑖 = 0. By Assumption 2, we have 𝑝 > 1
2 . Let 𝑥0 ∈ 𝑆(𝑝). By applying Proposition 2 on (A.1), we have

𝐹𝑖(𝑔𝑖(𝑥0)) ≥ 𝑝 > 1
2
. (A.2)

Since, 𝐹𝑖 is the CDF of a 1-dimensional real-valued random variable which is symmetric at 0, 𝐹𝑖(0) =
1
2 . From (A.2) we get 𝑔𝑖(𝑥0) > 0

which in turn implies that 𝐷𝑖 − (𝜇𝑖)⊤𝑥0 > 0. Since 𝜇𝑖 = 0, we get 𝐷𝑖 > 0. In conclusion, the proof follows directly from Lemma 3
f [7].

ase 2: Let 𝑖 ∈ 𝐼𝜇 . It follows from Lemma 2 of [7] that the function

𝑓𝑖(𝑥) =

(
√

(𝑥)⊤𝛴𝑖𝑥
𝐷𝑖 − (𝜇𝑖)⊤𝑥

)𝑟𝑖

s a convex function on ⋂

𝑗∈𝐼 𝛺
𝑗 . Therefore, for any 𝑦, 𝑧 ∈ 𝑄𝑖 ⊆

⋂

𝑗∈𝐼𝜇 𝛺
𝑗 and 𝜆 ∈ [0, 1], we have

𝑓𝑖[𝜆𝑦 + (1 − 𝜆)𝑧] ≤ 𝜆𝑓𝑖(𝑦) + (1 − 𝜆)𝑓𝑖(𝑧). (A.3)

Note that 𝑔𝑖(𝑥) =
(

𝑓𝑖(𝑥)
)

−1
𝑟𝑖 on 𝑄𝑖. From (A.3), we can write

𝑔𝑖[𝜆𝑦 + (1 − 𝜆)𝑧] ≥
(

𝜆(𝑔𝑖(𝑦))−𝑟𝑖 + (1 − 𝜆)(𝑔𝑖(𝑧))−𝑟𝑖
)

−1
𝑟𝑖 .

It is clear that 𝑔 > 0 on ⋂

𝛺𝑗 . Hence, 𝑔 is (−𝑟 )-concave on 𝑄𝑖.
12
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Appendix B. Proof of Lemma 3

Let 𝑥 ∈ 𝑆(𝑝) and

𝑦𝑖 =
𝜓𝑥[𝐹𝑖(𝑔𝑖(𝑥))]

∑𝐾
𝑗=1 𝜓𝑥[𝐹𝑗 (𝑔𝑗 (𝑥))]

, ∀ 𝑖 ∈ 𝐽 , (B.4)

where 𝜓𝑥(.) refers to (11). It is easy to see that ∑𝑖∈𝐽 𝑦𝑖 = 1 and 𝑦𝑖 ≥ 0, for any 𝑖 ∈ 𝐽 . We prove that 𝑦𝑖 ≥ 𝐺𝑖, for any 𝑖 ∈ 𝐽 . Consider
two cases as follows:

Case 1: 𝑖 ∈ 𝐼𝐷. It follows from the Cauchy–Schwarz inequality that

| − 𝜇⊤𝑖 𝑥| ≤ ‖𝜇𝑖‖ ‖𝑥‖, ∀ 𝑖 ∈ 𝐽 . (B.5)

By the property of maximal/minimal eigenvalue, we have
√

𝜆𝑖,max‖𝑥‖ ≥
√

𝑥⊤𝛴𝑖𝑥 ≥
√

𝜆𝑖,min‖𝑥‖. (B.6)

Since 𝑥 ∈ 𝑆(𝑝), it follows from the constraint (7) that

0 <
𝐾
∑

𝑗=1
𝜓𝑥[𝐹𝑗 (𝑔𝑗 (𝑥))] ≤ 𝜓𝑥(𝑝). (B.7)

From (4), (B.5)–(B.6) and the fact that ‖𝑥‖ ≥ 𝛿l, we get

𝑔𝑖(𝑥) ≤
𝐷𝑖

√

𝑥⊤𝛴𝑖𝑥
+

| − 𝜇⊤𝑖 𝑥|
√

𝑥⊤𝛴𝑖𝑥
≤

𝐷𝑖
√

𝜆𝑖,min𝛿l
+

‖𝜇𝑖‖
√

𝜆𝑖,min
.

s 𝐹𝑖 is increasing and 𝜓𝑥 is decreasing, we get

𝜓𝑥(𝐹𝑖(𝑔𝑖(𝑥))) ≥ 𝜓𝑥

(

𝐹𝑖

(

𝐷𝑖
√

𝜆𝑖,min𝛿l
+

‖𝜇𝑖‖
√

𝜆𝑖,min

))

. (B.8)

From (B.4), (B.7) and (B.8), we have

𝑦𝑖 ≥
𝜓𝑥

(

𝐹𝑖

(

𝐷𝑖
√

𝜆𝑖,min𝛿l
+ ‖𝜇𝑖‖

√

𝜆𝑖,min

))

𝜓𝑥(𝑝)
=

( log
(

𝐹𝑖

(

𝐷𝑖
√

𝜆𝑖,min𝛿l
+ ‖𝜇𝑖‖

√

𝜆𝑖,min

))

log 𝑝

)
1
𝜅(𝑥)

. (B.9)

Since 0 ≤ 𝑦𝑖 ≤ 1, the following condition holds

0 <
log

(

𝐹𝑖

(

𝐷𝑖
√

𝜆𝑖,min𝛿l
+ ‖𝜇𝑖‖

√

𝜆𝑖,min

))

log 𝑝
≤ 1,

which in turn implies by (ii) of Assumption 3 that

( log
(

𝐹𝑖

(

𝐷𝑖
√

𝜆𝑖,min𝛿l
+ ‖𝜇𝑖‖

√

𝜆𝑖,min

))

log 𝑝

)
1
𝜅(𝑥)

≥

( log
(

𝐹𝑖

(

𝐷𝑖
√

𝜆𝑖,min𝛿l
+ ‖𝜇𝑖‖

√

𝜆𝑖,min

))

log 𝑝

)
1
𝑐l
= 𝐺𝑖. (B.10)

Then, if follows from (B.9) and (B.10) that 𝑦𝑖 ≥ 𝐺𝑖.

Case 2: 𝑖 ∈ 𝐽∖𝐼𝐷. In this case, 𝐷𝑖 ≤ 0. Then, by (B.5), (B.6) and 𝑥 ≤ 𝛿u, we have

𝑔𝑖(𝑥) ≤
𝐷𝑖

√

𝜆𝑖,max𝛿u
+

‖𝜇𝑖‖
√

𝜆𝑖,min
.

t follows the similar proof procedure as Case 1 that 𝑦𝑖 ≥ 𝐺𝑖.
Therefore, combining the results in Case 1 and Case 2, we have 𝑦𝑖 ≥ ℎl > 0, for any 𝑖 ∈ 𝐽 . Since, ∑𝑖∈𝐽 𝑦𝑖 = 1, we get

𝑦𝑖 = 1 −
∑

𝑗∈𝐽 .𝑗≠𝑖
𝑦𝑗 ≤ 1 − (𝑛 − 1) ℎl = ℎu < 1. (B.11)

Hence, 0 < ℎl ≤ 𝑦𝑖 ≤ ℎu < 1, for any 𝑖 ∈ 𝐽 .

Appendix C. Proof of Lemma 4

The Hessian matrix of 𝑈 at a point (𝑥, 𝑦𝑖) is an (𝑛 + 1)-dimensional symmetric matrix which has the form
[

𝐴 𝐵
𝐶 𝐷

]

, where

𝐴 = 𝐻𝑥𝑈 (𝑥, 𝑦𝑖), 𝐵 = ▽𝑥
𝜕
𝜕𝑦𝑖
𝑈 (𝑥, 𝑦𝑖), 𝐶 = 𝐵⊤, 𝐷 = 𝜕2

𝜕𝑦2𝑖
𝑈 (𝑥, 𝑦𝑖). The main idea of the proof is based on the Schur’s complement.

t suffices to show that 𝜕2 𝑈 (𝑥, 𝑦 ) > 0, for any (𝑥, 𝑦 ) ∈ 𝑄 × [ℎ , ℎ ]. In fact, for 𝑈 (𝑥, 𝑦 ) = 𝜓 (−1)
𝑥 (𝑦 𝜓 (𝑝)), we have
13
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𝜕2

𝜕𝑦2𝑖
𝑈 (𝑥, 𝑦𝑖) = [𝜓𝑥(𝑝)]2(𝜓 (−1)

𝑥 )′′(𝑦𝑖𝜓𝑥(𝑝)).

Since 𝜓𝑥(𝑡) = (− log 𝑡)
1
𝜅(𝑥) , we deduce that

𝜓 (−1)
𝑥 (𝑡) = 𝑒−𝑡

𝜅(𝑥)
, (𝜓 (−1)

𝑥 )′′(𝑡) = 𝑒−𝑡
𝜅(𝑥)
𝑡𝜅(𝑥)−2𝜅(𝑥)

[

𝜅(𝑥)𝑡𝜅(𝑥) − 𝜅(𝑥) + 1
]

.

Using the above formulations, 𝜓𝑥(𝑝) > 0 and (𝜓 (−1)
𝑥 )′′(𝑡) > 0, for any 𝑡 > 0. Hence, 𝜕2

𝜕𝑦2𝑖
𝑈 (𝑥, 𝑦𝑖) > 0, for any (𝑥, 𝑦𝑖) ∈ 𝑄 × [ℎl, ℎu].
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