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Method of Moments for the Dispersion Modelling
of Glide-Symmetric Periodic Structures

Martin Petek, Javier Rivero, Jorge Alberto Tobón Vásquez, Member, IEEE, Guido Valerio, Senior Member, IEEE,
Oscar Quevedo-Teruel, Fellow, IEEE, and Francesca Vipiana, Senior Member, IEEE

Abstract—A modelling methodology to obtain the dispersion
characteristics of mirror- and glide-symmetric structures is
presented. A novel Green’s function is proposed as the inte-
gration kernel of the electric field integral equation solved by
the method of moments. Key aspects of implementation, such
as adapting the Ewald acceleration, accurate computation of
singular integrals and a zero-search algorithm to obtain solutions
are presented. The proposed methodology is applied to fully-
metallic 2-D periodic unit cells with arbitrary geometries. The
results of the method are found to be in very good agreement
with reference results from literature. Compared to conventional
method of moments analysis, the proposed approach obtains
results in half the time and gives additional information about
the modal properties.

Index Terms—Glide symmetry, dispersion diagram, compu-
tational electromagnetics, Green’s function, periodic structures,
metasurfaces.

I. INTRODUCTION

MODERN telecommunication systems have increasingly
higher demands in terms of data rates, due to increase

of users and proliferation of video traffic [1]. With 5G and the
emerging 6G technologies, the trend is to increase bandwidth
by moving to higher frequencies [2], [3]. This results in
increased attenuation of electromagnetic waves in materials
and in free-space. One way to mitigate increased losses in
materials is to utilize fully-metallic structures, thus completely
removing wave attenuation in dielectric materials. On the
other hand, free-space losses can be mitigated with high gain
antennas.

A particular topic of interest, in the recent years, to design
highly efficient structures, has been the use of glide-symmetric
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metasurfaces [4]. Glide-symmetric structures are periodic and
invariant with respect to a translation by half a period and a
mirroring. The effects of introducing such higher symmetry
on propagation of waves in periodic structures have first been
studied in the 60s and 70s [5], [6]. Recently, their properties
have been exploited to design highly efficient fully-metallic
graded index lens antennas [7], [8], leaky wave antennas [9]–
[11], and filters [12]. Furthermore, glide symmetries have been
used for suppression of leakage between two connecting parts
of a waveguide [13] and flanges [14].

As a result of increased interest, methods to accurately
compute the dispersion diagram (i.e., the propagation constants
of Bloch modes) of glide-symmetric structures has also gar-
nered attention from the antenna and microwave communities.
A commonly applied technique is mode-matching [15], [16],
which is particularly suited to holey structures. At discontinu-
ities, the coupling of modes in different parts of the structure
is done by enforcing boundary conditions. If the structure has
known analytical field expansions, mode-matching is a compu-
tationally efficient and a straightforward method to implement.
Furthermore, at lower frequencies, quasi-static approximation
can be used with mode matching to faster obtain the effective
refractive index [17]. Recently, a hybrid method named multi-
modal transfer matrix method (MMTMM) has been proposed
for analysis of glide-symmetric structures [18]. In this method,
waveguide ports are placed at the edge of the unit cell and a
full-wave solver is used to compute the scattering parameters.
In this step, the definition of multiple modes on each port is
necessary for each waveguide in order to obtain correct results.
A post-processing procedure is used to obtain the propagation
characteristics of Bloch modes in the structure. The method
can find both real and complex solutions and has recently been
applied to study the stopband attenuation of glide-symmetric
unit cells with circular holes [19].

In this work, we propose a method of moments (MoM)
modelling approach tailored to fully-metallic glide-symmetric
structures. Method of moments has been previously used for
modal analysis of printed structures [20]–[23], electromagnetic
bandgap structures [24], and 1-D periodic glide-symmetric
parallel-plate waveguides [25]. In this paper, we present a
novel integration kernel for 2-D glide-symmetric structures,
which reduces the computational domain to the bottom half
of the unit cell only. The new kernel is applied to analyze a
rectangular holey structure [15] and a circular holey structure
[19]. The obtained results are compared to a commercial
eigenvalue solver and to the MMTMM analysis [19], finding,
in both cases, a very good agreement. Several benefits are
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offered by the method presented here over other approaches.
Most importantly, the MoM is able to compute the attenuation
constant in the stopbands and for complex modes, both of
which are currently unavailable from commercial eigenvalue
solvers. Furthermore, the method provides additional informa-
tion on the mode parity and can be easily applied to arbitrary
geometries, an advantage over mode-matching. As opposed
to MMTMM, it does not require a truncation of waveguide
modes at the edges of the unit cell [19]. Hence, less physical
insight, necessary to understand which modes to include
in the computation, is required to obtain accurate results.
Furthermore, since commercial software include waveguide-
port modes by following a strict order of cutoff frequencies and
cannot arbitrarily select the modes to retain, using MMTMM
can result in an increased computational effort, since many
higher-order modes must be included in the simulation in order
to keep a few modes of very high order, as in [26].

The paper is organized as follows. In Sect. II, the in-
tegral equation formulation and the novel Green’s function
are presented. Then, in Sect. III, the equation discretization,
the computation of singular integrals and the zero-search
algorithm are described. In Sect. IV, numerical results are
compared to a commercial eigenvalue solver and MMTMM
analysis. The conclusion and perspectives are in Sect. V.
Preliminary results of the proposed modelling of 2-D periodic
glide-symmetric structures were presented in [27].

II. INTEGRAL EQUATION FORMULATION

A. Integral equation and periodic Green’s function

Let us consider the task of finding modes in a fully-
metallic periodic structure whose surface is described with the
geometry S. If losses due to finite conductivity of metal are
negligible, the surface can be described as a perfect electric
conductor (PEC) in free space without significantly impacting
the accuracy of the solution. On S, the tangential component
of the electric field is zero:

Etan = −jωAtan −∇SΦ = 0, (1)

where ω is the angular frequency, ω = 2πf , and the field is
decomposed into the vector and the scalar potentials, A and Φ
respectively. The vector potential represents the contribution
to the Etan due to the electrical surface current density J

A(r) = µ

∫
S

G(r, r′) · J(r′) dS′, (2)

and the scalar potential the contribution of the surface charge
density

Φ(r) = − 1

jωε

∫
S

∇′ · J(r′)G(r, r′) dS′. (3)

Both integrals are computed over the entire surface S. In (2)
and (3), ε and µ are the permittivity and the permeability of the
surrounding medium, J(r′) is the unknown electrical surface
current density at the source point r′ and G(r, r′) is the
scalar Green’s function at the observation point r. The dyadic
Green’s function G is defined as a product of the identity dyad
I = x̂x̂+ ŷŷ + ẑẑ and the scalar Green’s function as

G(r, r′) = I G(r, r′). (4)

Since the structure is periodic and thus spans to infinity in
both dimensions, the computation domain can be restricted
to the finite size of one single unit cell (the surface S
in (2) and (3) becomes the metallic surface of a single cell)
if the periodicity is captured in the Green’s function. This
is achieved by introducing the free space periodic Green’s
function (FSPGF), that can be written as a double infinite sum
of free space Green’s functions [28]

G(r, r′) =

+∞∑
m=−∞

+∞∑
n=−∞

Gmn, (5)

where

Gmn = e−jkt00·ρmn
e−jkRmn

4πRmn
. (6)

Here, kt00 is the wave vector controlling the (possibly com-
plex) propagation between different points in the lattice. The
distance Rmn is given by

Rmn =
√
(z − z′)2 + |ρ− ρ′ − ρmn|2, (7)

where
ρmn = m s1 + n s2. (8)

Here, ρmn describes the translation from the unit cell indexed
by m = n = 0 to cell indexed by m and n of the lattice, s1
and s2 being the lattice periodicity vectors.

B. Glide-symmetric periodic Green’s function

We will now extend the concept of FSPGF to introduce a
novel Green’s function which exploits the structure’s internal
symmetry. For mirror- and glide-symmetric structures, we in-
troduce the scalar higher-symmetric periodic Green’s function
(HSPGF)

G(r, r′) = GB ±GT (9)

where GB represents the bottom array of sources as

GB(r, r
′) =

+∞∑
m=−∞

+∞∑
n=−∞

Gmn, (10)

and GT the top array of sources as

GT(r, r
′) = e−jkt00·ρg

+∞∑
m=−∞

+∞∑
n=−∞

Gmn,t. (11)

The Green’s function is represented in Fig. 1 as a double array
of point sources. To complement the scalar HSPGF, its dyadic
counterpart is defined as:

G(r, r′) = I GB ±Rz GT, (12)

where the mirroring dyad Rz is defined as

Rz = x̂x̂+ ŷŷ − ẑẑ. (13)

In the computation of GT, the additional factor, e−jkt00·ρg , is
added due to the translation of the source points of the top
part by

ρg = b1s1 + b2s2, (14)

where b1 and b2 are translation factors in terms of vectors s1
and s2. For mirror-symmetric structures, b1 = b2 = 0 and for
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Fig. 1. Higher-symmetric periodic Green’s function, represented as double
array of point sources. Here, b1 = b2 = 0.5.

glide-symmetric structures b1 = b2 = 0.5. Only a combination
of the values of 0.0 and 0.5 are possible, as in other cases
the higher-symmetry is broken and the current of the top part
of the structure cannot be expressed with a phase shift and
attenuation of the current in the bottom part [6]. The terms
Gmn,t are defined as

Gmn,t = e−jkt00·ρmn
e−jkRmn,t

4πRmn,t
, (15)

similarly to (5), but with the distance Rmn changed to

Rmn,t =
√
(z + z′)2 + |ρ− ρ′ − ρmn − ρg|2. (16)

The choice of summing or subtracting in (9) represents two
different types of symmetries. For mirror-symmetric struc-
tures, these correspond to perfect magnetic conductor (PMC)
(summation) and PEC (subtraction) mirrored modes, but for
glide-symmetric structures we will refer to them as the plus
(+) and minus (−) symmetries.

C. Ewald acceleration

The expressions (9) and (12) could be used in simulations
as they are, but, in practice, their use is prohibited by a very
slow convergence [29]–[33]. In this work, we extend the Ewald
method [34], [35] to the concept of HSPGF to allow for
efficient computation of the Green’s function.

First, we consider the evaluation of (10) and (11) as two
separate sums. Then, the individual sums are separately split
to spatial and spectral sums [35], [36] as

+∞∑
m,n=−∞

Gmn =

+∞∑
m,n=−∞

GE
mn +

+∞∑
p,q=−∞

G̃E
pq, (17)

where all sums are double sums with summation indices m,
n for the spatial sums and p, q for the spectral sums. When
numerically computing the Green’s function, the series in (17)
are truncated. In this work, the truncation limits are determined
by the procedure described in [37]. For producing the plots

in this paper, we have not observed values larger than ±3.
The Ewald method introduces the splitting parameter E , which
controls the convergence properties. For frequencies where the
wavelength is larger than the periodicity of the unit cell, the
value of Eopt =

√
π/A, which provides fastest convergence,

can be used [38]. Otherwise, when the wavelength is smaller
than the periodicity of the unit cell, the values of the spectral
and spatial parts become similar in magnitude but different in
sign. Due to subtraction of two large numbers and the finite
precision arithmetic, this leads to a loss of significant digits.
The issue can be alleviated by changing the value of E at the
cost of slower convergence. The procedure from [37] is used
in this work to choose E which ensures automatically, without
the need of setting a threshold value of frequency, a set number
of significant digits even at higher frequencies. The values of
the summands in (17) are:

GE
mn =

e−jkt00·ρmn

8πRmn

[
e−jkRmnerfc

(
RmnE − jk

2E

)
+ ejkRmnerfc

(
RmnE +

jk

2E

)]
(18)

and

G̃E
mn =

e−jktpq·(ρ−ρ′)

A

[
e−jkzpq∆

−
z erfc

(jkzpq
2E

−∆−
z E

)
+ ejkzpq∆

−
z erfc

(jkzpq
2E

+∆−
z E

)]
(19)

for (10). For the contribution of the top part of the struc-
ture (11)

GE
mn,t =

e−jkt00·ρmn

8πRmn,t

[
e−jkRmn,terfc

(
Rmn,tE − jk

2E

)
+ ejkRmn,terfc

(
Rmn,tE +

jk

2E

)]
(20)

and

G̃E
mn,t =

e−jktpq·(ρ−ρ′−ρg)

A

[
e−jkzpq∆

+
z erfc

(jkzpq
2E

−∆+
z E

)
+ ejkzpq∆

+
z erfc

(jkzpq
2E

+∆+
z E

)]
. (21)

Here, ∆−
z = |z−z′|, ∆+

z = |z+z′|, erfc is the complementary
error function, kzpq =

√
k2 − ktpq · ktpq , A = ẑ · (s1 × s2)

is the unit cell area and ktpq is the transverse phasing wave
vector of the p, q indexed mode:

ktpq = kt00 +
2 p π (s2 × ẑ)

A
+

2 q π (ẑ × s1)

A
. (22)

The cost of computing the Green’s function can be then fur-
ther reduced by exploiting the properties of the complementary
error function

erfc
(
a− jb

)
= erfc

(
a+ jb

)
(23)

and
erfc

(
− a+ jb

)
= 2− erfc

(
a+ jb

)
, (24)

where a and b are real numbers and the bar represents
conjugation. Using (23) and (24) reduces the evaluations of
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the complex complementary error function, which is the most
computationally expensive task in the evaluation of the Ewald
sums.

III. NUMERICAL SOLUTION

A. Discretization of the equation

Now we can proceed with numerically solving (1). First,
the surface inside of the enclosed structure is discretized into
triangles. During meshing, it is necessary to ensure that the
edge triangle vertices coincide perfectly after a translation by
a period. Then, additional triangles are added, as shown in
Fig. 2. These triangles must be exact copies of their periodic

Fig. 2. Meshing process. The inside of the structure is meshed and additional
triangles (orange) are added by translating their periodic counterparts (blue)
in the original unit cell.

counterparts as they ensure continuity of current between two
adjacent unit cells. Then, we discretize (1) by expanding the
surface current density J(r′) into

J(r′) =

N∑
n=0

InΛn(r
′), (25)

where Λn is are basis functions and In their scaling co-
efficients. Here, Rao-Wilton-Glisson (RWG) basis functions
are used, which are defined as linear interpolation functions
over triangles pairs with a shared edge [39]. Then, a system
of equations is obtained with a testing procedure. In this
work, the testing functions used on (2) and (3) are also RWG
basis functions, performing the so called Galerkin testing.
Ultimately, we obtain expressions for

Lmn = µ

∫
S

dSΛm(r) ·
∫
S

dS′ G(r, r′) ·Λn(r
′) (26)

and

Smn =
1

ε

∫
S

dS∇·Λm(r)

∫
S

dS′ G(r, r′)∇′·Λn(r
′), (27)

which are combined to form the elements of the N × N
impedance matrix [Z], where each element is equal to

Zmn = jωLmn +
1

jω
Smn. (28)

To evaluate the dispersion diagram of the structure under
analysis, we assume no incident field (i.e., no impressed field
is necessary for modes to exist in the structure), obtaining the
following system of equations

[Z(kt00, f)][I] = [0] , (29)

where [I] is a N × 1 vector collecting the coefficients In of
(25) and [0] is N × 1 vector of zeros. The system in (29)

has a nontrivial solution when the value of the wave-vector
kt00 at a frequency f is such that the matrix [Z] is singular.
However, due to finite precision of evaluation of integrals
in (26) and (27), the matrix is never truly singular. When the
matrix is evaluated at frequency and wave-vector pairs close
to the solutions, its determinant goes to zero. The solutions of
the system are therefore the set of values of kt00 at f where
the determinant is small and at a local minimum.

B. Evaluation of singular integrals

An important aspect of evaluating the impedance matrix
in (29) is a careful treatment of integrals (26) and (27).
For basis functions that are overlapping or are adjacent,
the integrals become singular and integration by standard
Gaussian quadrature rules can not produce an accurate result.
To efficiently and accurately compute singular integrals, a sin-
gularity cancellation procedure named radial-angular method
has been proposed in [40]. This method was developed to work
with free-space Green’s function, which only contains one
singularity. Thus, in the HSPGF, the application of the method
cancels the singularity corresponding to 1/R00 in (6). Since
we have a function with multiple singularities, this method
must be modified such that the most important singularities
are cancelled. Note that the method computes interaction
between individual cells (here triangles) and not the entire
basis functions. The matrix elements Zmn are thus obtained by
summing all four individual interactions between the elements
of the two basis functions. In the following, we describe how
to apply the radial-angular method in the case of the proposed
HSPGF to cancel singularities arising from periodic source
replicas and quasi-singularities in (6) and (15) (i.e., sources
from adjacent unit cells) and the quasi-singularities in the
case of a small gap between the surfaces arising from the
top sources, contained in (11). Here, we describe below the
two possibilities.

First, the periodicity of the function requires a modification
which ensures that the singularity closest to the observation
element is cancelled. For example, if the source element,
depicted in blue in Fig. 3, is on the opposite side of the unit cell
than the test element (orange), the periodic image of the source
(dashed blue) is the dominant singularity. Thus, the singularity

 
ρ11

R00

R11

 

(a)

 
 

R11

R00

ρ11

(b)

Fig. 3. Translation of the test element (orange) for proper cancellation of
periodic singular elements. Before translation (a), the periodic image element
indexed 11 (dashed blue) is closest to the test element. After translation (b),
the source element indexed 00 (blue) becomes the closest.

of the periodic image element 1/R11 is not appropriately
cancelled as the radial-angular method cancels only the 1/R00
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singularity. To rectify this problem, these element interactions
are treated by first shifting the test elements with substitution
of

r → r +M0s1 +N0s2. (30)

where the factors of shifting M0 and N0 can be obtained
through

M0 = −
⌊
(r − r′) · (s2 × ẑ)

A
+ 0.5

⌋
(31)

and
N0 = −

⌊
(r − r′) · (ẑ × s1)

A
+ 0.5

⌋
. (32)

In Fig. 3, M0 = N0 = −1. After the translation, the dominant
singularity becomes 1/R00 and the radial-angular method
can be applied to properly cancel the singularity, as seen in
Fig. 3(b). Since shifting one of the element causes it to be
outside of the original unit cell, the result of the integration
is different to a multiplicative constant. Then, the integral is
back-propagated using the Floquet theorem:

Zkl
mn = Z̃kl

mn e
jkt00·(M0s1+N0s2), (33)

where Z̃kl
mn here represents the contribution of interaction

between elements k and l to the total interaction between the
two basis functions. The procedure described here could be
adapted to shift the source and not the test element to ensure
that the 1/R00 is the dominant singularity. In our case, we
choose to shift the test element as it corresponds to the outer
loop of the impedance matrix evaluation and is thus easier to
implement in our code.

Second, there are cases when a quasi-singular behavior
of the top Green’s function must be cancelled for accurate
integration. This is particularly true for structures with a small
gap between the top and bottom plate, where singularities
from both contributions to Green’s function of top and bottom
sources are appreciable, such as the example presented in
Fig. 4. Here, the blue and dashed blue triangles are the bottom

R00

R00,t

(a)

R00

R00,t

(b)

Fig. 4. Mirroring of the test element (orange) for proper cancellation of
singular elements from GT. The top mesh is faded as it is present through
the HSPGF. Before mirroring (a), applying radial-angular method cancels the
bottom singularity (full blue). After mirroring (b), the top singularity can be
cancelled.

and top source elements, and the test element (orange) is
sufficiently close to both such that 1/R00 and 1/R00,t need
to be cancelled. In these cases, the radial-angular method is
applied twice, once to the contribution of the bottom part of

the structure, using only the Green’s function in (10), and
once to the contribution of the top part, with the Green’s
function in (11). For the bottom part, the radial-angular method
is applied directly. For the top part, the test element is first
mirrored by mirroring the test element in z, as seen in Fig. 4.
The integral is then evaluated with (10), which is the Green’s
function of the bottom part. This way, the roles of R00 and
R00,t are exchanged and the radial-angular method cancels the
singularity.

C. Zero-search algorithm

To find the solutions of (29), we search for all numerical
singularities in the lowest eigenvalue, λmin, of the impedance
matrix [Z] within a given frequency region. Here, both plus
and minus branches of (9) and (12) must be considered in the
search. To accelerate obtaining the results, we use interpolation
of the individual matrix elements to obtain a finer sampling of
the impedance matrices. We start to fill the dispersion diagram
with the case of real modes (i.e., kt00 is real). The first three
steps are illustrated in Fig 5. The procedure is as follows:

Step 1

Step 2

Step 3

Fig. 5. Zero search algorithm for Ninit = 12 and Ninterpol = 600. From
top to bottom, found singularities are added to the interpolation scheme. In
the second step, the higher frequency solution converges, so only the lower
frequency solution is added.

1) Compute Ninit impedance matrices in linearly equis-
paced frequency points (at cross markers in Fig. 5) in
the frequency range of interest.

2) Use spline interpolation to obtain a finer sampling of
impedance matrices with Ninterpol equispaced frequency
points.

3) Compute smallest eigenvalue λmin of these matrices.
The magnitude of the eigenvalues is presented in full
line and the phase in dashed line in Fig. 5.

4) Find solutions where the phase of λmin crosses zero and
the magnitude is a local minimum.

5) Use bisection on the phase of the λmin to refine the
solution up to the desired precision.
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6) Compute impedance matrices at the found unconverged
solutions (plus markers in Fig. 5).

7) Reobtain the solution frequencies with the procedure
listed in steps from 2) to 5) and with new impedance
matrices added to the set of previous initial points Ninit.

8) Repeat steps 6) and 7) until the scheme converges.
The frequency solution is considered to have converged when:

|fnext − fprevious|
fprevious

< δsearch, (34)

where we select the pairs of previous solution frequency
fprevious and next solution frequency fnext as the closest
two frequencies. In this work, the precision value is set to
δsearch = 10−3. The entire procedure is then repeated for the
next value of kt00.

Once real modes are tracked, we can move to the analysis
of complex modes: the procedure is analogous, but a two
dimensional search is needed. We start by identifying the
maximum and minimum frequencies in the computed real part
of the dispersion diagram. In many cases, they lie at the edge
of the irreducible Brillouin zone (usually Γ, X or M). In these
cases, it is possible to do only a one dimensional search as
described previously by fixing the real part of components
of kt00 according to the considered stopband, and finding
frequencies of all singular matrices for the desired level of
attenuation α. However, when the beginning of a new complex
mode is not at an edge of the Brillouin zone, both real and
imaginary parts are unknown. In this case, we fix a frequency
value close enough to the last frequency of the mode already
tracked. Then, we follow the procedure:

1) Compute Ninit (initial points) impedance matrices in a
grid in the search region in the real and imaginary space
of kt (cross markers in Figs. 6 and 7).

2) Use natural interpolation [41] to obtain finer sampling
of impedance matrices in Ninterpol points.

3) Compute the minimum eigenvalues of the matrices ob-
tained in previous step. The magnitude and phase are
presented with color in Figs. 6 and 7.

4) Find the regions of the solutions by finding the coin-
cidence of 2-D local minimums of magnitude and a
change in sign of the phase.

5) Progressively refine the region of the solution around the
local minimum until the desired precision in both real
and imaginary part of kt is reached. The found solutions
are presented as plus markers in Figs. 6 and 7.

6) Evaluate the impedance matrix in the solution point and
repeat steps from 1) to 5) until the scheme converges.
First three steps can be seen in Figs. 6 and 7. Each time,
the finer sampling of matrices is obtained with one more
initial point, located at the previous solution.

7) Move to the next frequency. Estimate the next solution
with linear extrapolation and center the search region
around it.

The convergence criterion for termination of the search is
applied to both real

|real(kt,previous)− real(kt,current)|
|real(kt,previous)|

< δsearch, (35)

and imaginary parts separately:

|imag(kt,previous)− imag(kt,current)|
|imag(kt,previous)|

< δsearch. (36)

Thus, both (35) and (36) need to be satisfied for achieving
convergence.

Step 1

Step 2 Step 3

Fig. 6. Magnitude in first three steps of the complex zero search algorithm
with Ninit = 36 and Ninterpol = 1600.

Step 1

Step 2 Step 3

Fig. 7. Phase in first three steps of the of the complex zero search algorithm
with Ninit = 36 and Ninterpol = 1600.
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IV. NUMERICAL RESULTS

In this section, we present the results of the modelling pro-
cedure described in Sects. II and III. Two different geometries,
for both mirror- and glide-symmetric unit cell, are considered.
Solutions are computed for different stages of mesh refinement
to ensure the convergence and stability of the scheme. The
obtained results are compared to CST Eigenvalue Solver
(CST ES) [42] for propagative modes and to MMTMM [19]
for evanescent modes (including the real part of the complex
modes).

Note that, differently from the CST ES and the MMTMM
methods, singularities in MoM arise when modes are sup-
ported either inside or outside of the structure. Using the
methodology presented in this paper, modes corresponding to
solutions in the unbounded pin structure in the external region
can appear. However, they can be easily identified as having
zero fields inside the bounded region and non-zero fields in the
external region. As they are not of interest to this work, these
solutions are not shown here. Furthermore, the evanescent
modes of the interior region not presented in [19] are also
not included for clarity of the plots.

A. Rectangular holey structure

First, we consider a rectangular holey structure, whose
meshed bottom part is shown in Fig. 8. This geometry is

p
h

w

Original

(a)

Refined 1

(b)

Refined 2

(c)

Fig. 8. Meshes of the rectangular holey structure. From left to right they are
(a) original, (b) refined 1 and (c) refined 2 meshes. Here, zmin = −1.25 mm
and zmax = −0.25 mm. The parameters periodicity are p = 4 mm, depth of
hole h = 1.5 mm, the width of hole is w = 3 mm, and the gap is 0.5 mm.

chosen as it consists of flat surfaces only, hence a direct
subdivision of one triangle to four results in a refined mesh
with four times more elements. Such division is applied to
the original mesh in Fig. 8(a) once to obtain the mesh of
Fig. 8(b) and twice for Fig. 8(c). From the coarsest to the
most refined mesh, the number of unknowns N is 177, 708
and 2832. These values correspond to ratios of wavelength to
largest triangle edge of approximately 3.5, 7 and 14 at 60 GHz
(the highest considered frequency). The solutions of the first
two meshes were computed using Ninit = 12 starting points
in frequency from 0.5 GHz to 60 GHz and Ninterpol = 500
interpolation sampling points. The finest mesh refinement was
only computed in a 1 GHz region surrounding the coarser
solution with Ninit = 4 and Ninterpol = 40.

Full dispersion diagrams for the irreducible Brillouin zone
obtained with the proposed HSPGF are shown in Fig. 9(a) for
the mirror-symmetric unit cell and in Fig. 9(b) for the glide-
symmetric unit cell. In both cases, a very good agreement is
obtained with respect to the solutions obtained with CST ES,
already with the coarsest mesh (cross markers), although it

Γ X

M

(a)

Γ X

M

(b)

Fig. 9. Dispersion diagrams for the (a) mirror-symmetric and (b) glide-
symmetric rectangular holey structures with the geometry simulated and the
irreducible Brillouin zone depicted in the insets.

can be observed that the accuracy of the solution slightly
deteriorates at the highest frequencies. Refining the mesh
once (plus markers) and twice (square markers) improves
the result. In the mirror-symmetric case, all modes are PEC-
symmetric, while, in the glide-symmetric case, the first mode
is minus-symmetric while the second and third modes are
plus-symmetric. Here, the second mode is in fact a Floquet
harmonic of the first mode, as reported in [19] and could also
be obtained by extending the kt00 search space of the first
mode.

B. Circular holey structure

For the second structure, we aim to verify the applicability
of the code to find complex and evanescent modes. For this
purpose, the geometry was chosen to compare the results
with Fig. 8 from [19]. Two meshes were generated to have
ratio of wavelength to largest triangle edge of approximately
4 and 8 at 100 GHz, corresponding to 255 and 831 basis
functions, as shown in Figs. 10(a) and (b). Here, due to
the curved surface, the entire structure is remeshed instead
of splitting each triangle into four. For the generation of
the dispersion diagrams, the frequency range considered is
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Original

d

p

h

(a)

Refined

(b)

Fig. 10. Rectangular holey structure meshes for the original mesh (a) and the
refined mesh (b). Here, zmax = −0.025 mm and zmin = −1.025 mm. The
dimensions marked are periodicity p = 3.2 mm, hole diameter d = 2.56 mm,
hole depth h = 1 mm and gap between the top and bottom plates is 0.05 mm.
The meshing software used is Gmsh [43].

0.5 GHz to 100 GHz with Ninit = 20 initial points in the
interpolation scheme. For evanescent modes, the frequency
ranges are set to coincide with the stopbands at Γ, X and
M. The number of initial points Ninit varies depending on the
width of the stopband such that the impedance matrices are
computed every 5 GHz and the number of interpolation points
is Ninterpol = 500.

The full dispersion diagram for the mirror-symmetric unit
cell can be seen in Fig. 11. The attenuation in the stopband
is shown in Figs. 12(a) and (b) for the cases of ΓX and
MΓ regions, respectively. Overall, the results agree very well
with the reference [19], with a reduction of accuracy as the
frequency increases for the coarsest mesh. Here, the difference
is not only due to the larger relative size of the unit cells when
compared to the wavelength, but also due to approximation
of the curvilinear surface with planar triangular elements.
Only PEC-mirrored modes are found in both original (cross
markers) and refined (plus markers) meshes, which is expected
as the gap between top and bottom plates is small enough to
suppress any PMC-mirrored modes.

Γ X

M

Fig. 11. Dispersion diagram for the irreducible Brillouin zone and the mirror-
symmetric unit cell, both depicted in the insets.

The dispersion diagram for the glide-symmetric unit cell
can be seen in Fig. 13. The attenuation in the stopband is
presented in Figs. 14(a) and (b) for the cases of ΓX and
MΓ, respectively. Four modes are found, two minus-symmetric

(a)

(b)

Fig. 12. (a): attenuation in the ΓX region for the mirror-symmetric unit cell
depicted in the inset. The solutions from 30−60GHz were found at X, from
76-85 GHz at Γ and the mode from 85−89GHz is a complex mode with the
real part depicted in Fig. 11. (b): attenuation in the MΓ region for the mirror-
symmetric unit cell depicted in the inset. The solutions from 49 − 60GHz
were found at M and from 75− 100GHz at Γ.

Γ X

M

Fig. 13. Dispersion diagram for the irreducible Brillouin zone and the glide-
symmetric unit cell, both depicted in the insets.

(yellow and green markers) and two plus-symmetric (orange
and purple markers). As before, the original mesh is presented
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with cross markers and the refined mesh with plus markers. It
is worth noting that, due to the extra information of the mode
symmetry, utilizing the HSPGF helps with interpretation of
the mode evolution. For example, the plus-mirrored evanescent
mode in Fig. 14(b) is found at M for the lower frequencies and
transitions to a propagative mode at about 30 GHz. Then, with
increasing frequency the mode gradually moves from M to Γ.
At Γ, it becomes again evanescent and does not transition into
a propagative mode in the frequency range considered.

(a)

(b)

Fig. 14. (a): attenuation in the ΓX region for the glide-symmetric unit cell
depicted in the inset. The solutions from 46-59 GHz are located at Γ and
from 59-87 GHz are a complex mode with the real part presented in Fig. 13.
(b): attenuation in the MΓ region for the mirror-symmetric unit cell depicted
in the inset. The solutions from 49-60 GHz were found at M and from 75-
100 GHz at Γ.

C. Computational time analysis

The computational time to evaluate the impedance ma-
trices is presented in Table I. The structure studied is the
rectangular-holey unit cell from Fig. 8 in both mirror and
glide-symmetric configurations. Times for both FSPGF and the
HSPGF proposed in this paper are presented. All computations
were done on a HP ProBook 430 G8 Notebook with Intel i7-
1165G7 and 16 GB of RAM. Note that the times presented are
obtained with a single-threaded program. As the computational
time has slight frequency dependence, the numbers are the

average time of 10 evaluations of linearly-spaced frequencies
from 0.5 GHz to 60 GHz and rounded to 1 second. For
fair comparison, the mesh of the full structure (corresponding
to use of FSPGF) is obtained by a mirror and a translation
of (14) and thus has twice the number of basis functions. It
can be observed from Table I that using the HSPGF results
in twice faster evaluation of the matrix. While the matrix is
reduced to one fourth number of entries, introducing the top
part of the structure in HSPGF results in about double the
computational effort in evaluating the Green’s function. The
average times necessary to find all the solutions (frequencies)
for a given value of kt00 in Fig. 9 is presented in Table II.
The difference in solution times when comparing the mirror-
symmetric and glide-symmetric structures can be attributed to
a larger computational load of the zero-search algorithm since
the first and the second mode are not separated in the XM
region. The simulation time for obtaining the entire dispersion
diagram in Figs. 9, 11 and 13 with CST ES is from 7 to 9
minutes for 30 values of kt00.

TABLE I
AVERAGE COMPUTATIONAL TIME (IN SECONDS) FOR ONE IMPEDANCE

MATRIX EVALUATION.

Mesh kind

Green fnc. Symmetry Fig. 8(a) Fig. 8(b) Fig. 8(c)

FSPGF Mirror 23 140 1332

HSPGF Mirror 12 71 668

FSPGF Glide 22 140 1319

HSPGF Glide 12 70 668

TABLE II
AVERAGE COMPUTATIONAL TIME (IN MINUTES) FOR OBTAINING THE

SOLUTIONS (FREQUENCIES) IN FIG. 9 FOR FIXED kt00 .

Mesh kind

Green fnc. Symmetry Fig. 8(a) Fig. 8(b) Fig. 8(c)

HSPGF Mirror 5 42 153

HSPGF Glide 5 36 130

V. CONCLUSION AND PERSPECTIVES

In this work, a novel Green’s function with a modelling
approach to obtain properties of modes of mirror- and glide-
symmetric structures has been presented. Using the proposed
Green’s function with the MoM, we obtained accurate results
for both propagative and evanescent modes when compared
to results from CST ES and MMTMM [19]. Moreover, the
Green’s function evaluation accelered via Ewald and the
adapted use of the radial-angular method [40] to correctly
cancel singular integrals were presented. The solutions were
found via a technique for the search of singularities of a matrix
function. Using the proposed Green’s function was found to
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reduce the computational time of one matrix evaluation to one
half. Furthermore, the Green’s function provides additional
information of the mode parity, which was found helpful
in understanding and tracking the evolution of modes. The
presented method can be easily integrated to an existing MoM
code and is able to obtain information not directly available
from commercial solvers, such as attenuation in the stopband.
In the future work, we aim to extend the code to work with
dielectric materials and utilize it to study hexagonal unit cells.
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