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RESEARCH PAPER

Dispersion Properties of Glide-Symmetric
Corrugated Metasurface Waveguides

BORIS FISCHER 1,2 AND GUIDO VALERIO 1,2

In this paper, a mode-matching procedure is used to prove for the first time the dispersionless behavior of glide symmetry
in corrugated metasurface waveguides. Depending on their field symmetry, the Floquet harmonics have a different impact
onto the frequency dispersion, which is reduced with glide symmetry when the gap between the surfaces is small. Indeed,
the glide-symmetric waveguide is shown to have the same effective propagation features as a scaled mirror-symmetric
waveguide with half the period and a doubled gap. We propose closed-form formulas for the effective refractive index of
the glide-symmetric waveguide in the first Brillouin zone, having a small groove compared to the period. The closed-form
expressions analytically prove the dispersionless behavior of glide symmetry.

Keywords: Authors should not add keywords, as these will be chosen during the submission process.

I. INTRODUCTION

The increasing need of millimeter-wave communications
in modern wireless communication systems [1] makes
metasurfaces a promising technology capable of avoid-
ing expensive and lossy electronic beam-forming systems
[2, 3]. However, to be employed in practical devices, their
propagation characteristics must be stable over a large
bandwidth. Indeed, despite simple control of the prop-
agation characteristics with the cell geometry, artificial
materials tend to be dispersive i.e., their propagation char-
acteristics change with frequency [4]. Therefore, one seeks
for metamaterials with low dispersion [5].

In recent years, low-dispersive behavior has been
observed for metamaterials displaying special symmetries,
called higher symmetries [6, 7]. The idea is that the peri-
odicity of the cells is broken from one cell to the next by
introducing an additional geometrical operation e.g., rota-
tion (twist symmetry) or translation (glide symmetry). It is
observed that metamaterials with such higher symmetries
have less dispersion than their non-symmetric counterparts
[8–10] and can achieve high degrees of anisotropy over
large bandwidths, allowing for transformation optics of flat
lenses [11]. Moreover, this low-dispersive behavior seems
to be associated to the lack of certain stopbands that nat-
urally occur for periodic metasurfaces: the first stopband
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Fig. 1.: All-metallic glide-symmetric corrugated metasurface
waveguide. The structure is invariant along the x axis (corru-
gations direction), and is repeated periodically along the z-axis,
which is the propagation direction of the waves. Glide symmetry
is introduced through the p/2-shift of the upper metasurface.

disappears, while the second stopband at higher frequen-
cies becomes larger [12]. Not only does this increase the
available propagation spectrum of these structures, but it
also makes them candidates for low-loss guiding or fil-
tering devices [9, 13–15] that allow for energy-efficient,
low-cost and small-sized communication systems, and for
artificial dielectrics used in 3-D lenses [16].

In this paper we aim at better understanding the phys-
ical effects of glide symmetry (GS) onto the dispersive
behavior, and obtaining accurate closed-form results for
the effective refractive index of a corrugated parallel-plate
waveguide (PPW), in which GS is added (see Fig. 1). This
kind of waveguide is considered here because it is suf-
ficiently simple to obtain closed-form results and yet it
illustrates the main physical properties of glide-symmetric
(G-S) metasurfaces. Unfortunately, the design of these
devices requires fast and reliable dispersive analyses for
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optimization purposes. These are made difficult due to the
presence of small geometrical details in the geometry of the
unit cell, and the very close proximity between the surfaces.
Closed-form solutions of these kind of dispersive prob-
lems are rare [17], and yet would be beneficial for a fast
design and physical insight. It is important to remark that
well-known homogenization results of corrugated struc-
tures [18, 19] do not hold in the G-S configuration. If each
metasurface could be homogenized separately, their mutual
shift would not matter [20], while the dispersive behavior
of the waveguide is affected by the presence of GS as long
as the interaction between the surfaces is strong enough.

In Section II we will briefly describe the mode-matching
(MM) formulation used to compute the fields inside the
waveguide, previously used in [21, 22]. In Section III, this
formulation enables the study of the impact of the differ-
ent field components onto the dispersive behavior of the
waveguide, with or without GS. From this, and for a small
gap between the metasurfaces, Section IV establishes a
dispersive equivalency between the G-S waveguide and a
scaled non-glide-symmetric (nGS) waveguide with half the
period. These results are then used in Section V to obtain
homogenized expressions for the refractive index seen by
the first mode of the waveguide. Contrarily to the results
derived in [23] in the quasi-static regime, the involved
approximations are valid in the entire first Brillouin zone,
which yields analytical proof of the low-dispersive behav-
ior of GS. Unfortunately, these formulas are conditioned
by geometrical restrictions on the corrugations. In Section
VI, we validate the closed-form expressions with numerical
results.

An earlier version of this paper was presented at the XXI
Mediterranean Microwave Symposium and was published
in its Proceedings [24].

II. MODE-MATCHING FORMULATION

The fields are described in the Cartesian coordinate system
(x, y, z). The metallic corrugated metasurfaces are parallel
to the xz-plane. Metallic losses are assumed to be neg-
ligible, that is the metasurfaces are perfectly electrically
conducting (PEC). Wave propagation in the z-direction is
studied, perpendicular to corrugations of depth h and width
a. The origin of the coordinate system is located in between
the two plates and right above the beginning of a corru-
gation, such that the lower plate is located at y = −g/2
and that there is a corrugation in the lower plate in the
interval 0 < z < a. The corrugations are repeated period-
ically in the direction z with period p. If the corrugations
of the upper plate are mirrored with respect to the propa-
gation plane, the waveguide is nGS, whereas if there is an
upper corrugation in the interval p/2 < z < p/2 + a, then
the waveguide is G-S. Given that the structure is invariant
along the x-direction, the structure can be studied in the
yz-plane, as illustrated in Fig. 1. A MM analysis requires
to express the fields in each region (the lower grooves, the

gap between the surfaces, and the upper grooves) as a suit-
able sum of modes. Here, we will refer to the formulation
proposed in [25].

The gap extends across the entire unit cell along the z-
direction, so that the fields there can be written as a sum
of Floquet harmonics. Each harmonic is characterized by
its integer order s, which relates its propagation constant
β(s) to the fundamental effective propagation constant β
through the relation

β(s) = β + s
2π

p
. (1)

Floquet harmonics with an even order s have an anti-
symmetric longitudinal electric field with respect to the
plane y = 0. On the contrary, odd-order harmonics have a
symmetric longitudinal electric field.

The grooves can be regarded as PPWs supporting prop-
agation along the y-direction, shorted at their end, that is at
y = − g2 − h. In each one of the lower grooves, the general
form of the fields is a sum of parallel-plate transverse mag-
netic (TM) modes propagating in the y direction [4, pp.104-
108]. Each mode is defined by its cut-off wavenumber

ky,m =

√
k2

0 −
(
mπ
a

)2
, with k0 the free-space wavenum-

ber, and is weighted with coefficients cm, m ∈ N being the
index of the mode. In the upper grooves similar expres-
sions can be written, but they are not necessary. By virtue
of the GS, the generalized Floquet theorem bounds the
fields of the upper corrugations to the fields in the lower
corrugations [26–28]. The detailed field expressions on the
lower corrugation surface can be found in [25] and are not
repeated here.

The field continuity is then enforced across the junction
between one lower groove and the gap. Enforcing GS takes
into account the presence of the upper metasurface cor-
rectly shifted of half a period. Finally, a linear system is
obtained

M · c = 0 , (2)

where the unknown vector c contains the grooves modal
coefficients cm. The entries of the square matrix M contain
the projections of groove modes on the Floquet harmonics
in the gap. Each matrix coefficient relates two modes of
orders m′ and m, such that

Mm′m = δm′m
pa

2min{1,m}
cot(ky,mh)

ky,m

−
+∞∑
s=−∞

f (s) (−1)m
′
4β(s)2P

(s)

m′ P
(s)
m

k
(s)
y

[
β(s)2−(mπ

a )
2
][
β(s)2−

(
m′π
a

)2] , (3)

with the Krœnecker symbol δm′m, and where k
(s)
y =√

k2
0 − β(s)2. Additionally, the term P

(s)
m depends on the

parity of the groove modes, that is

P (s)
m =

{
sin
(
β(s) a

2

)
, if m is even,

j cos
(
β(s) a

2

)
, if m is odd.

(4)
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Fig. 2.: Colormap of the number of corrugations modes M + 1
required for the convergence of the G-S dispersion curve for
β < π/p, depending on the gap g and the corrugation width a.
37 frequency points are computed for each curve, which is con-
sidered to converge when there is less than a 1% variation in β for
all observation points. The cell width is p = 4mm.

The vertical field distribution of each Floquet harmonic in
the gap results in the vertical spectral function

f (s) =


−cot

(
k

(s)
y

g
2

)
if nGS,
or if GS and s is even,

tan
(
k

(s)
y

g
2

)
if GS and s is odd.

(5)

Ranging over the frequency f , or equivalently over k0,
the function β(k0) that allows for a non-zero solution c of
(2) yields the effective propagation constant β of the fun-
damental Floquet mode supported by the waveguide. This
function β(k0) is found as the solution to

det (M) = 0 , (6)

which is the dispersion equation of the G-S structure.
In a numerical framework, the infinite sums of har-

monics and modes would need to be truncated, so that
the matrix M is of finite size in (6), that is (M + 1)×
(M + 1) if M is the maximum order of the TM modes
retained in the corrugations for the computation. In Fig. 2,
the maximum mode order M needed to obtain acceptable
convergence of the MM method in the first Brillouin zone
in given as a function of the corrugation width a and the
gap g, for G-S waveguides of period p = 4mm and dif-
ferent corrugation depths h. A sufficiently large number of
Floquet harmonics is considered as well. Fig. 2 illustrates
how closely-lying metasurfaces cause strong multi-modal
coupling, as indicated by the increasing M with small gaps
g. Moreover, it appears that the coupling is strongest for
medium-sized corrugations. Indeed, when a = p/2 in the
G-S configuration, the edges of upper and lower corruga-
tions are aligned, leading to maximal perturbation of the
fields.

III. DOMINANT HARMONICS WITH
GLIDE SYMMETRY

For the G-S structure, (3) seems to indicate that both even-
and odd-order harmonics have an impact on the disper-
sive behavior of the waveguide. However, it can be shown
that even-order harmonics are dominant when the gap g
between the metasurfaces is small enough [29].

In (3), the wavenumber k(s)
y is imaginary, and so the

vertical spectral functions (5) can rewritten as hyperbolic
functions of a real variable. The hyperbolic cotangent func-
tion is strictly larger than the hyperbolic tangent. But this is
not enough to state that the contributions of odd-order har-
monics can be dismissed, as both hyperbolic tangent and
cotangent converge to one for higher-order harmonics. Let
S > 0 be the highest harmonic order to be considered in the
truncation. In the first Brillouin zone (that is for k0 < β <
π/p) and for 1 < s ≤ S, harmonic wavenumbers defined
in (1) are approximately frequency-independent, that is
β(s) ' s 2π

p . Consequently, for the highest order S,

coth

(
g
2

√(
β(S)

)2 − k2
0

)
tanh

(
g
2

√(
β(S)

)2 − k2
0

) ' 1

tanh2
(
Sπ gp

) . (7)

If this ratio is large for the harmonic S, then this is the case
for lower-order harmonics too, thus proving that all odd-
order harmonics are negligible with respect to the even-
order harmonics. For that to be true, Sπ gp must be small
enough, yielding the condition

(
Sπ gp

)2

� 1 . (8)

Unfortunately, the number of harmonics S needed to
obtain accurate dispersion curves can only be obtained by
simulation, when the results converge. Indeed, due to the
strong coupling between the G-S metasurfaces, S is itself
a function of the waveguide parameters p, g, a and h. Yet,
S can be estimated in the case where the required num-
ber of corrugation modes is known, e.g. through the data
in Fig. 2. Indeed, [25] establishes that the ratio between
the number of modes and harmonics must be equal to a/p
in order for the field variations to be matched at the sur-
face of the corrugations. If only two corrugation modes
are needed, which seems to be the case for most gaps with
a = 1mm in Fig. 2, then around 9 harmonics are needed,
that is S = 4. Nevertheless, it should also be noted that in
all cases, the low-order harmonics have a larger impact on
dispersion than high-order harmonics, that is the harmonics
of orders 0 and ±1. A condition for the dominance of the
fundamental harmonic over odd-order higher harmonics is
then simply

g � p

π
. (9)
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Fig. 3.: Brillouin diagram of G-S and nGS corrugated PPWs with
different gaps g between the metasurfaces. The CST results are
compared to the MM method, either with all harmonics or only
the even-order harmonics in the computation. All structures have
p = 4mm, h = 0.5mm and a = 1mm.

Therefore, when g is already smaller than a fraction of p/π,
it is safe to state that the dispersive behavior of the waveg-
uide is mainly influenced by the fundamental harmonic in
the G-S configuration.

This is illustrated in Fig. 3a, where the Brillouin diagram
of a G-S waveguide is plotted up to the first stopband. The
CST results are compared to the convergent MM curves,
with all harmonics or only the even-order harmonics. For
small gaps, the even-order harmonics accurately describe
the dispersive behavior, particularly for the first mode. On
the other hand, for a nGS waveguide, all the harmonic
terms in (3) are proportional to the cotangent independently
of the order parity, as indicated by (5). Therefore, the odd-
order harmonics cannot be dismissed from the dispersion
equation, even for a small gap. That is why in Fig. 3b,
keeping only the even-order harmonics yields inaccurate
dispersion curves in the first Brillouin zone. Therefore, the
derivation of (9) indicates how a small gap g leads the
G-S waveguide to behave differently from its nGS counter-
part. In this case, twice as many harmonics have dispersive
impact in the nGS structure compared to the G-S structure.
This leads to different harmonic couplings in both struc-
tures, and ultimately to a lower-dispersive behavior with
GS. This is proven analytically in the next sections.

IV. SAME-DISPERSIVE SCALED
NON-GLIDE STRUCTURE

In this section, we show that for a G-S corrugated PPW
with a small gap, there exists a theoretical nGS struc-
ture that has the same dispersive properties. This equiva-
lent structure gives insight about the linearity of the G-S
dispersion curve.

If the gap g is small enough – satisfying condition (8)
– then the symmetric harmonics of the G-S structure can
be discarded. As such, the dispersion matrices of the G-S
and the nGS structure are almost identical. The only differ-
ence is that the nGS structure has all harmonics, whereas
the G-S structure only has harmonics with even order s.
From this observation, it can be shown that the G-S corru-
gated PPW is equivalent to a scaled nGS structure in the
first Brillouin zone. The periodicity p̂ of this equivalent
nGS structure must be half that of the G-S structure i.e.,
p̂ = p/2. Then, all the nGS harmonics with wavenumbers
β̂(s) can be identified to one of the even-order harmonics
of the GS structure, given that

β̂(s) = β + s 2π
p̂ = β + s 4π

p = β + (2s) 2π
p = β(2s) .

(10)

Moreover, this equivalent nGS structure has a double gap
ĝ = 2g. Then, it comes that for any dispersion matrix
coefficient,

M̂m′m =
1

2
Mm′m , (11)

where M̂ is the dispersion matrix of the equivalent nGS
waveguide. The 1/2-factor can be factored out of the
matrix determinant, and so both structures have the same
dispersion equation (6). As such, the G-S and nGS struc-
tures sketched in Fig. 4 are equivalent in terms of dispersive
behavior. Note that the equivalence is limited to the disper-
sive behavior, and that fields in these structures are not the
same.

This equivalence may seem intuitive for a small corruga-
tion width a. Indeed, in the G-S structure, every corrugation
is faced with a PEC plate on the other side of the gap.
If this PEC plate was infinite, it could be replaced by a
symmetric corrugation at twice the gap, because of image
theory [4, p. 44]. Nevertheless, this equivalence is intrigu-
ing for a > p/2. In this case, the equivalent nGS structure
does not physically exist: the corrugation width a is larger
than the cell-length p̂ = p/2. The G-S PPW is therefore
equivalent to a non-physical nGS structure.

Yet, this dispersive equivalency gives insight about why
G-S dispersion curves are more linear than the curves of
the counterpart nGS waveguide with same period p. Fig. 5
displays the Brillouin diagram of the nGS waveguide with
period p in blue (solid). At the right end of its first Brillouin
zone, that is β < π/p, the dispersion curve bends, yielding
an increased frequency dispersion. Indeed, a zero group
velocity must be obtained when reaching the lower edge
of the stopband between the first and second modes. The
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Fig. 5.: Brillouin diagrams for the corrugated PPWs shown
in Fig. 4. The G-S waveguide (solid and dashed red curves)
has dimensions p = 4mm, h = 1.5mm, g = 0.2mm and a =
1mm. It is compared to a nGS structure with the same dimen-
sions (dashed blue curve), but also to its equivalent nGS structure
(solid red curve), which has half the periodicity and twice the gap.

same bending occurs for the nGS waveguide with period
p̂ = p/2, in purple in Fig. 5. However, because the period
is halved, the first Brillouin zone is twice as large, and so
this increased frequency dispersion appears at higher prop-
agation constants. Finally, the G-S waveguide has the same
dispersion curve (in red) as this equivalent nGS waveguide.
But because it has a period p, its first mode corresponds to
the linear part of the equivalent nGS curve, making it low-
dispersive. This means that a G-S waveguide effectively
behaves like a nGS waveguide with half the period in terms
of dispersion.

V. LINEARIZATION OF THE
LOW-DISPERSIVE CURVES

In this section the dispersion equation (6) is linearized in
G-S waveguides, assuming that the gap between the meta-
surfaces is small enough. This proves for the first time that
the observed frequency dispersion is very weak. To this
effect, the entries of the matrix M are simplified, under
the following assumptions:

(i) Subwavelength assumption: p ≤ λ
2 .

(ii) First Brillouin zone: k ≤ β ≤ π
p .

(iii) Small gap: g ≤ p
4 .

(iv) Shallow grooves: h ≤ p
8 .

(v) Thin corrugations : a ≤ p
2 .

(vi) Few modes enough to capture the field variations.

A) Small grooves: one groove mode
When the width of the corrugations is very small compared
to the wavelength, as is usually the case for metasurfaces,
the field variability on the corrugated plate is small. Conse-
quently, few modes are necessary to capture this variability.
According to Fig. 2, for certain geometries it is even accept-
able to keep only the transverse electromagnetic (TEM)
mode.

Assuming that only one mode (M = 0) in the corru-
gations is enough to yield a good approximate of the
dispersion curve, the dispersion equation (6) is reduced to

M00 = 0 , (12)

where M00 is made of a sum of terms, each of which cor-
responds to one harmonic. According to (3) and the under
assumption of small gap (8), M00 has the form

M00 = γ0 + F
(0)
00 +

+∞∑
s=−∞
s even 6=0

F
(s)
00 , (13)

where

F
(s)
00 =−

a2coth
(

g
2

√
β(s)2−k20

)
√
β(s)2−k20

sinc2
(
β(s) a

2

)
. (14)

Assuming that the gap g is small enough, the fundamental
harmonic term (s = 0) is dominant. Keeping only this term,
and under the assumptions listed at the beginning of this
section, M00 can be simplified in the first Brillouin zone as

M00 '
pa

hk2
0

−
2a2

gk2
0 [n

2
eff − 1]

= 0 , (15)

where neff = β/k0 is the effective refractive index of a
wave traveling along the z direction. This equation depends
only on neff , and not on the frequency k0, which can be fac-
tored out. This confirms that the corresponding dispersion
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curve is linear. The analytical solution of this equation is

neff =

√
1 +

2ha

gp
. (16)

Although this solution is valid under strong geometrical
assumptions, it is simple, and provides direct understand-
ing about the influence of the various structure parameters
on the refractive index. Moreover, it is only derivable if
the contribution of the harmonic s = −1 can be dismissed,
which is not true in the first Brillouin zone for the nGS
structure. Therefore, the dispersion curve cannot be lin-
earized, proving that the nGS waveguide is more dispersive
than its G-S counterpart.

B) Medium grooves: two groove modes
The problem is extended to 2 modes in the corrugations.
Consequently, the dispersion matrix M becomes a 2× 2
matrix, and is made of matrix coefficients M00, M11, and
M01 = −M10. For a small gap, thin and shallow corruga-
tions, and in the entire first Brillouin zone, all these coeffi-
cients can be simplified. The simplified 2-mode dispersion
equation is

M2
01 +M00M11 '

{
j4neffa

3

gπ2 [n2
eff − 1]

}2

+

{
pa

h
− 2a2

g [n2
eff − 1]

}
·

{
−
pa2 coth

(
π ha
)

2π
− 8a4n2

eff

gπ4 [n2
eff − 1]

−
+∞∑
s=2
s even

8 cos2
(
sπ ap

)(
s 2π
p

)
coth

[
sπ gp

]
[(
s 2π
p

)2

−
(
π
a

)2]2

 = 0 . (17)

This equation depends only on the refractive index neff

and not on the frequency k0, proving that the G-S struc-
ture has a low-dispersive behavior in the first Brillouin zone
and under the given structural assumptions. An analytical
solution can be extracted from (17), that is

neff =

√
gp+ 2ha

gp+ 8
π4 pa4 1

u+v

, (18)

with

u =
pa2 coth

(
π ha
)

2π
, (19)

v =

+∞∑
s=2
s even

8 cos2
(
sπ ap

)(
s 2π
p

)
coth

[
sπ gp

]
[(
s 2π
p

)2

−
(
π
a

)2]2 . (20)

If all higher-harmonic contributions are neglected, as is
done in (16), then (18) can be further simplified as

neff =

√
1 +

2ha

gp

/√
1 +

16

π3

a2

gp coth
(
πha
) , (21)

where the consideration of the second groove mode appears
to apply a corrective term to (16).

The analytical solutions (18) and (21) are valid only for
geometrically restricted G-S structures as described at the
beginning of this section, with the additional assumption
that the dispersion matrix must be truncated to two corru-
gation modes. Despite these limitations, it is interesting to
remark that these formulas are valid over the whole Bril-
louin first zone i.e., for any β < π/p. For such structures,
this proves that there is almost no dispersion over a wide
band of frequencies. This result has been often observed
in the literature and used to design low-dispersive metama-
terials, but this is the first time that an effective index is
obtained in a closed form not depending on the frequency
under specific assumptions.

Importantly, the vanishing of the frequency dependence
in (18) is due to the absence of the odd-order harmonics in
the sum (20): the same approximations could not be done
on the harmonic of order s = −1, where the frequency-
dependence is non-negligible closer to the right edge of the
Brillouin diagram.

VI. NUMERICAL RESULTS

In this Section we validate the two homogenized solu-
tions (16) and (18) with independent results obtained with
the eigensolver solver in the commercial software CST
Microwave Studio.

Figs. 6 to 8 display the Brillouin diagrams of the G-S
structure for various corrugation widths a. The true disper-
sion curve obtained with CST is compared to the dispersion
curve computed with one or two modes and 50 harmonics
in the complete MM equation (6). Moreover, the linearized
dispersion curves obtained with (16) – 1 mode – and (18) –
2 modes – are also plotted, again with 50 harmonics.

Fig. 6a confirms that both linearizations (1 or 2 modes)
are valid for thin corrugations, as the resulting dispersion
curves fit the CST results. For larger values of a (e.g.,
a = 1mm in Fig. 6b) the 1-mode curve is visibly different
from the CST result, while the 2-mode curve is still very
accurate. As can be expected, at low frequencies both lin-
earized dispersion curves (dashed line) are always tangent
to the corresponding exact curves (solid line), whatever the
corrugation width.

For larger sizes of the groove in Fig. 7, as expected, the
accuracy is reduced also for the 2-mode approach, given
that more modes are required to accurately describe the
field variation at the surface of the grooves.

Nevertheless, Fig. 2 shows that for larger corrugations,
fewer modes are required. That is why for large corruga-
tions in Fig. 8, the 2-mode linearization approaches the
CST curve again. However, it is to be noted that the non-
linearized 2-mode curves are less accurate at the right-end
of the Brillouin diagram. This is because larger corruga-
tions lead to bigger approximations with increasing fre-
quency, even if 2 modes are enough. The index formula
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Fig. 6.: Brillouin diagram for the G-S structure with p = 4 mm,
h = 0.5 mm, g = 0.1 mm and varying corrugation width a. 50
harmonics are considered in all the homogenized models.

(18) is thus valid in the first half of the Brillouin diagram,
but less so with increasing frequency.

As long as the groove width is smaller than one third
of the period, and provided that the hypotheses detailed
in Section V are true, the 2-mode homogenization is very
accurate in the entire first Brillouin zone, therefore over
an ultra large band. This proves the extreme dispersion-
less feature of G-S corrugated structures over an ultra-wide
band of frequencies when small gaps between the surfaces
are considered. Further work on the computation of disper-
sionless closed-forms of the effective refractive index for
larger grooves give very cumbersome results which will not
be reported here.

VII. CONCLUSION

The MM method gives analytical access to the impact of
the different Floquet harmonics on the behavior of corru-
gated metasurface waveguides. The dispersive differences
between G-S and nGS waveguides, notable when the gap
between the metasurfaces is small, are the consequence of
the a reduced number of dominant harmonics. A similar
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(b) a = 2mm.

Fig. 7.: Brillouin diagram for the G-S structure with p = 4 mm,
h = 0.5 mm, g = 0.1 mm and varying corrugation width a. 50
harmonics are considered in all the homogenized models.

result can be obtained for two-dimensional metasurfaces
when using the extended MM developed in [30].

Keeping only half the number of harmonics in the G-S
dispersion equation also explains the low-dispersive behav-
ior by identifying an equivalent nGS waveguide with half
the period. It must be kept in mind that this equivalency
only concerns the dispersive behavior of such a structure.
Moreover, the existence of an equivalent nGS waveguide
should be understood under the necessary hypotheses: not
only is this equivalency valid only for the particular case of
the corrugated PPW with small gaps, but also the equiva-
lent nGS waveguide may not be physical. When it is, from
a practical point of view, the GS waveguide needs only half
the number of corrugations for a given length, which is a
considerable manufacturing gain.

As a consequence of the dismissible harmonics, the
low-dispersive behavior of GS is proven in this paper for
shallow corrugations, for which it appears that there is a
singularity in the simplified dispersion equation that moves
linearly with increasing frequency. This results in closed-
form expressions for the effective refractive index of G-S
waveguides, that are frequency-independent and valid in
the entire first Brillouin zone. This shows the absence of
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Fig. 8.: Brillouin diagram for the G-S structure with p = 4 mm,
h = 0.5 mm, g = 0.1 mm and varying corrugation width a. 50
harmonics are considered in all the homogenized models.

frequency dispersion over an ultra-wide bandwidth of fre-
quencies. For fast modeling of G-S corrugated waveguides
without geometry restrictions, one can turn to the accurate
quasi-static formula derived in [23], that take the low-
dispersive behavior proven in this paper as a pre-requisite,
or to the formula for holey two-dimensional structures
in [31].
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