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We provide a comprehensive analysis of the two-parameter 

Beta distributions seen from the perspective of second-order 

stochastic dominance. By changing its parameters through 

a bijective mapping, we work with a bounded subset D in- 

stead of an unbounded plane. We show that a mean-pre- 

serving spread is equivalent to an increase of the variance, 

which means that higher moments are irrelevant to com- 

pare the riskiness of Beta distributions. We then derive the 

lattice structure induced by second-order stochastic domi- 

nance, which is feasible thanks to the topological closure of 

®. Finally, we consider a standard (expected-utility based) 

portfolio optimization problem in which its inputs are the 

parameters of the Beta distribution. We explicitly charac- 

terize the subset of D for which the optimal solution con- 

sists of investing 100% of the wealth in the risky asset and 

we provide an exhaustive numerical analysis of this optimal 

solution through (color-coded) graphs. 
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1 | INTRODUCTION 

  

From the seminal and fundamental article of Rothschild and Stiglitz (see [1]), we know that the statement the random 

variable Y is riskier than a random variable X can be defined in three equivalent ways: (1) every risk-averse (expected- 

utility) decision prefers X to Y, (2) Y is equal to X plus a noise term (i.e., with zero mean) uncorrelated to X and 

finally (3) Y has more weight in the tails than X. In the particular case in which the mean of X and Y are equal, Y is a 

mean-preserving spread of X and the distribution function of X is said to second-order stochastically dominate? the 

distribution function of Y. 

While the variance plays an important role in finance (it is the square of the so-called volatility of the log-returns 

of a stock or an index), the fundamental contribution of [1] is precisely to show that the variance as a measure of 

riskiness may not be equivalent to the three aforementioned definitions. However, as observed in his review paper on 

the subject (see [2]), in some cases, the variance can be safely used as a measure of riskiness (i-e., it is thus consistent 

with the above definitions) and the best well-known example is the case of Gaussian (or normal) random variables. 

This actually holds true because when X and Y are both Gaussian with the same mean, they only differ by a scale 

parameter, the variance (or standard deviation), and this means that X and Y are an affine transformation of Z, the 

standard normal random variable with a zero-mean. In such a case, it is easy to show that the distribution functions 

of X and Y have a unique crossing point equal to p so that one distribution function (e.g., [3, Corollary 5]) second-order 

stochastically dominates the other. In the Gaussian case, it is the random variable with the lower variance that has 

a distribution function that second-order stochastically dominates the other. This statement actually holds true for 

distribution functions that belong to a location-scale family. 

The normal distribution plays a central role in probability theory and related fields because of its striking properties 

such as stability, location-scale family, absence of fat tails, existence of all moments, etc. It is, however, particular 

because it is symmetric around its mode/mean (i.e., zero skewness) and its excess kurtosis, a disputable quantity 

frequently used in finance, is also equal to zero. In finance, many popular models, for example, the capital asset 

pricing model (CAPM) or the Black-Scholes model, actually rely on the normality distribution to model the rate of 

return of a stock (possibly an index) while it is well-known that the distribution of the observed log-returns is not 

symmetric (i-e., it is skewed) and may exhibit a positive excess kurtosis (see the well-known review [4]). From a decision 

theory point of view, this absence of asymmetry of the normal distribution fails to capture a possible preference for 

a skewed distribution, generally measured by the third standardized central moment called skewness (see [5] for 

different measures of skewness, and see also [6]). 

In Economics, it is well-known that prudent decision-makers (i.e., those for which the third derivative of the util- 

ity function is positive) exhibit a preference for a positively-skewed distribution (also called right-skewed); see [7] for 

anice review. This thus suggests that a risk-averse prudent decision-maker could be willing to accept more risk in 

exchange to a more right-skewed distribution. This trade-off was explored in [8] and in [9] but in the particular prob- 

abilistic framework in which the distribution function is completely determined by the mean, the variance and third 

(standardized) central moment of the underlying random variable2. To analyze this possible trade-off within a contin- 

uous random variable framework, we need a probability distribution flexible enough to exhibit positive skewness and 

negative skewness. 

The two-parameter Beta distribution is particularly interesting due to the various shapes it can take as it can be 

single-peaked (i.e., N-shaped), positively or negatively skewed, but it can also be U-shaped, J-shaped (increasing), or 

1Note that the notion of second-order stochastic dominance does not require an equal mean. 

2It is virtually restricted to Bernoulli-like random variables of the form X = B.x; + xo.(1 — B) where B is a Bernoulli variable with parameter p 

and xo < x;. See [10] for a moment characterization of such binary risks.
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even decreasing. When leaving the mean of the Beta distribution constant, would a risk-averse and prudent expected- 

utility decision-maker be willing to accept a higher variance against a higher positive skewness? If not, is it true for a 

risk-averse non-prudent decision-maker? Assume now that the variance is kept constant but that the mean increases. 

Will a risk-averse agent always prefer the distribution with the highest mean? 

Aim of the paper. It is to provide a comprehensive analysis of a prominent, special distribution, the two-parameter 

Beta which can be applied to various fields, seen from the perspective of second-order stochastic dominance. To the 

best of our knowledge, while there is a large body of literature on the Beta distribution (see, for instance, [11], a 

handbook solely devoted to the Beta distribution), [12] seems to be the only paper in which this Beta distribution, 

along with other special distributions, is analyzed from a stochastic dominance point of view, this being the subject of 

this paper. Unfortunately, the unique result explicitly devoted to the Beta distribution (theorem 4) is stated without 

proof and contains indeed some errors. In their well-known paper, [13] consider an interesting related problem. They 

analyze the ordering of various special distributions (e.g., Beta, Gamma, inverse Gamma, Pareto Weibull, etc.) accord- 

ing to the variance and entropy, and they note that the Beta distribution is the most complicated case. By definition, 

the set of parameters of the Beta distribution, denoted frequently a and £, is unbounded since both @ and £ are 

positive (see e.g., [14]). As a result, [13] represents their finding (i.e., the ordering) in a subset of parameters such as 

[0, 4] x [0,4] and not in the overall aB-plane (i.e., R3,). With stochastic dominance in view, the usual definition of the 

Beta distribution thus has three major drawbacks. 

1. The set of parameters, that is, the af-plane (i.e., R2.,) is unbounded. 

The two parameters a > 0 and B > 0 have no natural economic interpretation. 

3. The limiting distributions (i.e., Dirac masses and convex combination of Dirac masses) are excluded from the 

analysis in aB-plane. 

Throughout the paper, instead of working with R2, as the natural set of parameters, we shall consider a subset 

of RZ, and the new parameters will be the mean m of the Beta random variable and the variance v. As a result, with 

a mean-preserving spread in view, it becomes quite easy to leave the mean constant. Thanks to the equinumerosity 

property of R with any open subset of R, one can design a bijective mapping (possibly differentiable) between R, and 

an open bounded subset of R2,,. While this bounded subset can possibly be a square or a circle, we find it convenient 

from a topological point of view to choose a subset whose upper boundary is a parabola of the form y = m— m?. For 

this reason, we call this new set of parameters the MV-dome (denoted 9). For a given mean m € (0,1), as long as the 

variance v < m— m’, this couple of parameters (m, v) lies in the MV-dome and corresponds, by design, to a unique 

point in the aB-plane. As is well-known in the af-plane (see e.g., [14]), when both a and £ are higher (lower) than 

one, the Beta density is respectively N-shaped or single-peaked (U-shaped). An interesting aspect of the MV-dome 

is that the limiting N-shaped Beta distributions, as well as the limiting U-shaped, are located on the boundary of the 

MV-dome. The particular feature of these limiting Beta distributions is that they do not admit a density since they 

are Dirac masses (or convex combination of Dirac masses). 

Contribution of the paper. It is a major contribution of this paper to show that, by considering the topological 

closure of the MV-dome (its boundary), we are able to derive the non-trivial lattice structure of the two-parameter 

Beta distribution induced by second-order stochastic dominance. The topological closure of the MV-dome thus does 

not appear as pure mathematical construction designed to simply extend the set of Beta distributions; it is at the 

heart of the construction of the lattice structure. This, in turn, allows us to construct the Hasse diagram, that is, the 

path from the minimum element in general denoted 1 to the maximum element in general denoted T. In particular, 

we show that the set of Beta distribution functions with a constant mean are ordered with respect to their variance.
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More precisely, if F and G are the distribution functions of two Beta random variables X- and Xg respectively with 

the same mean but different variance, that F second-order stochastically dominates G, something denoted as usual as 

G Xssq F, is equivalent to Ve < Vg where V¢ and Vg are the variance of X- and Xg respectively. Interestingly, in the 

MV-dome, the set of Beta distribution functions with a constant mean is just a vertical segment. As a simple corollary, 

the set of symmetric Beta distribution (those for which a = ) is also a simple vertical segment in the MV-dome, those 

with the greatest maximal variance. 

While the ordering of Beta distribution functions along a vertical segment of the MV-dome is an interesting 

result, it is actually not enough to derive the particular lattice structure. We also need to derive the order of the Beta 

distribution functions for which the parameters are located on the boundary of the MV-dome. For this reason, we 

show that the Beta distribution functions with zero variance (the parameters are located on the x-axis of the MV- 

dome) but also those with maximal variance (the parameters are located on the parabola of the MV-dome), which are 

ordered with respect to second-order stochastic dominance. Taken now together, these orders allow us to derive the 

particular lattice structure (of the Beta distribution whose parameters are in MV-dome) and the Hasse diagram. 

Interestingly, our results, in turn, also allow us to provide a simple answer relative to the preference of a risk- 

averse (expected-utility) decision-maker with respect to skewness and/or the excess kurtosis. As long as the mean is 

constant, the unique parameter relevant to compare the riskiness of the distribution is the variance. In other words, 

the skewness and/or the excess kurtosis are simply irrelevant to a risk-averse expected utility decision-maker, whether 

the investor is prudent or not. 

At this stage, it is fairly natural to inquire whether or not the distribution functions, the parameters of which are 

located in the MV-dome, can be totally ordered with respect to stochastic dominance. For instance, if one considers 

two distribution functions with a different mean, but with the same variance v, are these two distribution functions 

ordered according to stochastic dominance? For the Gaussian case, the answer is positive and the distributions are 

even comparable according to first-order stochastic dominance. For the Beta distribution case, the answer may be 

negative in that the distributions may be non-comparable according to second-order stochastic dominance. As we 

shall see, the very reason for this somewhat surprising result is related to the "change of regime" of the Beta distri- 

bution functions when the parameters lie on the boundary of the dome; these distributions do not admit a density 

anymore and reduce to Bernoulli random variables for which the distribution functions is flat. 

Related literature. In their groundbreaking paper, [15] introduce the notion of a mean preserving spread with 

respect to a family of distribution functions that depends upon a single parameter and offer many economic applica- 

tions. While there now exists a large body of literature on mean-preserving spread (see [2] for an early survey and 

[16] and [17] for an elementary and more advanced textbook respectively), to the best of our knowledge, [12] seems 

to be the only paper in which the Beta distribution is explicitly considered with a second-order stochastic in view 

and applications to portfolio choices. As already said, [12] does not offer proofs for the Beta distribution case and, 

unfortunately, the sole result regarding this distribution contains some errors. 

Organization of the paper. We introduce in Section 2 the notations used throughout the paper and we prove a 

simple, yet essential result?. Before examining the general two-parameter Beta distribution, we believe it is interest- 

ing to focus on the single-parameter (symmetric) Beta distribution in Section 3. From the result of this section, the 

uniform distribution function for which the parameter is equal to one second-order stochastically dominates by the 

Arcsine distribution function for which the parameter is equal to one-half. In Section 4, the essence of the paper, 

by changing the set of parameters through a bijective mapping, we derive the lattice structure of the two-parameter 

Beta distribution with respect to second-order stochastic dominance. Finally, in Section 5, we apply these results to a 

portfolio optimization problem in which a decision-maker must allocate their wealth between a default risk-free asset 

3We discovered that this result appears as a corollary in [3], though with a different approach.
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and a risk one (a Beta random variable). Thanks to the known lattice structure of the Beta distribution function, we are 

able to fully characterize the region of the Dome for which the decision-maker decides to invest 100% of the wealth 

in the risky asset. Moreover, since the set of parameters is bounded, we are able to provide an exhaustive numerical 

analysis. 

2 | NOTATIONS, DEFINITIONS AND PRELIMINARY RESULTS 

Throughout the paper, unless stated otherwise, we consider the case of positive random variables, that is, those for 

which the support (of the underlying probability measure) is the compact subset of Ry such as [0,1]. Let X be such 

a random variable and let Fx := F be its distribution function. For the sake of simplifying the exposition, we will also 

refer to Fx as the law of X or its probability distribution. The expectation E(X) lies in [0,1], thus it is finite, and can 

be written as (see e.g., [14] p. 332) 

1 1 

E(x) = [ a-Fonde= [ snax ) 
0 0 

  

where S = 1-F is called the survival function and note that equation (1) holds more generally for any positive random 

variable with finite expectation. In other words, equation (1) simply says that the expectation of the positive random 

variable X is equal to the integral of the survival function and it is interesting to note that the computation of E(X) 

only makes use of the survival function. In some sense, E(X) can also be interpreted as the expectation of the survival 

function. 

Consider now two positive random variables X; and X2 with distribution function F, and Fy respectively (both 

supported by [0, 1]) with F; # Fz and such that E( X2) = E(X;1). From equation (1), we thus obtain that 

1 
E(%) = EX) = | 1F(x) ~ Fal) de =0 (2) 

Following the terminology introduced in the influential paper [15], the distribution function F; is said the be riskier 

than the distribution function Fp if it has the same mean but more weights in both tails. Formally (see [18], or the 

textbook [17]) F; is said to be a mean preserving spread of F2 if and only if both statements hold: 

E(X) = E(X2) (3a) 

Vx € [0,1], f Fo(t)dt < f F,(t)dt (3b) 
0 0 

When equation (3b) holds, as usual in Economics, it is said that F2 dominates F; according to second order stochastic 

dominance (SSD), which we note as 

Fi ssa Fa 

Note that SSD implies E(X;) < E(X2) Amean preserving spread thus is the particular case of second-order stochastic 

dominance in which the means are identical. 

Let E(u(X)) be the expected utility associated to the random variable X for some Von-Neumann Morgenstern
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utility function u and let U2 be the set of increasing concave functions. The following equivalence is a well-known 

result in the Economics of risk (see for instance [2, p. 557] or [17, p. 81]). 

Fi Xssa Fo <> E(u(X1)) < E(u(X2)), Wu € Up 

In other words, as long as the distribution function Fz second-order stochastically dominates F;, all risk-averse 

expected utility decision-makers (weakly) prefer Fp to Fy. 

Let us now recall first-order stochastic dominance (FSD). It is said that Fo first-order stochastically dominates F; 

(FSD) if, for each x € [0,1], Fo(x) < Fi(x), with Fp # Fi, something that we note F, <f5q Fo. If Fi <fsaq Fa, then 

equation (3b) is satisfied but the converse is obviously not true. As is well-known, first order stochastic dominance 

(FSD) is a stronger than second-order stochastic dominance (SSD). Note also that if F; =fsq Fa, then, E(X1) < E(X2). 

By definition, when the mean of X; and X2 are equal and when F; and Fy have at least one crossing point, they 

cannot be FSD-ranked. The analysis of a mean preserving spread precisely consists in analyzing situations in which 

distribution functions are not FSD-ranked but might be SSD ranked. When the distribution functions cross only once, 

following once again [15], the mean preserving spread is said to be simple (see also [19]). 

Let C'([0, 1]) be the set of continuous non-decreasing distribution functions* F such that F(0) = 0 and F(1) = 1. 

For p € (0,1), let ;, be the set of functions with the two following properties. 

1 
1. For each F € crc, [ (1-F(x))dx =p 

0 
2. For each F,G € C'([0,1]) with F # G, there exists a unique non trivial crossing point x € (0,1) such that 

F(X) = G(xe) 

The set of distribution functions F,, is such that, by definition, the mean of each element F is equal to p and two 

different distribution functions have a unique non-trivial crossing point, that is, a crossing point which is not equal to 

a bound of the support, (i.e., zero or one). From the first property, two functions F and G with the same mean y must 

cross at least once. From the second property, this (non-trivial) crossing point is unique. 

Proposition 1 The set of distribution functions F,, is completely ordered with respect to second order stochastic dominance. 

Assuming that the distribution functions have a unique (non-trivial) crossing is a fairly strong assumption. How- 

ever, if one succeeds to prove that a given set of distribution functions with the same mean cross only once, then, from 

proposition 1, they are ordered with respect to second order dominance. A related result is proved in [20, Proposition 

2] and we found that a similar result appeared in [3, Corollary 2.5]. The proof or Proposition 1, which is rather short, 

is provided in Appendix B so the paper is self-contained. 

Consider now, the three following elements of ¥, denoted F;, Fp, F3. By definition, they have the same mean 

equal to py. Let V; denote the variance of the underlying random variable X; with distribution function F; that belongs 

to F,,. From [21, Theorem 3] and [22], the following result is true. 

Corollary 1 If F), Fz, F3 belong to F,, and are such that F3 <ssq F2 <ssq Fi, then, V3 > V2 = Vi 

4Note that instead of C'([0,1]), one could consider C(R). In such a case, the underlying random variable is no longer positive, but the 

assumption of identical mean can be made. One must further assume, however, that the random variables have finite variance.
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3 | ELEMENTARY THEORY (81) 

Let X be a one-parameter Beta random variable distributed according to a density function fy given below (see Ap- 

pendix A) that depends upon a single positive parameter a. 

ix = x) 1271 
fa (x) = Bla, a) xe€(01)  a>0 (4) 

where B(a, a) is the normalization parameter as defined in equation (25). Let Fy be the distribution function 

Vx € [0,1], Fa (t) = fa (x) dx (5) 

  

Such a density function fy (respectively distribution function Fy) is called a one-parameter Beta density (resp. distri- 

bution) and corresponds to the case in which the two parameters of the classical Beta distribution are equal, that is, 

a = B (see Appendix A). From equations (37) and (38) of Appendix A, the expectation E(X) and the variance V(X) 

are equal to 

1 1 
E(X)=-5 V(X) = ——— 6) 

~*~) 2 (x) 4(1 + 2a) 6) 

The parameter a only changes the variance of the Beta random variable X since the expectation is invariably equal 

1 to}. 
Let B, be the set of distribution functions Fy for a > 0. As long as the parameter a is strictly positive and finite, 

2 

the set B, can also be thought of as the set of Beta densities with parameter a. However, as we shall see, when one 
2 

wants to consider the topological closure of 81, limit the distribution functions no longer admit a density since the 
2 

underlying Beta random variables are Dirac masses. The next result is not new, but since it does not appear as such 

in the literature, and to be self-contained, we offer a proof. 

Lemma 1 The density fa has the following characteristics. 

(i) It is symmetric around the mean E(X) = 3 which is also the median. 

(ii) It is A-shaped (single-peaked or unimodal) if a > 1 (in this case the mode is equal to the mean). It is uniform if 

a = 1. It is U-shaped if a < 1, in this case the anti-mode is equal to the mean. 

Proof. See Appendix B. 

Besides having one parameter instead of two, the one-parameter density is simpler than the two-parameter 

density because of the symmetry property described in Lemma 1. 1 

This lemma yields that t? fey (3 + z) dz = 4 so that Fy(5) = 4. Moreover, we also have that Ie, fy (x)dx = 

1 
fe? fy (x)dx so that 1- Fa(} -z)= Fal} +z). The following result summarizes this and is a simple corollary of the 

2 

above lemma. 

Corollary 2 For each a > 0, 

Fa(5)=3 (7)
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F@) 

  

  x 

1 1 
2 

FIGURE 1 The two quadrants in which all the distribution functions F, are located 

1-Fa(t-z)=Fa (4 (8) a\5 Z)=Fa 2 +Z 

Note that (7) can be obtained by taking z = 0 in (8). Identity (7) also derives from (40) in Appendix A by taking 

a = Bandx = 4. We now want to inquire the properties of the distribution functions but as a function of the 

parameter a. 

3.1 | Properties of the distribution functions 

This subsection is devoted to the various properties of the distribution function Fy. Its consequences will be analyzed 

in a separate subsection. Let [0, 1] x [0, 1] be the unit square divided into four equal Quadrants, that is, each Quadrant 

represents } of the total area of the unit square. Only Quadrant Q' and Q? as shown on Figure 1 are of interest. 

    

rolot 1 Q = [0.5 x 05 | (9a) 

@=[h1 x i] (9b) 

    

Proposition 2 The distribution function Fa has the following characteristics. 

(i) Its graph belongs to Q' u Q? 

(ii) When a > 1, it is convex in (0, ) and concave in (5,1) 

(ili) When a < 1, it is concave in (0, 5) and convex in (4, 1) 

Proof. See Appendix B.
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Interestingly, Proposition 2 states the curves of all the distribution functions are located in quadrant Q'! when 

x € [0, 3) and in quadrant Q? when x € bo). The case in which a = 1 corresponds to an uniform distribution for 

which F; (x) = x, that is, the distribution function reduces to a linear function. When a = 3, this corresponds to the 

Arcsine distribution for which F; = 3 + Aresine(2x-1) and it can be readily verified that it is concave when x € (0, ) 
2 

and convex when x € G. 1). By definition of a distribution function, for each a > 0, the following two properties are 

true. 

Fa(0) =0 and Fa(1) =1 (10) 

Beyond the points zero and one, it is thus natural to wonder whether two Beta distribution functions can cross 

in some other non-trivial point(s) x; € (0,1). The answer turns out to be positive. 

Proposition 3 Let a; and a2 be two positive real numbers with a, # a. Then 

is the only solution in (0, 1) to Fa, (x) = Fay (x). 

Proof. See Appendix B. 

To understand the basic idea of the proof of 3, consider two distribution functions for which a; > 1 and a > 1. 

From proposition 2, these two distribution functions are convex in (0, 3) and cross in y Consider Quadrant 1 and 

assume, as in Figure 2, that in the interval (0, 3) F, > Fp and that they cross at a point x, < 3 The existence 

Xp < 3 actually yields a contradiction. To see this, consider the end of the distribution function Fa, in red. It is a 

convex function but does not cross the point x, = 3 Consider now the end of the distribution function Fa, in blue. 

It now crosses the point x¢ = 3 but is no longer a convex function, that is, it is concave in the interval (xp, 3) and this 

yields, once again, a contradiction. It thus follows that the unique crossing point is xp = } A similar reasoning holds 

for Quadrant 2. In the interval (0, 3) (but also in the interval Gs. 1)), the distribution functions are thus ordered with 

respect to a and this is equivalent to the following statement. Let a, # a. Only one of the statements is true. 

1. For any x < $, Fa, (x) > Fay(x), and for any x > }, Sa)(x) > Sa, (x) 

2. For any x < }, Fa, (x) < Fay (x), and for any x > 5, Say (x) < Sa, (x) 

Consider, once again, the case in which a > 1 so that the density f is single-peaked. From lemma 1, we know 

that fy is symmetric around the mean but also around the median or the mode. From equation (6), we also know that 

when the parameter a increases, the variance decreases so that the density assigns more weight to the values of x in 

the center of the distribution defined as an interval of the form (3 -e, 3 +e] for some positive e. In the limiting case 

in which @& tends to infinity, the variance tends to zero and the density thus is concentrated on 3. It thus follows that 

for any x < 3, if ay < ag, then, Fa, (x) > Fa, (x). Since the expectation must remain constant, it is also true that for 

any x > 3, if ay < ag, then, Sa, (x) > Say (x). The next proposition summarizes this discussion. 

Proposition 4 The following statements hold true. 

(i) For each x € (0, 3) the distribution function F(x) decreases with a. 

(ii) For each x € (. 1), the survival function Sq (x) increases with a
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NI
B 

  

  

FIGURE 2. Two distribution functions cross only once in (0, 3) 

In the literature on Beta distributions, a somehow similar result is also known when a and £ are integers. Using 

the recurrence relation (41) of I, (a, 8) in the particular case in which a = B, the following relation holds I, (a) = 

Iy(at+1)+C (3 - x) where C is a positive constant. When x < 4, it thus follows that I, (a) < I,(a@ +1). Proposition 

4 shows more generally that Fy (x) is a decreasing function of a € R* and does not explicitly make use of the properties 

of the regularized incomplete Beta function I, (a, 8). Fig. 3 represents two distribution functions for two different 

values of a. 

Since the graph of Fa lies in Q@' UQ? and have a unique non-trivial crossing at 4, riskier simply means more weight 

in the quadrant Q' and as a result less weight in the quadrant Q?. Let us define the weight in both quadrants: 

1 

w} =[° Fa(x)dx (11a) 
0 

1 

we =f Fa (x)dx (14b) 
2 

Assume that a; < ag. For two distribution functions with parameters a; and a2, we can consider the difference of 

weight i both quadrants Q' and Q?: 

1 

AW" (ay,a2) := Wi, — Wh, = f * (Fay (X) — Fay (x)) dx > 0 (12a) 

1 

AW? (ay,a2) == Wz, — Wa -[ (Say (x) — Say (x))dx > 0 (12b) 
2
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F(x) 

a,>a,>1 

  

  

FIGURE 3. The blue distribution function is a mean preserving spread of the green one. 

From equation (2) which reflects the fact that the expectation is constant, it must thus be the case that the two 

quantities as defined by equations (12a) and (12b) are equal. Let MPS(a1, a2) be a mean-preserving spread when one 

moves from Fa, to Fa,, defined by 

MPS (a1, a) := AW! (a7, 02) = AW? (an, a2) (13) 

We shall use this function in the next subsection of this article. 

We have defined Fa for a € Ry... When a tends toward +co (respectively 0), the function Fy pointwise converges 

toward F.. defined by (14) (respectively Fo defined by (15). Since the parameter a only changes the variance of the 

random variable, the analysis of the limiting distribution functions also yields the limiting variances of the random 

variable, equal to 0 and } respectively. 

1. The case in which @ tends to co, From Chebyshev’s inequality, it is not difficult to show that when a tends to 

+oo, the random variable converges in probability (thus is in distribution) toward the Dirac Delta function 5) . The 

limiting distribution function F.. thus is given by 

rat ={ oH x«< (14) 

ni
e 

Ni
s 

1 if x2 

2. The case in which a@ tends to 0. Recall that when a < 1, the density fy is U-shaped and becomes more and 

more concentrated on the extremes, that is, on O and 1 when a decreases. We show in the appendix® that the 

random variable tends toward 3 (50 + 5), where 5p and 6; are respectively the Dirac Delta function in zero and 

5See lemma 2 for the general case of the two-parameter Beta distribution.
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FIGURE 4 The two polar distribution functions 

one respectively. The limiting distribution function Fo thus is given by 

4 if O<x<1 
Fo(x)=4 2 | (15) 

1 if x=1 

These two limiting distribution functions F., and Fo are represented on Fig. 4. The above analysis prompts 

introducing the set 

By = By U (Fo; Foo 16 4 1 U {Fo } (16) 

so we now have a minimum and maximum element 

sup By = max By = Fo (17) 

= minB, =Fo (18) inf By 
2 

When a@ € Rt, the support of the random variable is the compact subset [0, 1] and its density fy is a continuous 

function. As a result, the random variable is said to be continuous. However, in the two limiting cases (a tends to zero 

or @ tends to infinity), tends to a discrete random variable. 

3.2 | Complete ordering of By and mean preserving spread 

From the previous sub section, we know that for a; # a2, the distribution functions Fa, and Fa, intersect only in (0, 1) 

in xc = 4. From proposition 1, since the one-parameter Beta random variables have the same mean (equal to 3) Fay 

and Fa, are SSD-ranked. From proposition 4, a1 < az is equivalent to Fa, <ssq Fay. The next result thus holds true.
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Theorem 1 Let a; and a be two positive numbers, then 

a Sag SS Fay %Xssd Fay 

and Fy, isa mean preserving spread of Fay. 

The above theorem thus means that the set By is totally ordered with respect to second order stochastic domi- 

nance <spp. In their influential paper, [1] note that, in general, when one works with distribution functions supported 

by [0,1] with the same mean, the binary relation <,,q only defines a partial order. In line with this observation, in 

the applied probability literature (see the reference textbook [23]), various stochastic orders are considered, such as 

the hazard rate, the mean residual life function. etc. but in general, the order is only partial. Having a total order is 

unusual. 

Consider first the case in which the distribution max 8, = 6; differs from minB, = (50 + 51) by a (simple) 

mean preserving spread. This corresponds to the greatest mean preserving spread and is equivalent to a transfer 

of 100% of the weight from Q! to Q?, (see once again Fig. 4). From the distribution functions given by equations 

(14) and (15), it thus follows that MPSmax := MPS(0, +00) = + Consider now the mean preserving spread in which 

one moves from Fz to F;. When a = 1, ff is an uniform density so that F;(x) = x. When a = 2, it is easy to show 

that f(x) = 6x(1— x) so that F(x) = 3x? - 2x3 and it can be shown that MPS(1,2) = a which is equivalent to 

MPS(1, 2) = 12.5% MPSmax. 

Let X and Y be two arbitrary positive random variables with distribution functions Fy and Fy respectively where 

the support is [0, 1]). In [17] p. 82, they recall that if Fx <ssq Fy and E(X) = E(Y), then V(X) > V(Y). The converse 

is however not true in general, that is, from E(X) = E(Y) and V(X) > V(Y), one can not conclude that Fx <ssq Fy. 

In some cases, however, when X and Y are normally distributed with the same mean, the variance order is equivalent 

to an SSD order. Let X; and X2 be two Beta random variables with parameters a; and a2 respectively and let Va, and 

Va, be their variance. Let >y be the variance order. From equation (6), since the variance of the random variable is a 

decreasing function of a, a; < az is equivalent to Va, > Va, and is in turn equivalent to Fa; <ssd Fa,. The following 

corollary thus holds true. 

Corollary 3 For the one-parameter Beta distribution, the variance order >y is equivalent to the second-order stochastic 

dominance =ssq- 

It is important to note at this stage that this result critically relies on the fact that the Beta distribution depends 

only upon one parameter. This means that it is highly unclear that this result can be extended to the two-parameter 

Beta distribution. We shall show that this is indeed the case. 

By definition, the density of the (one-parameter Beta random variable) is symmetric, which means that the skew- 

ness is equal to zero. This is, however, not the case for the kurtosis denoted by « and thus for the excess kurtosis, 

defined as x — 3 (the number three is the kurtosis of the normal distribution). For a random variable X with a distribu- 

tion function Fg, its kurtosis is equal to k(a) = 3 (33) (see e.g., [24]), which is an increasing function of the single   

parameter a. By defining the kurtosis order as =,, the following corollary is therefore true. 

Corollary 4 For the one-parameter Beta distribution Fz, the kurtosis order x, is equivalent to the second-order stochastic 

dominance =s5q- 

Since second-order stochastic dominance deals with risk-averse expected utility decision-makers agents, overall, 

the above results show that such agents always prefer a Beta distribution which is N-shaped rather than U-shaped.
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As a result, between two Beta random variables, such an agent always prefers the variable for which the kurtosis is 

the highest (the closest to zero), or, equivalently, the variable for which the variance is the lowest 6 Itis frequently 

said that the definition of the kurtosis is necessarily vague (see e.g.,[25, p. 294]) since "the movement of mass can be 

formalized in more than one way". Within our approach, the movement of mass is clearly and uniquely defined since 

it corresponds to a mean-preserving spread, which yields a total order. We refer to [25] or to [24] for more on the 

kurtosis, which is not per se the subject of the present paper. 

4 | ADVANCED THEORY (8): MV-DOME, TOPOLOGICAL CLOSURE AND 

THE LATTICE STRUCTURE OF THE SET OF BETA DISTRIBUTIONS 

The approach followed in the previous section has been made possible because the one-parameter Beta density has 

an important convenient property; for each value of the parameter a, it is symmetric around the mean (but also the 

mode and the median) and, as a result, the mean is invariably equal to 3. This is not true when one considers a two- 

parameter Beta density. The density is no longer symmetric around a given central tendency parameter such as the 

mean or mode and as the parameters @ and £ vary, the mean, the mode, the variance (but also the skewness and 

the kurtosis) change. This clearly complicates the task when one wants to perform a mean preserving spread. In this 

section, we shall extend the results of the previous section to the general case of two-parameter Beta distributions. 

Before presenting our approach and results, it is important to discuss notion of a location-scale family. As we shall 

see, when the distribution functions (of two random variable) belong to a location scale family and when they have 

the same mean, the intersect once so that proposition 1 applies. 

4.1 | Location scale family and the two-parameter Beta distribution 

Let X be a random variable with finite variance distributed according to a density that depends upon two parameters 

we Rando > 0. Let f(x,p,0) and F(x, u,0) be the density and the distribution function of X. The two parameters 

pand o are said to be location-scale parameters for the distribution function of X if for all x, it satisfies 

(52) 0 o 

o(*2) eo 

Q   Fx(x,Ho) = 

Ex(% Mo) = 

a
l
-
 

for some distribution function and density G and g respectively sometimes called the reduced or standard distribution 

function and density (see [26], see also [13]). It is important to point out that the (reduced) density g and the distribu- 

tion function G depend upon x and the two parameters y and o ina specific way, that is =. When the distribution 

function of X belongs to a location-scale family, it suffices to write for each x that fx (x,0,1) = g(x), hence the 

name of reduced density for g. Assume that X ~ fx (x,y, 0), that is, the density of X is fx (x, u,0). When this density 

belongs to a location-scale family, the reduced random variable x ~ fx (x, 0,1) or, equivalently, if X ~ fx (x,0,1), 

then, the random variable p + oX ~ fx (x, u,0). The best well-known example of such a location-scale family is the 

Gaussian (or normal) density. In [13] table 1 (see also [27] for a longer list), they offer a sample of densities that are 

In [25, p. 299], the author interestingly reviews the interpretation in the literature of the excess kurtosis for the one-parameter Beta distri- 

bution, equal to k(a) - 3 = -75- The excess kurtosis is seen as a measure of unimodality versus bimodality, where large negative kurtosis 

indicating a tendency toward bimodality. For instance, when a tends to zero, the excess kurtosis tends to its minimum, equal to -2 and the 

Beta density tends toward a bimodal distribution.
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location-scale distributions. 

To see the implication of location-scale density (or distribution function) in terms of stochastic dominance, assume 

for simplicity that X ~ N(0, 1) (i.e., X follows a standard normal distribution) and let ¥; = 01 X +44 and Y2 = 02X +p. 

By definition, Fy, and Fy, belong to the same location-scale family and their distribution function are respectively 

equal to Fy, (y) = GC) and Fy, (y) = GH) where G is here the distribution function of the standard normal 

random variable. Since 

    

o (24) =o(22H) — y, = en miee (21) 
1 o2 or 02 

this means that y, is the unique crossing point of Fy, and Fry, which means that one distribution must second-order 

stochastically dominates the other one. When py = p2, it is not difficult to prove the following result. 

Y2 Xssd V1 > 01 < O72 (22) 

A related result was obtained by [28] for normal random variables under some conditions and generalized subse- 

quently by [29]. They prove an FSD result for |X | and |Y | with respect to the variances. 

In general, it turns out that the two-parameter Beta distribution is not a location-scale family. To see this, let 

X = yw+oZ where X is a two-parameter Beta distribution. It is easy to show that the density of X is equal to 

fx (x, H,0) = £fz (=) so that 

(x= pw)" (= x- ht 
o*P-1B(a, B) es) Fx (x, H, 0) = 

But equation (23) fails to satisfy equation (20) since the parameters a and £ appear in the density and do influence 

the shape of the density. However, for some values of the parameters a and £, the Beta distribution may be a location- 

scale family. A simple example of location-scale family is when a = £ = 1, that is, when the Beta distribution reduces 

to an uniform distribution. In such a case, it is easy to show if Y = oX + p, the distribution function of Y is equal to 

Fy(y) = oe and thus is a particular case of equation (19). If X is a uniform distribution, the affine transformations of 

X (i.e., X +p) generates the family of uniform distributions’. It is however to important to point out that the support 

of Y also changes with the location-scale parameters. 

4.2 | The MV-dome and the Topological closure of 8 

The two-parameter Beta distribution comes with a number of caveats in the context of investigating mean preserving- 

spreads. 

1. The parameters @ and B do not have any direct economic meaning. 

2. The iso-mean and iso-variance curves are fairly complex in the unbounded (a, 8)-quadrant. 

3. The two-parameter Beta distribution is, in general, not a location-scale family. 

4. The support of any random variable Y = aX + 6 where X is a two-parameter Beta distribution is equal to [b, a+ 6] 

7This is however not the unique case. When a = 6 = } that is, when the Beta distribution reduces to the so-called Arcsine distribution, then, 

the affine transformation of X, i.e., oX + y, generates the family of Arcsine distribution (see e.g., [26] p 151). We refer to [27] for other 

examples of particular cases of the Beta distribution that are location-scale family.
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and is never equal to [0,1] unless a = 1 and 6 =0. 

Let X be a two-parameter Beta random variable distributed according to a density function given by 

1 a-1/q_ y)B-1 Bap * (1-x): (24) 

where B(a, B) is a normalization constant: 

1 

ata.p) = [ x71 = x) Pl dx (25) 

In order to extend the analysis of the one-parameter Beta distribution to the two-parameter case, we must be able, as 

before, to analyze the crossing points of two distribution functions with the same mean and different variance. From 

the above discussion, assuming even that one considers values of a and 8 such that the two-parameter Beta random 

variable X belongs to a location-scale family, the support of any affine transformation Y = oX + y is not [0,1] but is 

instead [y; 1 + a]. To compare Beta distributions supported by [0, 1] with the same mean according to second-order 

stochastic dominance, we shall change the set of parameters which is R2,, since a and B are positive real numbers. To 

make this change, we build on the property that R2, is in bijection® with a bounded open set D delimited below by 

the x-axis and above by the parabola y = —x? + x. 

Each Beta distribution will now be parametrized by their mean M and variance V and no longer by a and f. Instead 

of representing the parameters of Beta distributions by (a, 6) €¢ R2,, we will represent them by (M,V) € 9. It is 

important to point out at this stage that the MV-dome is not the only transformation one can perform. For instance, 

in [30], we perform a transformation in a square S which turns out to be more appropriate given our economic problem. 

In light of (37) and (38), for (a, B) € (0, +00) x (0, +00), let 

  

te -_—% M := E(X)= a (26a) 

_ _ ap 
Voi WOO = Sapa Bed arsed (26b) 

and let us now define the function (a, B) + (M,V) with domain (0, +00) x (0, +00) and codomain 

D={(M,V) € (0,1) x (0,1) |V<M-M?} 

As mentioned before, 2 is called a “dome” because its upper boundary V = M — M? is a parabola. From a probabilistic 

point of view, since the Beta distribution is supported by [0,1], E(X*) < E(X) so that V < M — M?. It is no surprise 

the point (M, V) needs to stay within the "dome", that is below the parabola of equation 

D(M) =-M?+M 

8it can be counterintuitive at first glance that an unbounded set and a bounded set can be equinumerous, that is, there exists a bijective 

mapping between them. This equinumerosity property is indeed very usual. To see this, consider the distribution function of the Gaussian 

random variable y. Since y is strictly increasing (and continuous), it defines a bijection between (0, 1) and R, which means that (0,1) and R 

are equinumerous.
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Given (M, V) € 3, solving equations (26) for (a, 8) gives a unique solution 

_ M(M ~ M? -V) 
V (27a) a 

_ (1-M)(M-M?-V) 
Vv (27b) B 

As a result this function is a bijection. We shall note this function #~' so that 

pimv) =(a.p)= (MME), = ioe Hv 
mapping 2 to R2,,. Note the positivity of M — M? - V is anecessary condition for the positivity of a. Since both ¢ and 

¢7' are continuous’, it thus defines a homeomorphism (bijectivity, continuity and continuity of the inverse mapping). 

An interesting property of homeomorphisms is that they “propagate” the topological properties from one space to 

the other. 

Using this bijection, the Beta distributions will be parameterized by (M,V) € D instead of (a, B) € R2,. From 

now on, we shall note Fyy,y the distribution function associated to the parameters (M, V) and fiy,y the corresponding 

density. Thus, fv,v is given by (24) where (M,V) = 7! (a, B). 

Following (6), the one index-functions fy and Fa defined in Section 3 relate to the two index-functions fy,y and 

Fu.yv with 

Va € (0,+00), fy = fi 1_, Va €[0,+00), Fe =Fi 4 (28) 
2°a(42a) 2 4042a) 

We shall denote by 8 the set of distribution functions Fy,y with (M,V) € 2, that is, with positive mean M and 

positive and finite variance V. With mean preserving spread in mind, this representation is particularly meaningful 

since it is now possible to immediately identify a Beta distribution with higher mean (going right) and with higher 

variance (going up). The four main categories of Beta distributions Arched (A), Increasing (I), Decreasing (D) and 

U-shaped (U) are shown on Figure 5. Lemma 5 in the appendix provide the details about the functions plotted on 

Figure 5. It is important to note that. by definition, the boundary of the dome is not considered at this stage. 

Recall now that when a = 8, we have seen the random variable converges in probability (and hence in distribution) 

to oy when a tends to +oo. Not surprisingly, the same argument can be used in the two-parameter case when V tends 

toward zero. The following result exhibits the result for the two-parameter Beta random variable. 

Lemma 2 Let X be a random variable whose repartition function is Fiy,y. The following convergence in distribution of X 

toward Dirac masses holds true. 

1. Forall M € (0,1), limy_o X = 6m 

2. limcy,v)—(0,0) X = 50 and limyy,v) (1,0) X = 6&1 

3. Forall M € (0,1), limy_,o(m) X = (1 - M)69 + M6, 

°They both consist of rational fractions with no pole in their domain and thus are continuous. Put it differently, if f and g are two continuous 

functions, £ is continuous as long as g is not zero.
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FIGURE 5 The MV-dome 2. 

Proof. See Appendix B. 

When V approaches the boundary of the dome, i.e., the parabola defined by V = D(M), the third point of the 

above result shows that the beta random variable tends to a convex combination of the Dirac Delta functions (also 

called Dirac masses) 59 and 5, with weights 1— M and M. Put it differently, the above lemma says that on the 

boundary of the dome, the Beta random variable is no longer a continuous random variable but is rather a discrete 

random variable. This result is actually not so surprising. When (M, V) lies in a U-shaped region and when V tends 

to D(M), the limiting distribution assigns no weight to the open interval (0,1). It thus becomes a Bernoulli random 

variable that takes two values, zero and one, with probability 1 - M and M respectively so that its expected value 

(mean) is equal to M. Since Dirac Delta functions should not be excluded of the analysis, lemma 2 suggests extending 

by continuity ¢~' on the domain defined as 

D={(M,V) € [0,1] x [0,1] |V<M-M?} 

that is, the dome now includes its boundary, the parabola defined as V = D(M) but also the bottom segment [0,1] x 

{0}. The distribution function of the random variable X is 

(29) 

Note that the Dirac mass 5y and the distribution function Fyy.9 are equivalent in the sense that a random vari- 

able distributed according to a distribution function Fy. is a Dirac mass on the constant M. In the same vein, the 

distribution function of the random variable X is



Yann Braouezec and John Cagnol 19 
  

1-M if O<x<1 
Fu.o(m)(x) =) e (30) 

if x=1 

Once again, the weighted sum of Dirac masses (1— M) 69 + M6y and the distribution function Fy p(y) are equivalent. 

The topological closure of 8 thus is 

B=BU {Fuo, M € (0,1)} U {F.ocm, M € (0,1)} 

As we shall see, the topological closure will be useful in deriving the lattice structure of the set B. 

4.3 | Properties of the distribution functions Fyy,y and second-order stochastic 

dominance 

The goal of this section to extend the result obtained in Section 3.2 to all Beta distributions with a given mean. How- 

ever, we first need to show that for any two-parameter Beta distribution with the same mean M, the distribution 

functions cross only once. 

We provide below the counterpart of Proposition 3 when a and £ are not necessarily equal. The distribution 

functions still have a unique crossing point x- in (0,1) but, not surprisingly, x- needs not be equal to 3 since the 

density is no longer symmetric around the mean. 

Proposition 5 Let M be in (0,1). Let Vi, V2 be in (0, D(M)) with VY, # V2. 

1. The equation 

Fy, (x) = Fimv) (x) (31) 

has one solution and one solution only in the open interval (0, 1). 

2. Assume that V; < V2 and let x¢(M,V;, V2) = X¢ be the unique solution of equation (31). Then 

Vx € (0, xe). Fim, (20) < Fivyyy (x) 

Vx € (Xe, 1), Fv) (x) < Fv, (x) 

Proof. See Appendix B. 

Figure 6 illustrates Proposition 5 by showing the 11 cumulative distribution functions Fiy,y for M = 0.3 where 

V varies. They are represented with a shade of red going from lighter to darker as V goes from 0% to 100% of the 

maximum possible variance for this mean, that is V(M). 

Let By be the subset of B foragiven M € (0,1) (thus V varies in [0, D(M) ]. We shall prove that all distributions in 

‘By, corresponding toa vertical segment of the MV-dome, can be totally ordered according to second order stochastic
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Cumulative Distribution Functions (M=0.3, several V) 
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FIGURE 6 Cumulative distribution function Fy,y for M = 0.3 and several V.
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dominance. For any V € [0, D(M)], define 

x 
Yuv : xo [ Fuy(t)dt 

0 

Lemmas 6 and 7 in Appendix B show that Yjy,v is increasing and convex. This implies that, given V; and V2 in (0, D(M)) 

with Vj, < V2, we have 

x x 
vx con [ Fuy (ae > Fray, (t)dt 

0 0 

Moreover (3a) is met by definition of By. This proves the following theorem. 

Theorem 2 Let M « (0,1) and let VY, and V2 be in (0, D(M)). The following holds true. 

Vi < V2 is equivalent to Fy.v, <ssd F.v, and Fy,v, isa mean preserving spread of Fyy.v,- 

Let X and Y two random variables with distribution function Fx and Fy respectively. From [21, Theorem 5], 

we know that if Fy =ssq Fx, then, any affine transformation of X and Y leaves invariant second order stochastic 

dominance, that is, Foyiy <ssd Fov+y- Let X; and X2 be two Beta random variables. Using our notations through 

which the distribution function F is indexed by the mean M and the variance V, assume that Fiv.v, <ssd Fi,v,- From 

[21, Theorem 5], it thus follows that if ¥; = 0X; +pand Y2 = 0X2 + , then, Fe Mauo2Vy <ssd Fo mepo2V,* This result is 

useful for the application since it allows us to consider a Beta random variable as a rate of return of a financial product 

such as an index. By considering, for instance p < 0, this allows us to obtain a negative rate of returns. When o = 1, 

performing Y = X — » where X is a Beta random variable only consists of translating the density. 

Note that since the distribution functions cross only once (proposition 5), the mean preserving spread is simple. 

The subsequent corollary is an immediate consequence of Theorem 2. 

Corollary 5 Given M « (0,1), the set By, a vertical segment in the MV-dome, is completely ordered according to second- 

order stochastic dominance = spp. There is thus a maximum and a minimum element 

sup By = max By =Fuo 

inf By = min By = Fu.p(m) 

Corollary 5 thus generalizes the situation occurring when M = 3 to any M é (0,1). The maximum element of By 

is the distribution function with mean M and zero variance, i.e., Fiy,o while the minimum element is the distribution 

function with the maximum variance given the mean M, equal to V = D(M) (this means that (M, V) is located on 

the upper parabola), i.e., Fy,o(m)- Intermediate elements are distribution functions Fiy,y, with V € (0,D(M)). To 

summarize, in By, the Beta distribution functions are completely ordered with respect to second order stochastic 

dominance, that is, for any 0 < V; < V2 < D(M), we have 

F.D(M) ~ssd FM,V) <ssd FM.v, <ssd Fu.o (32) 

To conclude, it is interesting to note that corollary 5 has an important implication in terms of "moments compar- 

isons". As long as Fy,vy and Fyy,y, belong to By, with M «€ (0,1), second-order stochastic dominance is equivalent
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to a variance order, that is, Fiv.v) <ssd Fu.v, is equivalent Vi < V2. When the mean M of the Beta random variable 

is constant, a risk-averse expected utility decision-maker only takes the variance into account to compare two Beta 

distribution functions, which means that the skewness and/or the (excess) kurtosis are irrelevant. Put it differently, 

this is only when the mean of two Beta distribution functions are different that the skewness and kurtosis might be 

relevant. 

4.4 | Lattice structure of 8 and Hasse diagram 

Now that each vertical section By c B has been completely ordered with respect to <,cq, let us investigate if B 

can be ordered in some way with respect to <s.q. The boundary of the dome 08 is the union of the upper parabola 

corresponding to a convex combination of 59 and 5; and the x-axis corresponding to 5 for M é€ [0,1]. As we shall 

now see, both can be ordered from left to right. It is not surprising, but this fact should be pointed out as it becomes 

useful later. 

Proposition 6 If M, and M2 are such that 0 < M; < M2 <1, then 

(i) Fiyo <ssd Fmy,.0 

(ii) Fiv,.(M,) ss Fiy,D(My) 

Proposition 6 is an important and interesting intermediate result and its proof turns out to be very simple. For this 

reason, the proof appears here and not in the appendix. For (i), it suffices to note that when x < M; or when x > M2, 

Fi, o(X) = Fazo(x) while when x € [M1, M2), Fivzo(x) = Oand Fy, 0(x) = 1 so that Fiy,.o(x) < Fu,o(x). Asa result, 

Fiuy0 Xssd Fimz,0- To prove (ii), it suffices to note for all x ¢ (0,1), Fim,,0(m,) (x) = 1— Mi and Fiy,.p(my) (x) = 1 - Mp. 

Since M, < M2 < 1, it thus follows that for all x € (0,1), Fiv,.00m,) (X) > Fivy,D(mz) (x) and this concludes the proof. 

We have seen that, for any M € [0,1], Fiv.o the Dirac mass 5yy (since we identify the distribution functions and 

the probability measures). It thus follows that the minimum element can also be denoted by 59 and the maximum 

element by 6;. Since it is common to denote the minimum element by . and the maximum element by T, the above 

corollary can thus, with a slight abuse of notation 1°, be written as follows. 

Corollary 6 1 = 6p (i.e., Foo) is the minimum element while T = 6; (i.e., Fi,9) is the maximum element. 

Let (X, <) be a partially ordered set (called poset for short), that is, a set on which there is a binary relation < 

which is reflexive, antisymmetric and transitive. Let x and y two elements of X and denote the join (the least upper 

bound) of x and y as x v y and the meet (greatest lower bound) as x A y. The poset X is said to be a lattice (see [31] 

or [32]) if for every two pair of elements x and y of X, the join and the meet do exist in X. As an elementary example 

(see e.g., [31] p.13), the set of real numbers R is an example of lattice. 

The Hasse diagram is a visual representation of the partial order, where the arrow a — b indicates a <..q b. Using 

the above results and the transitivity property for comparable elements of the poset (the MV-dome), we obtain paths 

from the minimum element 59 to the maximum element 5;. The simplest example of paths can be called trivial ones 

since they only compare Dirac masses (indeed distribution functions). It is obvious that, for any 0 < M < M’ <1, one 

has the following (trivial) path 

Trivial path: 59 > 5y > 6 > & 

10That is, we note the minimum element as 5p instead of Fo and the same for the maximum element.
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FIGURE 7 Functions Y0.35,.0.07 and Yo.920.07 intersect in (0, 1). This can be understood from the inspection of the 

distribution functions Fo.35,0.07 and Fo.92,0.07- 

Such a path is also trivial from a utility theory point of view since it merely reflects the fact that the underlying utility 

function increases with (sure) wealth. In the same vein, for M and M’ such that 0 < M < M’ < 1, the following path 

59 > (1—M) 69+ Md, > (1—M’)59 + M’5, = 6, is also trivial. We thus call the non-trivial path the one that makes 

use of distribution functions Fyy,y that lies in 8 and not on its boundary. In Figure 8, we provide a representation of 

a Hasse diagram of the following non-trivial path. 

Non-trivial path : 69 — (1- M)69+M6, > Fuv > 6m > 6 

It is important to point out the critical role of the topological closure of the set 8 in order to construct non-trivial 

paths. Without this topological closure, it would be impossible to compare the minimum element 6p (indeed Foo) with 

(1 — M)&o + M6; (indeed Fiy,p(m)) since this last element is not in 8. As a result, (1 —- M)5o + M6; could not be 

compared with Fyy,v so that 59 and Fy,y could not be compared. 

4.5 | Mean, variance, skewness and second-order stochastic dominance 

Is skewness relevant for mean-preserving spread? Assume that M < 0.5 so that the Beta distribution is right-skewed. 

For a given mean M < 0.5, the skewness denoted Sk, defined as the third central standardized moment, increases 

when the variance increases. As a result, the comparison of two Beta distribution X; and X2 with the same mean 

but variance V; and V2 such that V; < V2 and skewness Sk(M,V;) := Sk; and Sk(M, V2) := Sk2 such that Sk; < 

Sk» generates, in principle, a trade-off between the variance and the skewness. A risk-averse (EU) decision-maker 

might prefer X; while another one might prefer X2 because the investor is more prudent but less risk-averse. This 

is indeed not the case. From the previous result, we know that along a vertical section of the MV-dome in which 

the mean M is constant, as long as one decreases the variance from V2 to V;, the distribution function Fy,y, second- 

order stochastically dominates Fy,y, independently of the resulting skewness (and kurtosis). Two risk-averse (EU)
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FIGURE 8 Example of a Hasse Diagram. Chain going through Fyy,y guaranteed by Corollary 5 and Proposition 6 

decision-makers, whether they like right-skewed distribution (i.e., U’” > 0) or not (i.e., U’”” < 0) should prefer X; to X2 

independently of the skewness (positive or not) and the kurtosis (positive or not). 

In [10], following [9], the author considers binary risks of the form Y = (c; — co)X + cg = c1.X + ¢9.(1 — X) 

where co < c; and where X is a Benoulli random variable. This formulation can be seen as the particular case of 

the Beta distribution in which X ~ By.o(my. When X; ~ Bm,,p(m,) and X2 ~ Byy,o(m,) and when M; < Mp, 

since Xz second-order stochastically dominates X;, from [21, Theorem 5], it thus follows that Y2 also second-order 

stochastically dominates Y;. In [10], the author completely characterizes the binary risk by the three moments, the 

mean, the variance, and the third standardized central moment (skewness). It is thus possible to compare the skewness 

for a given mean and variance. For instance it is shown in [9] that any risk-averse (EU) prudent decision-maker will 

always prefer the distribution with the highest skewness. With the the two-parameter Beta distributions, it is not 

possible to keep both the mean and the variance constant to analyze separately, as in [10] or [9], the impact of the 

skewness. In order to do this, more parameters would be needed. 

What happens when the mean increases while leaving the variance constant? Before considering the Beta distribu- 

tions, consider the case of distribution functions that belong to a location-scale family such as the standard Gaussian 

distribution function denoted & and let m and v denote the mean and the variance. As is well-known (see e.g., [17] 

or [3]), the following property is true: if my <ssq Pmo.vo» then, for each M > mo, Pmv ~ssd Pm.vo, that is, the 

(second-order) stochastic dominance property is preserved when one increases the mean while leaving the variance 

constant. 

Consider now the Beta distribution. We know that this can be ordered along a vertical segment of the MV-dome 

for which the mean is constant but the variance varies. It is now natural to inquire whether or not a similar property 

can be obtained. As the following result shows, the answer is no. 

Proposition 7 Let Fyy.y and Fy: y be two Beta distribution functions, with M # M’. There exists a triplet M, M’ and V 

such that Fy,y and Fy y are not comparable according to second-order stochastic dominance.
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Proof. See Appendix B. 

Let Fn, be a distribution function such that m € (0,1) and v € (0, D(m)) are given. Consider now the distribution 

function Fivp,vy where Mo > mand Vo < D(Mo). The following result is a consequence of the above proposition. 

Corollary 7 If Fn,y =<ssd FiMo.Vo, then, there exists M > Mo such that Fm,y is not SSD-comparable to Fiv,vp, where Vo < 

D(M). 

The corollary states that if Fiyp,vy SSD-dominates Fm,y, then, by increasing the mean, but leaving the variance constant 

equal to Vo, one can find a mean M > Mo that is high enough (satisfying the constraint D(M) > Vo) such that Fiy vp is 

no longer SSD-comparable to Fy. This is a fairly surprising property since it is never true for distribution functions 

that belong to the same location-scale family. 

To see why corollary 7 holds true for Beta distribution functions, assume that M is such that Vo = D(M), which 

means that the distribution function is Fyy.p(m) for which we know that Fiy.p(m)(x) = 1- M for x € [0,1), see 

equation (30). Since the distribution Fin, admits a density, the support of Fim,y is [0,1] and Fim, is a continuous and 

strictly increasing function from O to 1. This therefore means that there exists a single point x- € (0,1) for which 

F.p(M) (Xe) = Fimy(Xe). When x < Xe, Fmyv(x) < Fwo(m)(x) so that {f Fnyv(z)dz < f° Fu.oum) (z)dz. Since 

M > m, using the fact that the mean is the integral of the survival function, it thus follows that t Fimy(z)dz > 

F.o(m) (z)dz. Taken together, these two inequalities violate equation (3b) so that Fy.o(m) and Fmny are not SSD- 

comparable. At a more fundamental level, the reason why the above corollary is true for the Beta distribution is due to 

the following property. When the variance V is left constant and when one approaches the boundary of the MV-dome 

as M increases, the Beta distribution converges toward a discrete random variable, 

Consider the case of two Beta random variables for which the densities are 9 35,.0.07 and f.92,0.07- In Figure 7, we 

plot the distribution functions Fo.35,0.07 and Fo.92,.0.07 and note that these two distribution functions are continuous 

and increasing in (0, 1). From Fig. 7, one can clearly see a critical threshold e > 0 for which Fo.35,0.07(x) < Fo.92,0.07(x) 

for all x € [0,e], which means that kK (Fo.35,0.07(x) — Fo.92,0.07(x)) dx > 0 for all x € [0,e). Since the expectation is 

the integral of the survival function, it is easy to show that this is equivalent to ti (Fo.92,0.07 (x) — Fo.35,0.07(x)) dx > 0. 

But then, Fo.35,0.07 and Fo.92.0.07 are not comparable with respect to second-order stochastic dominance. Since the 

distribution Fo 920.07 second-order stochastically dominates Fo.35,0.07 in (e,1] but not in (0,e], it is fairly natural to 

develop an "almost" stochastic dominance approach to state that, up to an interval (0, €], Fo.92,0.07 dominates Fo.35,0.07- 

Anapproach along these lines was developed in [33] (and further revisited by [34]) to state that "most" decision-makers 

would prefer Fo.92,0.07 to Fo.35,0.07 but not all. In [33], they offer a simple example with stocks and bonds similar to 

ours. It is only in a "small" interval that the distribution function of the rate of returns of the bonds second-order 

stochastically dominates the ones of stocks. 

Is the popular mean-variance trade-off relevant ?. When two random variables X and Y are not comparable accord- 

ing (second-order) stochastic dominance, it is not true that all (EU) risk-averse decision-makers prefer X to Y or Y to X. 

Some will prefer X to Y while some will prefer Y to X; the result depends upon the particular utility function. In [35], 

they offer insightful examples using positive discrete random variables (for which there is no stochastic dominance) 

for a risk-averse (EU) decision-maker. They indeed provide a simple example in which X has a mean lower than Y, a 

variance higher than Y and a skewness lower than Y yet X is preferred to Y. It should be mentioned that the random 

variables X and Y are somehow particular since the distribution functions have three crossing points. 

11When (M, V) lies inside the Dome, Fiy,y admits a density and thus is absolutely continuous with respect to the Lebesgue measure. When 

M is such that V = D(M), Fy.o(m) does not admit a density and Fy.o;m) is no longer absolutely continuous with respect to the Lebesgue 

measure.
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We shall now show that for the case of Beta two-parameter distribution functions, i.e., for which the parameters 

are located in the MV-dome, one can exhibit similar examples with a popular utility function. Consider the particular 

case of the Beta random variable X for which X is uniformly distributed so that Mx = 0.5 and Vx = a Consider now 

a Beta random variable Y such that, for a given mean M, the variance is equal to V = D(M). Assume that My = 0.95 

so that the variance is equal to Vy = D(M) = M — M? = 0.0475 and note that My > Mx while Vy < Mx. The mean 

of Y is almost two times the mean of X while the variance of Y is only 60% of the variance of X. It really seems that 

a risk-averse decision-makers should prefer Y to X. Since the distribution functions Fx and Fy are not comparable 

according to second-order stochastic dominance, it must be the case that some risk-averse EU decision-makers will 

prefer X over Y while the opposite will be true for others. 

Assume a CARA utility function U(w) = 1-74” where w is the wealth. Since X is uniformly distributed, it is not 

difficult to show that EU(X) (1 - e), EU(Y) =0.95 (1 - e) and that EU(X) > EU(Y) is equivalent to 1 > 

  

(1 - e) (3 + 0.95). Since (1 - e”) < 1 for all positive A, as long as A > 20, (i +0.95) <1so that EU(X) > EU(Y). 

All very risk-averse (CARA-utility) decision-makers for which A > 20 thus prefer X to Y. In this simple example, the 

skewness of Y is equal to approximately -4.1 while the skewness of X is equal to zero. Since a CARA-utility decision- 

maker likes skewness (because U’”(w) > 0), it might be said that X is preferred to Y because of the skewness?2. 

However, as [35] did, one can also find examples in which X is dominated by Y with respect to the mean, variance 

and skewness while some decision-makers prefer X to Y. This led [35] to say that "the folklore relating preference 

properties of the utility function to the moment structure of the desired return distributions is not valid even if the returns 

are approximately normal". At a more fundamental level, assuming even that the distribution functions Fx and Fy are 

characterized by their moments?%, saying that Fy and Fy are not comparable with respect to stochastic dominance 

relates to the particular features of two (here continuous) functions. It is difficult to imagine how functional features 

could be reduced to the comparison of a pair of three numbers (the first moments). 

5 | APPLICATIONS: EXPECTED UTILITY, PORTFOLIO CHOICES, AND EXHAUS- 
TIVE NUMERICAL ANALYSIS 

We now consider a simple portfolio problem in which the risk-averse (expected utility) decision-maker (or investor) 

can invest a fraction y € [0,1] of their wealth in a risky asset X, which is random variable following a Beta distribution 

with mean mand variance v. Since the realization of X isa number x € [0,1], the rest, i.e., 1—y ina risk-free asset for 

which the rate of return is equal to r > 0 with probability one (it is called the risk-free rate for this reason). The aim is 

to analyze the optimal fraction invested in the risky asset. More particularly, we are interested in deriving conditions 

under which this optimal fraction is equal to 100%. 

Let Wo be the initial wealth of the investor and assume that E(X) := m > r, which means that the equity premium 

m—r is positive. For a given y ¢€ [0,1], the final (random) wealth W (y) after one period (e.g., one year) is equal to 

Wy) = Wox [1+ (1-y)r+yX] = Wox (1+ r4+y(X -1)) (33) 

12 According to [7], the fact that a decision-maker prefers the random variable (indeed the lottery) with the highest variance for a given mean 

is related to prudence. However, his example is particular since the means are identical. 

13, distribution function is characterized by its moments if it is uniquely determined by their moment sequences {mp := E(X”) }nz1. A simple 

sufficient condition for this is moment characterization is when the moment generating function exists, see e.g., [36] p. 194-197. The best 

well-known counter-example is the log-normal distribution, which means that one can find a density g, which is not the log-normal one, for 

which all the moments computed with g are equal to the one of the log-normal one.
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Before we start, we should immediately point out that the risk-free rate is actually a distribution function of 8, 

ie. itis F,o. 

5.1 | CARA utility and portfolio choices 

Assume now that the decision-maker is endowed with a CARA utility function (i.e., U(w) = —e~?” where w is the 

wealth) that depends upon a unique risk-aversion parameter A. Let EU(W, (y)) denote the expected utility of the final 

wealth. The optimization problem thus is 

1 

max EU (Wr(y)) = - f eo AMOXO CKD) AF ny (x) (34) 
ye[0,1 0 

where A > 0, r € (0,1) and Fm, € 8. One can now analyze the optimal fraction of the initial wealth invested in the 

risky asset X as a function of the various parameters. For a given risk-aversion parameter A > 0 and a risk-free rate 

r € (0,1), let us note ¥3,-(m, v) the fraction of the initial wealth invested in the risky asset. 

To perform our analysis, we first consider the “worst-case” scenario for the variance. From the previous section, 

such a “worst-case” scenario appears on the upper boundary of the MV-dome, i.e., the parabola. Since m is fixed, note 

that Finy € Bm. Since Bm is closed, there is a distribution function within 8,, that will constitute this “worst-case” 

scenario and it is obviously Fin p(m)- Since Fm,p(m) reduces to the distribution of a Bernoulli random variable with 

parameter m, we can explicitly obtain the expected utility in this worst-case scenario. We prove the following lemma 

in the appendix. 

Lemma 3 Let r € (0,1) and m € (r,1). The optimal fraction of the initial wealth ¥j,,(m, D(m)) invested in the risky asset 

is equal to 

  Yi. (m, Dm) = yt (m) = min {+ (2 =) : i} (35) 

From equation (35), it is easy to see that if m < r, that is, there is no risk-premium (or equity premium), then, 

y,,-(m, D(m)) = 0. In Fig 10, we represent the set of parameters denoted S, for which the decision-maker invests all 

their wealth in the default risk-free asset. 
m(1-r) 
r(l-m 

asset is always positive, that is yj} .(m, D(m)) > 0. As expected from equation (35), when A increases, everything else 

  However, when m > r, the quantity ( ) is greater than one so that the optimal fraction invested in the risky 

equal, y3,-(m, D(m)) decreases and tends to zero when A tends to infinity. On the other hand, from equation (35), it 

is not difficult to see that when m (r) increases, yj,-(m, D(m)) increases (decreases). In Figure 9, we plot the optimal 

fraction of the initial wealth invested in the risky asset as a function of m, for a fixed risk-aversion parameter A = 4 

and a (not very realistic in 2020) risk-free rate r = 0.05. One can clearly identify the existence of a threshold for m, 

above which it is optimal for the decision-maker to invest 100% of their wealth in the risky asset. 

Let ym, v) be the optimal fraction of the initial wealth invested in the risky asset for a given mean m and a 

given variance v < D(m). In what follows, we derive simple conditions under which y} (mv) = 1. 

Since (i) all distributions in the vertical section of the MV-dome have lower variance than the “worst-case” sce- 

nario (which is the distribution function Fin, p(my) and (ii) ‘Bm is completely ordered with respect to the second-order 

stochastic dominance and (iii) the CARA utility belongs to U2, the set increasing and concave functions. The following 

result thus holds true:
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FIGURE 9 WhenA = 4andr = 0.05, we plot the fraction of the initial wealth invested in the risk asset with mean 

m and maximum variance, as a function of m. This is denoted y}"!"(m). 

Lemma 4 Assume that r < (0,1), m € (r,1). Then, Vv € (0, D(m)), ¥,,,(m,v) € Lym" (m), 1). 

Using the fact that FEU (We (y)) is continuous (see equation (49), it is not difficult to show that the function 

YM v) is jointly continuous with respect to the parameters m and v but also A and r. From an economic point of 

view, lemma 4 means that no matter how small is the equity premium m — r, a risk-averse decision-maker endowed 

with a CARA utility function will always invest a positive fraction of their initial wealth in the risky asset. The result 

guarantees that the fraction will always be, at least, y"!" (m) (see equation (35)). Note once again that this analysis is 

simplified thanks to the topological closure of 8 and the lattice structure introduced in Section 4. 

  From equation (35), let us define the mean threshold rf, such that fin (= ma ) = 1. It is not difficult to 
Wr 

show that this threshold is equal to 

rexp(A) 

rexp(A)+1-—r — 
Mr = 

As one can expect, /f,,- increases with r (and is positive as long as r > 0) and decreases with A. By definition of 

the mean threshold, if m = /m,-, then, yx .(m, D(m)) = 1. Since Fn,y second-order stochastically dominates Fin,p(m)+ 

it thus follows that y;_.(m, v) = 1. As long as it is optimal to invest 100% of their initial wealth in the risky asset when 

(m, D(m) with m > r, it is obviously still the case when the variance is lower than the its maximal value D(m). Define 

Ry,r as follows: 

Rar = {(m,v) €D: me [m,,1] and v € [0,D(m)]} (36) 

which is the subset of parameters (m, v) of the MV-dome for which the decision-maker invests 100% of their initial 

wealth in the risky asset no matter the variance v (or the volatility Vv) and the expected return on the risky asset m. 

The next proposition summarizes the discussion.
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FIGURE 10 The regions S, and R,,- 

Proposition 8 V(m,v) € Rar, ¥,,(m,v) = 1. 

We illustrate proposition 8 in Fig. 10 and provide a graphical representation of the subset R,,-. It is important 

to point out that since ry, depends upon the choice of the utility function (that is, the one-parameter CARA utility 

function), the subset RY, also depends upon this choice. However, the choice of an increasing and concave utility 

function will change the critical threshold /,,, (for a one-parameter utility function) but not the shape of the subset 

Ry,r, see Fig. 10. It is important to note at this stage that (m,v) € Ry, is a sufficient condition for Yj, (mv) = 1. It is 

thus possible that while (m,v) ¢ Ra, Y,,-(m¥) = 1. We shall actually see that this turns out to be the case in our 

exhaustive numerical analysis. The region in which YM v) = 1is larger than R,,,, see Fig. 11 (we simply note Ry, 

by R). 

In many European countries, the risk-free rate is in 2020 very low in Europe, even negative if the choice of a 

proxy of the risk-free rate is, for instance, the Euribor 3 months. As a result, since r,,- decreases when r decreases, 

the area of the subset Rj, as a percentage of the total area (i.e., the area of the MV-dome) increases. Seen from 

the perspective of uncertainty, a decision-maker who is only able to specify a subset S c D of parameters of the 

Beta distribution will be led to invest their entire wealth in the risky asset when S c R,,-. Since the (relative) area 

of R,,, increases when r decreases, everything else equal, even in a situation of uncertainty, a very low risk-free rate 

increases the chance that the decision-maker will only invest in the risky asset. 

5.2 | Performing an exhaustive numerical analysis of the optimal solution 

We now want to solve the optimization problem the solution of which depends upon the parameters of the Beta 

distribution. Assume one moment we want to analyze this solution when one works with the natural parameters a 

and B and consider the set of Beta distributions that are single peaked, that is those for which a > 1 and B > 1. Since 

the set of parameters is unbounded, one must necessarily consider a bounded subset. As in [13], one can consider the 

subset [0,4] x [0,4] or [0,10] x [0,10]. Since one must consider a bounded subset of [1,00) x [1,00), this means 

that an exhaustive analysis of the optimal solution y* as a function of the parameters is out of reach. In particular, 

when the set of parameters under consideration is, say, [0,4] x [0,4], for a given mean, all the Beta distributions
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highly concentrated around their mode (and thus the Dirac Delta functions) are excluded from the analysis. To see 

this, consider a Beta random variable with a mean equal to m = i This leads to a = g and a resulting variance of 

a for some c > 0. This is only when £ tends to infinity that the Beta distribution tends toward the Dirac the form a3 

Delta function 6; . In a truncated plane [0,4] x [0,4], this case, while clearly interesting from an economic point of 
4 

view, cannot be considered. However, thanks to the change of variable, this becomes possible (and even easy) using 

the MV-dome. 

In what follows, we shall consider a simple portfolio problem in which the aim is to analyze the optimal fraction 

y” € [0,1] invested in the risky asset X, a two-parameter Beta distribution (m and v) when the agent can also invest 

in a risk-free asset that yields a known and constant rate of return equal to r. We are able to provide an exhaustive 

analysis of the investment of the agent for all possible Beta distributions, thanks to the change of variable, i.e., the 

set of parameters are located in the MV-dome. Since the change of variable is an homeomorphism, two probability 

distributions close enough in the weak topology sense (i.e., convergence in distribution) in the aB-plane will be close 

enough in the MV-dome. Moreover, when the solution of the optimization problem y*(m, v) is a continuous function 

of the parameters, this continuity property allows us, for a given discretization of the MV-dome (i.e., the grid contains 

by design a finite number of points), to interpolate between values that are on the grid (or mesh) in order to obtain 

values that are not on the grid G. To see this, consider two points of G with the same variance, that is, the points 

(mj, vi) € Gand (msi, vj) € G Where mj; > m; and let y* (mj, vj) and y* (mj41, v;) be the solution of the optimization 

problem. When m;,; is close enough to m; (i.e., the grid is thin enough); if the solution y* (m, v) is a continuous function 

of the parameters, one can thus claim that y* (mj4+1, v;) will also be close enough to y*(mj;, v;). As a result, for the point 

(Ter | vj) ¢ G, one can thus claim that y*( Tir v;) will be close to y* (mj41, vj) and y*(m;, v;). An interpolation 

of the two known solutions y* (mj41, v;) and y* (m;, v;) thus is justified to obtain the unknown solution y(n, vi). 

This analysis is performed for a rate of 5% and an aversion coefficient A = 4 in Figure 11. The entire region 

R = R4o.05 

is colored in red since 100% of the initial wealth will be invested. As already said, such a particular portfolio choice in 

which 100% of the wealth is invested in the risky asset is also possible even when (m, v) is located outside R: being 

in this region ® only gives a sufficient condition for the "100%-risky-asset" portfolio but not a necessary condition. 

In Europe, since the subprime crisis of 2008, the ECB (European Central Bank) has decreased over time the three 

interest rates it administered. Since 2016, its main interest rate (associated to main refinancing operations) is equal 

to zero while the interest rate of the deposit facility is negative so that reference interest rates such as Euribor rates 

(the proxy for the risk-free rate) became negative. Within our probabilistic framework, everything else equal, we 

know that the lower the risk-free rate, the larger the red-region (i.e., the subset of parameters for which the "100%- 

risky-asset" portfolio is optimal). In Fig. 11, we can immediately see that even for a risk-free rate equal to 5%, the 

red region is by far the most important one in the MV-dome. If one considers a more realistic risk-free rate, around 

zero, approximately 100% of the MV-dome would be red. In recent years, the amount invested in indices such as 

the Eurostocks or ETFs have sharply increased largely because of the expansionist (low interest rate coupled with 

quantitative easing) monetary policy. Our model with a risk-free rate close to zero provides an explanation of this 

sharp increase of investments in risk-assets.
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gamma* for a CARA(4.0) and r=0.05 
  

    

  

FIGURE 11 Optimal fraction of the initial wealth ¥,-(m, v) invested in X distributed along F,,,, when the 

risk-aversion parameter A = 4 and the risk-free rate r = 0.05 
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6 | CONCLUSION 

  

We have shown in this paper how one can transform the set of parameters of the Beta distribution in a meaningful 

way to compare Beta distribution functions with respect to second-order stochastic dominance. This led us to derive 

the particular lattice of the Beta distribution and show its striking difference with the Gaussian case when the variance 

constant. Finally, we have also shown how our approach can be used to perform an exhaustive numerical analysis of 

an optimization problem that takes as input the parameters of the Beta distribution. 

Generalizing our methodology to other special two-parameter probability distributions such as the two-parameter 

Gamma distribution (or the two-parameter Weibull distribution) would clearly be interesting. Since the mean of the 

Gamma (or Weibull) random variable as a function of the natural parameters is not bounded; finding a bijective map- 

ping which yields a bounded subset for the set of new parameters, mean and variance, is therefore more difficult. 

A | BACKGROUND ON THE BETA DISTRIBUTION 

Let X be a random variable distributed according to a two-parameter Beta distribution. Its density is given by (24). 

Again, we may use the terms Beta density (or distribution) or Beta probability measure interchangeably. The 

Beta distribution is well-known as being "flexible" in that it can be N-shaped (single-peaked or Arched), increasing, 

decreasing or U-shaped as a function of the parameters (see [11, Chapter 2], see also [14, p. 329] for an elementary 

textbook). The case in which the Beta distribution is N-shaped is when a > 1 and B > 1 while the case in which it is 

U-shaped is when a@ < land B < 1. It is decreasing when a < 1 and B > 1 and increasing when a > 1 and B > 1. 

The expectation and the variance of X are respectively equal to (see [11, pp. 35-36]). 

E(X) = a+B (37) 

ap 
YOO = ay pias Bet) (38) 

  

The distribution function of the Beta distribution is given by 

B(x, a, B) BaP) = Brag) (39) 

where 

x 
B(x, a, B) -[ ze" — 2) ldz 

0 

is called the incomplete beta function and I, (a, B) the regularized (or normalized) incomplete Beta function. This 

function is generally classified as a special function in mathematics (see e.g., [37]) and in general, there is no "closed 

formula" for I, (a, 8). There are, however, various types of representations (i.e., integral representation, series expan- 

sions) but also asymptotic expansions (for a or B large) and recurrence relations. The best well-known recurrence 

relation is probably 

Ix (a, B) =1-T_-x(B, a) (40)
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and the following one might also be of interest (see [11, p. 24]) when @ and £ are positive integers 

  Iy(anp)= tae tps (*2P)xea— nF ( a -x) (41) 
a+p 

but there are many, for instance [37, Chapter 11]). A comprehensive review with statistical application in view is also 

provided in [11, Chapters 1 and 2]. 

B | TECHNICAL PROPOSITIONS AND PROOFS 

Proof of Proposition 1 — . Consider two elements F and G of #,. By definition, F and G have a unique non-trivial 

crossing point x-(F,G) := xe € (0,1). Assume that F and G are such F(x) < G(x) for x € [0,x-) and F(x) > G(x) 

for x € (X¢, 1]. It thus follows that 

x x 
Vx € (0, X¢), [ F(z)dz <[ G(z)dz 

0 0 

Moreover, F and G have the same mean, therefore t (1-F(z))dz = t (1-G(z))dz, which, in turns gives [| F(z)dz= 

Jp) G(z)dz. It follows that 

Vx € [0,1], [Fae < f G(z)dz (42) 
0 0 

As a result, G <ssq F- 

Consider now H in ¥, and assume that H # G. Either H =<ssq G or G =csq H. Without loss of generality, 

assume that H =ssq G, which is equivalent to for all x € [0,1], kK G(z)dz < kr H(z)dz. Since for all x € [0,1], 

Ki F(2dz < fi G(z)dz, it thus follows that [" F(z)dz < fj G(z)dz < ff H(z)dz so that if G <.gq F and 

H %scq G, then, H Xssq G seq F, that is, <cq is transitive. 

If Fi Xssaq Fo and Fo =ssq Fi, then (42) yields F, = Fp. Thus antisymmetry holds. 

Reflexivity also holds. The set ¥;, is completely ordered with respect to <<ssq. 0 

Proof of Lemma 1 — 

(i) We have fy (x) = Bea lx — x)]*-1 = f(1— x) therefore z € [0,4] implies fa (4 - z) = fa(4 +z). 

(ii) The density f, is differentiable on (0,1) and we have 

[x(1 = x) ]%7(1 = 2x) (a - 1) 
600 = Bia.a) (43) 

When a # 1, there is a unique point x9 = 3 for which ff (xo) = 0. If a > 1 then f(x) > 0 when x € (0, 3) and 

fy (x) < Owhen x € Gd 1), which proves that the density is uni modal. If a < 1 then f(x) < Owhen x € (0, 4) 

and fy (x) > 0 when x € Gg. 1) and this proves that it is U-shaped. 

o 

Proof of Proposition 2 — Claim (/) is a simple consequence of corollary 2. Let us prove (//) and (ii/). Function Fy is 

twice differentiable on (0,1) and FY = fy which is given by (43). Its sign depends upon the sign of a — 1 and of 1 - 2x.
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When a@ > 1, the function Fy’ is positive on (0, 4) and on G 1) thus Fy is convex on (0, 4) and concave on (41). 

When a < 1, the opposite is true, Fy is concave on (0, 4) and convex on G. 10 

Proof of Proposition 3 — Let a; and az be in (0, too). We know from (7) that x- = $ is a solution to Fa, (x) = Fay (x). 

We would like to prove there is no other solution in (0,1). Let us assume there exists also x, € (0, x-) such that 

Fo, (Xb) = Fa (Xp). Our goal is to prove that a1 = az. 

Denote H = Fg, — Fay. It is continuous on [0, x-] and twice continuously differentiable on (0, x-). We have 

H(x») = H(Xx-) = 0 and, from (10), we have H(0) = 0. The Rolle theorem applies on (0, x,) and on (xp, X¢). It 

provides the existence of xp € (0, x5) and xq € (Xp, X<) Such that H’(xp) = H’(xq) = 0. Obviously xp < xq. 

Since fa, (xp) = fay (Xp) we get 

1 1 Beara) Melt MI = Br Lx ~ xp) 197" 

[xp (1 = xp) 1172 = aot 

similarly, from fa, (xq) = fa (xq), we get 

[xq (1 — xq) ]%17%? = aes 

which gives 

[xp (1 = xp) 81782 = [xq(1 = xq) 21-2 “ 
For A € R, the mapping x + (x — x2)4 is injective on (0, x;) iff A # 0. Hence (44) and Xp # Xq yield ay = a2.0 

Lemma 5 Define 

_ M(1-M) _ M(-™M)? 
Ci(M) =~ and Ca(M) = — 

Let @ be the mapping (a, B) + (M, V) where (M, V) is given by (26). Then 

#((1, +00) x (1, +00)) = {(M,V) | M € (0,1) and V < min(Cy(M), C2(M))} (45.4) 

$((0,1) x (0,1)) = {(M,V) | M € (0,1) and V > max(Cy(M), Co(M))} (45.U) 

$((0,1) x (1, +00)) = {(M,V) | M € (0,1/2) and C\(M) < V < Co(M)} (45.D) 

$((1, +00) x (0,1)) = {((M,V) | M € (1/2,1) and C)(M) < V < Ci(M)} (45.1)
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Proof From (27) we have that a > 1 and B > 1 is equivalent to the next five assertions: 

—~M?2— _ —M2— M(M=MP-V) 5 = M)(M=MP-V) 
V V 

V<M(M-M?*-V) and V<(1-M)(M-M?-V) 

  

V(1+M)<M(M-M?) and V(2-M) <(1-M)(M-M?) 
204 — _my2 

<Mwa-™) (-M) and y<MG=My" M) 
v 1+M 2-M 

which is equivalent V < min(C;(M), C2(M)) }. This proves (45.A). Proofs for equations (45.U), (45.D) and (45.1) are 

analogous by adapting sense of the inequalities. 

Proof of Lemma 2 — . Consider (M, V) € D. Our goal is to prove that fy,v is point-wise convergent to Fiy,o(m) when 

V tends to D(M) = M- M?, 

For x = 1, we have WV € (0,D(M)), fuv(1) = 1 = Fu,ocm) (1), which is to be expected for a distribution 

function. From now on, let us consider x € [0, 1). 

The Laurent series of Tin 0 is 

1 wr 2 ra)= 2-4 (5+ 5) esou% 

where y is the Euler constant. 

Using (26) and denoting z = (D(M) — V)/V, which tends to 0 when V tends to D(M), we have 

a= Mz, B=(1-M)z and at+p=z 

  

Therefore 

_ 1 1 y 1 (2M? -2M +1)x? + 6y? 
M(@QT(B) = Ta 2” (Mamet 12M(1—M) +0(2) 

C(a+B)= : -y+O(z) 

Using 

_ T(@(p) 
PoP) = Fae) 

we get!4 

1 
B(a,B) 
  = M(1-M)z+0(z?) 

14With further computations we could replace O(z?) by O(z?). However, this is not necessary.
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Subsequently 

fy (x) = xM2-1 (1 — x) 2-1 (1 — M) (1+ O(z)) (46) 

Fuy (x) = (f° tM21 4 = )-)2-1 at) M(1-M) (14+ O(z)) (47) 

Let y be any real number in [0, x] (as a reminder: x < 1) 

y x 
Fay (x) = ([ e214 — 2) M21 aes f M2104 — 2-2-1 dt) M(1- M) (14+ O(2)) 

0 y 

e Regarding the first integral. For t € [0, y] we have 

MEV gc pMz-t(q py (I-M)z-1 < pMz-t (yy) (1-M)z-1 

f Meg < ft MEN py -MzN gp < (1 y)-Me1 
0 0 

  

y 1 
—yr< 17-11 = t)Pldt < (1- y)P- 1 — y* y <[ ( ) <(1-y) Mz” 

e Regarding the second integral. For t ¢ [y, x] we have 

tMz-1 a= r-Mz1 < yet a = x)G-Mz1 

[ tMz1 04 )I-M)z1 gp < yMz-1(q — xy (I-M)z-1 (yy) 

y 

Hence 

(1=M)y™?(1+ O(z)) < uv) 

< (= y= MyM + yMEN CL = x) M(x — y) BM) (1 + O(2)) 

When V tends to D(M), we have z tends to 0 and we get 

. 1-M 
1-M<_ lim) Fuv(x) < 

V>D(M) l-y 
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Since this inequality holds for any y ¢€ [0, x] and for any x € [0,1), we have 

lim Fy x)=1-Me=F, x vty mv (x) ‘M.D(M) (x) 

where Fyy,p(m) is the distribution function of 54.0 

Proof of Proposition 5— Let M «€ (0,1) and Vj, V2 in (0, D(M)). Assume V; # V2. With no loss of generality, we can 

assume V; < V2. Consider the distributions functions Fyy.y, and Fyy,v,- 

First statement. 

Since V; and V2 are in the open interval (0, D(M)), the distributions functions Fy,y, and Fiy,y, have corresponding 

densities fy,y, and fy,y,. We define gm,v,.v) (x) = In fv, (x) — In fu.v, (x) for all x € (0,1). 

Let (a1,f1) = 6(M,V;) and (a2, B2) = $(M, V2). Consider Cy,v,,v, = InB(o1,B1) — In Bap, B2) where B is 

defined in (25). By construction, Cy,v,,v, is a constant with respect to x. We have 

EMVy.V2(X) = [(a2 — 1) In(x) + (Bz — 1) In(1 = x)] = [Cay = 1) ING) + (By = 1) In = x)] + Cuy.vy 

Using 

    

V2 -Vi 2ve-M 
d -B) =MU-M Vivo an Bo - Bi ( ) VV a - a = M*(1-M) 

we get 

v2 -MVY 

Yi V2 
  EM.Vy,V2 (x) = M(1 - M) [M In(x) + (1 - M) In(1 — x)] + Cu.yy,v2 

The function gm.v,,v, is differentiable on (0, 1). We have 

v2-V M-x 

Vivo x(1-—x) 
  Biyvy(X) = M(1- M) 

thus gv.v,,v, is increases on (0, M), reaches a maximum in M and decreases on (M, 1). We further have 

Timm gm.vy.v9(%) = -co and lim EM.Vy.V)(X) = —20 

Thus three situations can occur!: 

(i) if gu.yjv,(M) <0 then gm.v,,v, has no root in (0, 1); 

(ii) if guv,,v)(M) = 0 then gyy,v,,v, has one root in (0,1), it is M; 

(iii) if gu.v,,v)(M) > 0 then gm.y,,v, has two roots in (0, 1), one in (0, M) and one in (M, 1). 

Since x + In(x) is injective on (0, 1), having gm,vy,.v, (x) = 0 is equivalent to having 

fu, (X) = fiv,v) (x) (48) 

15 Further investigation would lead to determine that (iii) occurs. However, it is not necessary for our proof.
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This latter equation has, at the most, two roots in (0, 1). 

Now, let us go back to Fiy,v, and Fiy,v,. Mimicking the proof of Proposition 3 and define H = Fyy,v, — Fu.v,. We 

have H(0) = 0 and H(1) = 1. If H were to vanish twice on (0,1), let x; and x2 be its two roots. Applying the Rolle’s 

theorem on (0, x;), on (x1, x2) and on (x2, 1) shows that H’ has three roots on (0,1) which is in contradiction with 

(48) since H’ = fy,v, — fu,v,. Subsequently, Fiy,y, and Fy.y, intersect, at most, once on (0, 1). 

If Fiv.v, and Fiy,v, were not to intersect at all then one would dominate the other on (0,1) which would lead the 

integral of one to be strictly higher than the integral of the other, contradicting the hypothesis that their means are 

equal. It follows that Fiy.y, and Fiy,v, intersect exactly once on (0, 1). 

Second statement. 

Since Fy,y, and Fyy,v, intersect only once, it is sufficient to prove that Fiy,v, (xo) < F,v, (xo) for one xo € (0, xc). To 

do so, let us consider the decreasing bijective function Z from (0, D(M)) to (0, +oo) defined by Z(V) = (D(M)-V)/V 

and 

O: (0,+0)x (0,1) -— R 

(z,8) 1 Fry z-1(2)(s) 

It is is continuously differentiable with respect to its first and second variables. Using (26), the coefficients a and B 

corresponding to Fy 7-1 (z) area = Mz and B = (1 - M)z. Subsequently, 

1 = * M2174 _ 4) (1-M)z-1 
62.) = gaaacame I, t (1-t) dt 

OG (Zz, x) _ 1 * Mz-1(4 _ )(1-M)z-1 _ _ — 7 szucme I, t (1-t) [M Int + (1 - M) In(1 - t) 

+¥(z) — (1- M)¥((1- M)z) -M¥(MZ) |dt 

where ¥ is the digamma function. Since lim;o[M Int + (1 — M) In(1 — t)] = —0v, there exists Ay,z > 0 such that 

Vt € (0,hy,z), MInt + (1—M)In(1—t) +¥(z) - (1- M)¥((1- M)z) -M¥(MZ) <0 

Such an hy,z depends on M and z but not on t. Consider A = min(Ay,z(v,).Am,z(yy)+Xe)> and xq € (0, A). Then, for 

all t € (0, xo) and for all z € [Z~'(V2),Z-"(Vi) ], 

f M2104 = 2) 1-2-1 1 Int + (1 — M) In(1 — t) + ¥(z) — (1- M)¥((1— M)z) —-M¥(MZ) dt <0 
0 

It follows that z + {(z, xo) is decreasing on [Z~'(V2), Z~'(Yy) ]. Since Z is decreasing, it implies that Fuv, (x0) < 

Fm.v, (Xo). 

Lemma 6 Forall V < (0, D(M)), the mapping Yin,v is convex.
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Proof This mapping Yy,v is twice differentiable and Y;, , = Fy, y = fv which is positive on (0,1). 

Lemma 7 For x € (0,1), the application V > Ym,y (x) is increasing. 

Proof Let m € (0,1) and V; and V2 be in (0, D(m)). 

Assume that Ym,v,; and Ym,v, cross in (0,1). Note xo such that Ym, (x0) = Ym,v) (xo). Then H = Ym.v, — Ym,v, has 

three roots in [0,1] that are O, xo and 1. Applying the Rolle’s theorem on (0, xo) and (xo, 1) shows that Fim,v, and Fim,v; 

intersect twice, which contradicts Proposition 5. 

Further assume that V; < V2. The ordering is a consequence of Proposition 5, part 2. 

Proof of Lemma 3 — Let X be a random variable having for distribution function Fin,.p(m)- 

EU(1+rt+y(X-r))=A-mU(14+r-yr)+mU(14+r-yr+y) 

which can be differentiated with respect to y. We have 

3 a 
EU +rty(X-rn)= Tr exper A(ry-r-1) _ _ _ _ oy ay [m(1 — r) exp(—Ay) - (1- m)r] (49) 

  

which is of the sign of m(1 — r) exp(—Ay) — (1 — m)r. Let yj (r, m) be defined by (35), then y > EU(1+r+y(X —r)) 

is non-decreasing on (0, y}(r, m)) and decreasing hereafter if y}(r, m) < 1. This yields the result. 0 

Proof of Proposition 7 — Assume that M < M’, with (M, M’) € G. 1)?. Let V > 0 be such that D(M’) = V. Since the 

boundary of the MV-dome is a parabola, V exists and V < D(M) since M < M’. From (30), we know that Fy: y is 

equal to 1-M when x « [0, 1) andis equal to 1 when x = 1. Since V is positive while V < D(M), Fiv,v admits a (strictly) 

positive density fy,y so that the support (of Fy,v) is [0,1]. Moreover, the distribution function Fyy,y is continuous 

and strictly increasing since the density fy,v is (strictly) positive (and continuous). It thus follows that there exists 

a single crossing point x. € (0,1) such that Fy.y (xc) = Fy (xc). The crossing point is such that for all x < x¢, 

Fuuv (x) < Fwy (x) while for all x > xc, Fv (x) > Fi (x). Clearly, for all x < x¢, kr Fy (z)dz < kK Fu vy (z)dz. 

However, since M’ > M, it thus follows that fi Smuv(z)dz < i Smry(z)dz (recall that S$ is the survival function), 

which is equivalent to t Fy y(z)dz < t Fy,v(z)dz. Asa result, Fyy.y and Fy y are not comparable according to 

second-order stochastic dominance. 0) 
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