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Abstract

One of the most widely used framework to implement True Random Number
Generators (TRNG) on an electronic ship is based on free running oscillators. In
order to make sure that a TRNG has a given entropy rate, it is desirable to embed
with it an online test of entropy. According to [1], the only way to do achieve that, is
to use a statistical model of the TRNG and to have an online measurement method
of the physical parameters of the model. In the context of oscillator based TRNG a
method is proposed in [2] to assess the statistical parameters of the model proposed
in [3]. In this paper, we explain that this method has some shortcomings, that the
choice of its parameters, not clearly explained in [2] can have dramatic effects on
its precision and reliability. In this paper, we propose a recipe for choosing good
parameters and present some algorithmic tweaks to improve its robustness. We
have extensively tested the new method with simulations and implemented it in
hardware to verify its efficiency and practicality.

Keywords:

Hardware random number generators, free-running oscillators, stochastic models, en-
tropy, dedicated statistical tests.

1 Introduction

Random numbers generators are essential security component used in every cryptographic
hardware implementation for the production of confidential keys, initialization vectors,
padding values, challenge for authentication protocols and also as random masks in
side-channel attack countermeasures. They are usually composed of two stages: a non
deterministic stage, called True Random Number Generator (TRNG) and a deterministic
one, called Deterministic Random Number Generator (DRNG). The TRNG serves as an
entropy source to guarantee unpredictability of generated numbers against an adversary
with an unlimited computational power. The DRNG, which uses TRNG output as a
seed, ensures that the output of the random number generator is unpredictable for an
attacker with a bounded computational power even if the TRNG partially or temporarily
fails according a security model such as the one of [].
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This paper deals with the TRNG stage of a random number generator. It is still
a challenging task to design such a device with a high level of certainty on its security
which is measured for cryptographic application by its entropy rate. In order to do so,
according to [], it is necessary to go thought a several steps process, the main points of
which being:

1. identifying a unpredictable physical phenomenon that can be exploited in the op-
eration of the electronic device and have a statistical model for this phenomenon;

2. design a TRNG using this phenomenon and have a stochastic model of the TRNG
depending on parameters and giving the distribution of the output bits of the
TRNG;

3. measure the parameters of the random phenomenons and using the stochastic model
of the TRNG compute its entropy rate.

As far as we know, there is not much choice for a technological platform for which a
simple and reliable implementation of all the steps of the preceding process in known. One
known possibility uses the instability of the propagation time of the electric signal across
logic gates called time jitter. It can be amplified in a so called ring oscillators which
is composed of a sequence of inverters and delay elements connected in ring. A ring
oscillator produces, when enabled, a clock signal the phase of which randomly fluctuate
causing the so called phase jitter. The phase jitter can be exploited to produce random
numbers. An example of simple well known design to do so, called Elementary Ring
Oscillator based TRNG (ERO-TRNG) [4] is composed of two ring oscillators O1 and O2,
the signal of O2 sampling that of O1 with a type-D flipflop. More complex designs such
as MRO-TRNG are described in [4].

The phase jitter is the result of several physical phenomenons or noises with different
statistical properties. The paper [3] describes a statistical model to compute contribu-
tion of the thermal noise to the entropy rate of the TRNG. Since the thermal noise is
statistically independent of the other sources of noises, this model, based on a unidimen-
sional Weiner process, is sufficient to compute a lower bound on the entropy rate of a
oscillator based TRNG. The statistical parameters of this model are given by the drift
λ and volatility σ of a Weiner process [3]. Measuring the physical quantity related to
these parameters is one of the most challenging part of the design of an oscillator based
TRNG with a good level of certainty on its security. One difficulty lies in the fact that it
is necessary to distinguish the different components of the phase jitter (see [3] for a more
in depth discussion on this subject). A way to distinguish the thermal noise component
of the phase jitter is to measure it at high frequency where it is predominant over other
noise sources.

The phase jitter can be measured externally, the clock signal being analyzed by an
oscilloscope or with the internal method described in [2], the measure on the analog signal
is done inside the chip and only numerical data are processed after this measure. The
problem with the external method is that the acquisition chain add a lot of perturbation
on the analog signals which make the measure less precise. It is also not practical because
one can not use an oscilloscope on the assembly line of the chip. The second method is
in theory far more accurate and practical. Still, in most cases, in practise, it does not
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Figure 1: Scheme of an elementary OJMD

achieve the goals displayed in [2] to have a reliable and precise measure, simple enough
to be embedded inside a chip (including the computational steps necessary to recover the
parameters λ and σ). Actually, the good operation of the method depends on the choice
of parameters and good configuration of the oscillators which is non trivial, not always
possible and not explained. With a random choice of parameters and configurations in
most cases the internal measure will lead to poor estimation of the statistical parameters
of the thermal noise component of the phase jitter. This can lead to an overestimation of
the entropy rate of the TRNG and thus a security vulnerability. The aim of this paper
is to point to and explain the shortcomings of the method [2] and explain how to tweak
it to overcome these problems.

The paper in organized as follows. In Section 2, we briefly recall the method of
[2] in order to set the notations for the rest of the paper and explain in Section 3 the
shortcomings of the method. In Section 4, we introduction improvements based an new
algorithm to overcome the problems previously described. In Section 5, we present the
outcome of our hardware implementation and extensive experiment of the new method
to show its reliability. Then, we build upon the previous results to explain how to embed
the internal measure method.

2 The internal measure method : summary and short-
comings

In this section, we briefly recall the method of [2] in order to fix the notations, explain
its shortcomings and hint at our improvements. In [2], the authors show that what they
call an elementary oscillator-based TRNG can be seen at the same time, for a different
mode of operation, as an efficient measurement device for the phase jitter.

In order to simplify the presentation, we only describe the elementary oscillator-based
TRNG in its configuration for measuring the phase jitter and call it an oscillator-based
jitter measurement device (OJMD). An OJMD is composed of two oscillators, Oi for
i = 1, 2. The output clock signal of O2 is used to determine the sampling times of O1.
The sampling unit can be a synchronous D flip-flop (see Figure 1). In this case, the
sample times correspond to the rising edges of the signal of O2.

For i = 1, 2, the output signal of Oi is given by a quasi-periodic function si(t) of time
t that takes the form

si(t) = fαi
(ωi(t+ ξi(t))), (1)
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where for α ∈ [0, 1), we define fα as the real valued 1-periodic function such that fα(x) =
1 for all 0 < x < α and fα(x) = 0 for α < x < 1, and fα(0) = fα(α) = 1/2. The
parameter αi accounts for the duty cycle of si(t). Up to replacing fαi

by 1− fαi
, we will

always suppose in the following that αi ∈ [0, 0.5). For i = 1, 2, ωi is the mean frequency
of the signal si(t), ϕi(t) = ωi(t + ξi(t)) is its phase and the function ξi(t) represents
its absolute phase drift caused by the time jitter that we call phase jitter. Similarly,
Ti = 1/ωi is the mean period of si(t).

Following [3], for i = 1, 2, we model the evolution of the total phase ϕi(t) = ωi(t+ξi(t))
from Eq. (1), i.e. the phase of a ring oscillator Oi subject to the thermal noise, using
a stationary Wiener stochastic process Φi(t) with drift µi > 0 and volatility σ2

i > 0. In
other words, for any time t ≥ t0, the phase Φi(t) conditioned by the value Φi(t0) = ϕ(t0)
follows a Gaussian distribution of expected value ϕi(t0)+µi(t−t0) and variance σ2

i (t−t0).
In [3, Appendix C], it is shown that, under general hypothesis always fulfilled in

practise, the output of oscillator O1 with duty cycle α1 drift T1 and volatility σ2
1 , sampled

at time intervals determined by oscillator O2 with drift T2 and volatility σ2
2 produces the

same distribution of output bits as that of a stable clock signal (a jitter-free signal) with
period duty cycle 0.5 and period T2/T1 sampling an oscillator O′

1 with duty cycle α1,

drift 0 and volatility σ where σ =
(

T2

T1

)2

σ2
2 + σ2

1 .

We call the triple:

(α = α1, µ = T2/T1 mod 1, σ2 =

(
T2
T1

)2

σ2
2 + σ2

1) (2)

the statistical parameters of the OJMD composed of the oscillators O1 and O2. The
knowledge of these parameters are enough to reproduce the distribution of the output
bits b = (bj)j=1,...,n at sampling times (tj)j=1,...,n of the OJMD. Actually, the internal
state of a OJMD with parameters (α, µ, σ2) can be represented by a phase ϕ(t) depending
on t. The output at time t of the OJMD knowing the phase according to (1) is fα(ϕ(t)).
As said before, the evolution of ϕ(t) is given by a Wiener process Φ(t) over the interval
[0, 1] with drift µ and volatility σ2. So, from the knowledge of ϕ(t0) at time t0, at
time t > t0, the phase at t is drawn at random following the Gaussian distribution with
expected value µ and standard deviation σ. The Algorithm 1 uses this in order to produce
a series of bits following the distribution of a OJMD with given parameters (α, µ, σ2).

In [2], the authors describe a method, which we briefly recall, to measure the statistical
parameters (α, µ, σ2) of a OJMD from the knowledge of a sample of its output bits. For
n ∈ N∗, let b = (bj)j∈{1,...,n} be the output bits sequence corresponding to the sampling
of O1 at times (tj = t0 + jµ)j∈{1,...,n} given by the rising edges of O2 as depicted in
Fig. 1. For any S ⊂ {1, . . . , n}, we define

PS{bj ̸= bj+M} =
#{j ∈ S|bj ̸= bj+M}

#S
.

The method of [2] is based on three facts that we state without recalling all the
conditions upon which they rely for the sake of simplicity and because in the following
we are going to discuss these conditions. Let N ∈ N and for i ∈ {1, . . . , n−N + 1}, we
set Si = {i, . . . , i+N − 1}.
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Algorithm 1: Algorithm to simulate a OJMD subject only to the thermal noise

input :

• (α, µ, σ2) the statistical parameters of the OJMD;

• n a number of output bits;

• (tj)j=1,...,n sampling times.

output: (bj)j=1,...,n output bits.

1 ϕ = 0.5 /* Comment Initial relative phase */

2 t0 ← t1 − 1;
3 for i = 1 to n do

4 Draw a random x following the distribution G̃(µ(ti − ti−1),
√
σ2(ti − ti−1)) ;

5 ϕ← (ϕ+ x) mod 1;
6 if ϕ < α then
7 bi ← 1;
8 else
9 bi ← 0;

10 end

11 end
12 return (bi)i=1,...,n.

Fact 1. [2, Fact 1] Under certain hypothesis the set:

SN,M = {ci =
1

2
PSi
{bj ̸= bj+M}}i∈{1,...,n−N−M+1}

is a sample drawn following the probability density function D(M)(x) such that for all

a, b ∈ R,
∫ b

a
D(M)(x)dx = P{(Φ(t0 +Mµ) ≤ x|Φ(t0)) = x0 ∈ [a, b]} where Φ(t) is the

Wieiner process governing the evolution of the phase ϕ(t) of the OJMD with statistical
parameters (α, µ, σ2).

Using Fact 1, one can recover σ2 by computing the empirical variance V (SN,M ) of
SN,M with any variance estimator such as:

V (SN,M ) =
1

K

K∑
i=1

c2i − (
1

K

K∑
i=1

c2i ).

We remark that, if we make the hypothesis that O1 and O2 are only subject to
the thermal noise component of the phase jitter, V (SN,1) = σ2 and that V (SN,M ) =
MV (SN,1), so that in order to improve the measure of σ2, one can compute a sample
of V (SN,M ) for different values of M and recover σ2 = V (SN,1) as the slope of the line
obtained as the linear regression of the samples. If M is small enough, the thermal noise
will be preponderant over other noise sources so that the behaviour of V (SN,M ) as a
function of M will be linear that the slope of V (SN,M ) gives σ2.
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Fact 2. [2, Fact 2] Under certain hypothesis, we have for any S ⊂ S

1

2
PS{bi ̸= bi+1} =

{
T2/T1 mod 1 if T2/T1 < 0.5

1− T2/T1 mod 1 otherwise.
(3)

Fact 2 immediately gives a way to recover µ = T2/T1 mod 1.

Fact 3. [2, Fact 1] Under certain hypothesis, we can obtain the duty cicle of the oscillator
O1 of the OJMD as:

α =

∑n
i=1 bi
n

. (4)

It is clear that together Fact 1, Fact 2 and Fact 3, in principle, allow to recover the
statistical parameters (α, µ, σ2) of the OJMD. Nonetheless, as stated, these facts depend
on hypothesis that are not always easy to fullfil and control. We are going to see in the
next section that if these conditions are not verified, the precision of the measures may
be greatly affected resulting in some cases in absurd outcomes.

3 Shortcomings of the method

We first treat the case of Fact 3, which is the easiest. Recall that (tj)j=1,...,n are the
sampling times corresponding to the rising edges of the signal produced by O2. Then Fact
3 is true as long as (ti mod T1) follows a uniform distribution in [0, T1]. This property
is guarantied over a long period of time by the jitter phenomenon even if we suppose it
to be very small. By the central limit theorem, the precision of the measure is in the
order of 10log10(n)/2 with high probability.

As for Fact 2, it is true as long as (ti mod T1) follows a uniform distribution in [0, T1].
Again, the precision of the measure is, with high probability, in the order of 10log10(n)/2.

The analysis of Fact 1 is much more delicate than the other facts in part because
it depends on the choices of the parameters N and M which may affect its outcome.
In order to assess its precision and the conditions upon which it works, we have made
simulations using Algorithm 1 to produce series of bits (bj)j∈{1,...,n} by a simulated
OJMD with well chosen statistical parameters (α, µ, σ2) for the thermal noise and used
Fact 1 to recover σ2 with different choices of N,M .

A first observation is that the line obtained as the linear regression of the samples
V (SN,M ) does not pass through the origin as it should in theory: its equation is of the
form σ2x+ b = 0 where in general b in non-zero. Using simulation it is easily seen that
this is due to the quantization error when approximating ϕ(t0 + (M + i)µ)− ϕ(t0 + iµ)
by ci. This means in particular that one has to compute V (SN,M ) for at least two values
of M to be able to recover σ2.

In a first experiment, we have used Algorithm 1 with parameters (α = 0.5, µ =
0.3376, σ2 = 10−6). We have computed the samples (S117,M ) for M = (300+5j)j=0,...,49

and plotted in Figure 2 the variance of these samples together with the line Lσ2 with
slope 10−6 = σ2 that we should recover. We see that although most points V (S117,M ) fit
correctly with Lσ2 , there are a lot of outliers. For instance, although V (S117,540) is very
close to Lσ2 , V (S117,545) is widely apart.
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Figure 2: V (S117,M ) for M = (300 + 5j)j=0,...,49
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Figure 3: Distribution of values V (S117,540) (left) and V (S117,545) (right)

If we look in Figure 3 at the cumulative distribution function of S117,540, we see that
it is well approximating the cumulative distribution function of a Gaussian distribution
as it should be for a Weiner process. This is not the case of the cumulative distribution
function of S117,545 on the right hand of Figure 3 where we note that the left tail of the
expected Gaussian distribution is flattened.

How can we explain that ? In fact, if we have a closer look at the statement of [2, Fact
1], we see that the ci are not drawn following the probability density function D(M)(x)
but rather that of ψα(D(M)) where ψα is the function defined as:

ψα(x) = 2x if 0 ≤ x ≤ α,
ψα(x) = 2α if α ≤ x ≤ 1− α,

ψα(x) = 2− 2x if 1− α ≤ x ≤ 1.

(5)

Using this we can explain the shape of the distributions obtained in Figure 3. In the
left hand figure, the Gaussian distribution is contained in the interval [0, α] so that it is
just stretched by a factor 2 by the function ϕα. In the right hand figure, the expected
value of the Gaussian distribution is in 0 so that it is folded by ψα. This explains why,
in the second case, the computation of the variance of the distribution is far lower than
the expected one thus the corresponding abnormal point in the Figure 2. This problem
occurs whenever the ϵ-support of the probability density function D(M) intersects the
set {0, α}. By ϵ-support, we mean the smallest interval I centered around the expected
value of D(M) such that

∫
I
D(M) ≥ 1 − ϵ for a small ϵ > 0. But the mean value of

D(M) in [0, 1] is given by MT2 mod T1 so that it is fixed by the parameter M . Thus we
see that whether the empirical distribution of SN,M is a good approximation of D(M)
depends of a choice of M that is not explained in [2].
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Figure 4: Example of distribution of values V (S80,M ) (left) and V (S15,M ) (right) for
M = (300 + 5j)j=0,...,49

Figure 5: Distribution of {iµ mod 1, i = 1, . . . N}, for N = 80 (left) and N = 125 (right)
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We made a second experiment to illustrate the sensitivity of the method of [2] with
the N parameter of Fact 1. We have generated a bit sequence using Algorithm 1 with
parameters (α = 0.5, µ = 0.332, σ2 = 10−6). We have computed the samples (S80,M )
and (S125,M ) for M = (300 + 5j)j=0,...,49 and plotted in Figure 5 the variance of these
samples together with the line Lσ2 with slope 10−6 = σ2 that we should recover.

We see that V (S125,M ) fits correctly with the expected Lσ2 but that V (S80,M ) does
not even looks like an affine law. The problem here is that Fact 1, rely on the hypothesis
that the distribution of {iµ mod 1, i = 1, . . . , N} is ϵ-uniform for a small positive ϵ.
This means that the number of samples of {iµ mod 1, i = 1, . . . , N} in the interval
[a, b] over N is close (up to a small ϵ) to the expected one if the distribution of the {ξµ
mod 1, i = 1, . . . , N} was uniform in the interval [0, 1] that is the size of the interval [a, b].

We see in Figure 4 that the distribution of {iµ mod 1, i = 1, . . . , N} is uniform in
[0, 1] (represented by a circle in the figure) if N = 80 but this is not the case if N = 40.
This time we see that whether the empirical distribution of SN,M is a good approximation
of D(M) also depends in a crucial manner on the choice of N .

4 Improvements

In the previous section, we have described cases when the distribution of SN,M that we
can compute is not a good approximation of that of D(M) that we want to recover. A
first problem affects the choice of M and the second that of N so that if one does not
take care when choosing the parameters of the method of [2], the outcome may be very
far from the result that we look for. In this section, we explain how to tweak the jitter
measurement method of [2] to overcome these defects and so to improve its precision and
reliability.

4.1 Outlier detection and mitigation

We have seen that the distribution of the SN,M that we compute does not follow the
probability density function D(M) but rather that of ψα(D(M)) where ψα is defined by
(5).

In the case that the ϵ-support of the distribution D(M) intersects {0, α} the distri-
bution of the SN,M will not be, in general, a good approximation of D(M) up to a linear
factor. In order to avoid this, one can filter out bad values of M so that the ϵ-support of
SN,M does not meet {0, α}. We suppose that σ is very small compared to 1 which is the
case in most of the measures that we have done on a wide range of different technologies.

A first idea to filter out bad values of M is to choose M so that

√
σ2M < ϵ0 (6)

|E(D(M))− α/2| < ϵ0, (7)

for ϵ0 > 0 much smaller than α (for instance take ϵ0 = α/4). Actually, if the variance
of D(M) is small and its expected value is far from {0, α} then the probability that the
ϵ-support of D(M) gets across {0, α} is small. We remark that, as one can evaluate T2/T1
mod 1 and α using respectively Facts 2 and 3, it is possible to recover |E(D(M))−α/2| as
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[MT2/T1 mod 1−α/2| and so choosing aM verifying the second condition. Nonetheless,
as don’t know σ2 because this is exactly what we want to measure, it is difficult to verify
that the first condition is fulfilled. So the method works only if one knows an order of
magnitude of σ2 and take margins. The problem is then that we are going to discard
a lot of values of M suitable for the computation of σ2. By being to much selective on
M we take the risk to eliminate all possible values or diminish drastically the number
of points used to compute a linear regression and so lose precision. We would like to
be able to asses if the distribution SN,M actually gets across {0, α} without an a priori
knowledge of σ2.

In order to explain how to do it, we suppose to simplify the explanation that SN,M gets
across 0 (the case of α is similar). Let ci =

1
2PSi
{bj ̸= bj+M} for i ∈ {1, . . . , n−N−M+1}

and we recall that Si = {i, . . . , i+N − 1}. Let δ(M, t) = ϕ(t+Mµ)−ϕ(t). As the phase
jitter per period is small, we have:

|δ(M, t0 + iµ)− δ(M, t0 + (i− 1)µ)| < ϵ1, (8)

for a small ϵ1 (of the order of
√
σ2T2). Moreover, if the conditions of Fact 1 are fullfiled,

there exists a small ϵ2(M) > 0 such that for all i ∈ {1, . . . , n−N −M},

|x− δ(M, t0 + iµ)| < ϵ2(M), (9)

for x ∈ {ci, 1 − ci}. When ci is far from 0, ci and 1 − ci are far apart from each other
so that it is easy to decide which one is the correct approximation of δ(M, t0 + iµ) by
induction on i: for c0 we can choose at random any of c0 and 1− c0, this will act by −1
on the computed distribution of the δ(M, t0 + iµ) for i = 1, . . . , N without affecting its
variance. Then suppose that we have chosen a good approximation y ∈ {ci−1, 1−ci−1} of
δ(M, t0+(i−1)µ) then by equations (8) and (9), x ∈ {ci, 1−ci} is a good approximation
of δ(M, t0 + iµ) if it verities |x− y| < ϵ1 + 2ϵ2(M).

But when ci is near to 0, we don’t have a criterion to decide which of ci or 1 − ci
is the good approximation of δ(M, t0 + iµ) so we can not use the value of ci to detect
if δ(M, t0 + iµ) crosses 0 for different values of i. In order to improve that, using the
fact that, in practise, the jitter by period

√
σ2T2 is small, for λ = ±1, we have for all t0:

|ϕ(t0 +Mµ)− (ϕ(t0 + (M − λ)µ) + λµ)| < ϵ1 for a small ϵ1 of the order of
√
σ2T . This

means that:
|δ(M, t0 + iµ)− (δ(M − λ, t0 + iµ) + λµ)| < ϵ1. (10)

Based on this remark, keeping the definition for ϵ1, ϵ2(M) from above, we have the
following fact:

Fact 4. Let λ = ±1 be an integer, let ci = 1
2PSi
{bj ̸= bj+M} and c′i = 1

2PSi
{bj ̸=

bj+M−λ}. Set ϵ = ϵ1 + 2max(ϵ2(M), ϵ2(M ± λ)). If we have

|λµ mod 1| > ϵ, |λµ− 1− 2ci
2

mod 1| > ϵ, (11)

there is a unique pair (x, y) where x ∈ {ci, 1 − ci} and y ∈ {c′i + λµ, 1 − c′i + λµ} such
that |x− y| < ϵ.
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Figure 6: V (S117,M ) for M = (300 + 5j)j=0,...,49 discarding outliers (left) and by gluing
distributions (right)

Proof. The existence of the pair (x, y) is an immediate consequence of the triangular
inequality and the fact that for a x ∈ {c′i, 1− c′i}, |x− δ(M − λ, t0 + iµ)| < ϵ2, for a y ∈
{ci, 1−ci}, |y−δ(M, t0+iµ)| < ϵ2 and moreover that |δ(M, t0+iµ)−δ(M−λ, t0+iµ)+λη
mod 1| < ϵ1.

For the unicity, suppose that |c′i − ci + λµ| < ϵ. If |1− c′i − ci + λµ mod 1| < ϵ then
|λµ− 1−2ci

2 mod 1| < ϵ. If |1− c′i− 1− ci+λµ| < ϵ, then |λµ− 0 mod 1| < ϵ. The case,
|c′i − 1− ci + λµ| < ϵ is similar.

In order to use the preceding Fact, we remark that we can obtain a good approxi-
mation of µ using Fact 2 and then use it to check if the conditions (11) are fulfilled (in
practise, one can take safely ϵ = 1/10). Then Fact 4 allows to lift the ambiguity about
which of ci and 1− ci is a good approximation of δ(M, t0 + iµ) except in the rare cases
when conditions (11) are not fulfilled. In this case, one can redo the computations with
λ = −1. This gives a way to detect when ci gets across 0.

We can use it either to detect when a ci is likely to be an outlier and discard it as in
Algorithm 3. It is also possible to compute ci taking into account of the fact that it has
crossed 0 or α as in Algorithm 4. Note that in this last algorithm the distribution of c[i]
that we compute can get across 0 or α but the PS(bj ̸= bj+M ) is always in [0, 1] so that
we have to glue them together using the integer offset that is updated by plus or minus
1 when the c[i] goes through 0 or 1.

We have tested the two algorithms with theWiener processW (α = 0.5, µ = 0.3376, σ =
10−6) and we have computed the samples (S117,M ) for M = (300 + 5j)j=0,...49 exactly
as for Figure 2. We remark in Figure 6 (left) that the new method allows to detect and
remove all the outlier. When we use it to glue the distribution of ci together we still have
some outlier but far less than with the old method as it is shown in Figure 6 (right).
These outlier are due to the fact that it may happen very rarely that δ(M, t0 + iµ) and
δ(M − λ, t0 + iµ) are far enough so that we are wrong when using it to decide whether
to choose ci or 1− ci.

4.2 Continued fractions and ϵ-uniformity

In this section, we consider that the interval [0, 1[ is a circle by identifying 0 and 1. We
say that T ⊂ [0, 1[ is an interval if ∪t∈Z(T + t) is an interval of R.
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Algorithm 2: Algorithm to compute the probability density function D(M)

input :

• The output sequence [b1, . . . , bn] of an OJMD;

• η = T1/T2 mod 1, λ a small integer;

• M and N integers.

output: Fail or c[i] which have the same distribution as D(M).

1 i← 0;
2 for i in range(n−M −N) do
3 Si ← [i+ 1, . . . , i+N ];
4 c = PSi(bj ̸= bj+M );
5 c′ = PSi

(bj ̸= bj+M−λ) + ηλ;
6 C = [c, 1− c];
7 C ′ = [c′, 1− c′];
8 Let (k, l) such that |C[k]− C ′[l]| = min{|x− y|, x ∈ C, y ∈ C ′};
9 c[i] = C[k];

10 end
11 return c[i];

We have seen in Section 2 that the outcome of Fact 1 can be affected by the choice of
N . In order to have a better understanding of the relation between N and the precision
of the computation of σ2 by Fact 1, we recall some definitions and statements from [3].

For x, y ∈ [0, 1[, let d(x, y) = min(|x− y|, 1− |x− y|). If I is an interval of [0, 1[, we
define the diameter of I denoted by d(I) the quantity max(d(x, y), x, y ∈ I). Let K be a
finite subset of the interval [0, 1[, we say that K is ϵ-uniform if for all [a, b] ⊂ [0, 1], we
have:

| ♯K ∩ [a, b]

♯K
− (b− a)| ≤ ϵ. (12)

In the following, for any K finite subset of [0, 1[, we denote by ϵ(K) the minimum of
the set L = {ϵ > 0|K is ϵ-uniform} (such a minimum exists since L is closed and bounded
from below by 0). For any i positive integer, we let κ(i) = ϕ(t0 + (i+M)µ)− ϕ(t0 + iµ)
mod 1 ∈ [0, 1[. We set Si = {i, . . . , i + N − 1} for i = 1, . . . , n − N + 1 and for i =
1, . . . , n − N −M + 1, let Ki = {κ(j), j ∈ Si}, ESi

(κ) = 1
N

∑
j∈Si

κ(j). If we have a
closer look at the statement of [3, Fact 1], we see that:

|1
2
PSi
{bj ̸= bj+M} −min(ESi

(κ), 1− ESi
(κ)| < ϵ(Ki).

In other words, the points that we compute in order to recover the distribution D(M)
are approximation up to ϵ(Ki) of the real points ESi(κ(i)) or 1 − ESi(κ(i)). We would
like to choose N in order to obtain the smallest possible ϵ(Ki). A first question is: when
K run through the set of finite subsets of cardinality N of [0, 1[, what is the span of ϵ(K)
and for what configuration of K ϵ(K) is the smallest possible. This question is answered
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Algorithm 3: Algorithm to compute the probability density function D(M)

input :

• The output sequence [b1, . . . , bn] of an OJMD;

• η = T1/T2 mod 1, λ a small integer;

• K, M and N integers.

output: c[i] which have the same distribution as D(M).

1 for i = 0, . . . ,K do
2 offset← 0;
3 Si ← [Ni+ 1, . . . , Ni+N ];
4 c = PS(bj ̸= bj+M );
5 c′ = PS(bj ̸= bj+M−λ) + ηλ;
6 ν ← {min(x, y)x ∈ {c, 1− c}, y ∈ {c′, 1− c′}};
7 if ν − c[i− 1] > 0.5 then
8 offset← offset + 1;
9 end

10 if ν − c[i− 1] < −0.5 then
11 offset← offset− 1;
12 end
13 c[i] = c+ offset;

14 end
15 return c[i];
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by the following lemma which explains that ϵ(K) is optimal when the points of K are
uniformly distributed in [0, 1[. We state also the basic invariance of ϵ(K) with respect to
translations.

Lemma 1. Let K(N) by a finite subset of [0, 1[ of cardinality N , we have:

• ϵ(K(N)) = ϵ(K(N)+ t) for any t ∈ R (invariance of ϵ(K(N)) by translation by t),
ϵ(K(N)) < 1;

• if there exists ζ > 0 and I an interval of [0, 1[ such that d(I) = ζ, I ∩K(N) = ∅
then ϵ(K(N)) ≥ ζ;

• ϵ({i/N mod 1, i = 0, . . . , N − 1}) = 1/N .

If K(N) has cardinality N then ϵ(K(N)) ∈ [1/N, 1[ and because of the preceding these
bounds are optimal.

Proof. The first two claims of the Lemma are clear.
LetK = {i/N mod 1, i ∈ {0, . . . , N−1}. By applying the second claim to |0, 1/N [∩K =

∅, we have ϵ(K) ≥ 1/N . Let I ⊂ [0, 1[ be an interval, we have

⌊Nd(I)⌋/N ≤ ♯(K ∩ I)/N ≤ ⌊(Nd(I)⌋+ 1)/N (13)

and moreover,
⌊Nd(I)⌋/N ≤ d(I) ≤ ⌊Nd(I)⌋/N + 1/N. (14)

Using Equations (13) and (14), we obtain that ϵ(K) ≤ 1/N .
If K has cardinality N then min({d(x, y), x, y ∈ K} ≥ 1/N so that ϵ(K) ≥ 1/N

whence the last claim.

As N is small, considering that the phase jitter is small during NT2, we can suppose
that ϕ(iη) = iη mod 1. So we have to study the ϵ-uniformity of the set K(N) = {iη
mod 1, i = 0, . . . , N − 1}. A basic remark is that if η is a rational, write it as P/N an
irreducible fraction then K(N) = {i/N, i = 0, . . . , N − 1} and we have seen in Lemma
1 that ϵ(K(N)) = 1/N and is minimal among all finite subsets of [0, 1[ of cardinality
N . However in our application, for typical values, η will be a real number known up
to precision say 10−3 using for instance Fact 2 to compute η with a sample of 106 bits.
So that η is of the from P/N with N of the order to 103 and we would like to choose
N of the order to 102 so that N is small enough to comply with the hypothesis that
the jitter during NT2 is small. So we can not apply the preceding naive approach. But
it seems reasonable to think that ϵ(K(N)) will be the smallest when we choose N so
that there exists a good rational approximation P/N of η. These good approximations
are given by the theory of continued fractions (first introduced in [5] in the context of
jitter measurement of oscillator based TRNG). We briefly recall the classical results and
notations that we use in the following and refer the reader to [6] for a more in-depth
introduction to continued fractions.

Let x be a real number, we denote by [a0, a1, . . .] where a0, a1, . . . are positive integers,
the (possibly infinite) continued fraction representation of x that is:

x = a0 +
1

a1 +
1

a2+...

. (15)
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If s = [a0; a1, . . .] is a continued fraction and k a positive integer, we denote by

sk = [a0; a1, . . . , ak] its kth segment of by s(p)k
s(q)k

its kth convergent. In other words,
s(p)k
s(q)k

is the unique irreducible fraction representing [a0; a1, . . . , ak]. Let s∞ be the real

number represented by s. Denote by d(s, k) = s(q)ks∞ − s(p)k and more generally by
d(s, k, λ) = λd(s, k + 1) + d(s, k) for any λ ∈ {0, . . . , ak+2} positive integer. We say,
following [6], that a/b a fraction with b > 0 is a best approximation of second kind of
a real number α if for all λ/µ fraction such that λ/µ ̸= a/b and 0 < µ < b, we have
|bα− a| < |µα− λ|.

We have gathered in the following proposition the main results of the theory of con-
tinued fraction that we use:

Proposition 1 ([6]). We have:

1. [6][Theorem 4] for all k positive integer, (−1)kd(s, k) > 0 and the sequence

(−1)k(d(s, k))k∈N

is decreasing;

2. [6][Theorem 1]we have the relations s(p)k = aks(p)k−1+s(p)k−2, s(q)k = aks(q)k−1+
s(q)k−2 for all k ≥ 2;

3. [6][Theorem 16] an irreducible fraction λ/µ is a best approximation of second kind
of s∞ if and only if λ/µ = s(p)k/s(q)k for a certain k.

It is clear that d(s, k, 0) = d(s, k) and by Proposition 1[2.], we have

d(s, k, ak+2) = d(s, k + 2). (16)

We need a slight generalisation of the definition of approxiamtion of second kind:

Definition 1. We say that a fraction a/b, b > 0 is a best positive (resp. negative)
approximation of second kind of a real number α if for all λ/µ such that µ > 0, λ/µ ̸= a/b,
0 < µ < b, we have 0 < bα− a < µα− λ (resp. bα− a > µα− λ > 0).

With this definition, we can state the following lemma which will be useful:

Lemma 2. Let s = [a0; a1, . . .] be the continued fraction representation of s∞. We have:

• For all k, λ positive integer such that λ ∈ {0, . . . , ak+2 − 1}, (−1)kd(s, k, λ) > 0;

• The fraction λ/µ, µ > 0 is a best positive (resp. negative) approxmation of second
kind of s∞ if and only if λ = λ0s(p)k+1 + s(p)k and µ = λ0s(q)k+1 + s(q)k for
λ0 ∈ {0, . . . , ak+2} and k even (resp. odd).

Proof. For the first claim, it is true for λ = 0 by Proposition 1 since d(s, k, 0) = d(s, k)
by definition. Next, we suppose in order to simplify the notations that k is even and
leave the odd case to the reader. Suppose that for a λ ∈ {0, . . . , ak+2 − 1}, we have
d(s, k, λ) < 0. Let λ0 be the smalest positive integer realizing this condition. Then
0 ∈]d(s, k, λ0 + 1), d(s, k, λ0)[ and we have d(s, k, λ0 + 1) − d(s, k, λ0) = d(s, k + 1) < 0
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by definition. This means that |d(s, k, λ0)| < |d(s, k + 1)| and s(q)k + λ0s(q)k+1 <
s(q)k+2. But this contradicts Proposition 1 saying the only the convergeants are best
approximation of second kind.

We prove the second claim, by induction on k. We suppose it to be true for all
k ∈ {0, . . . , k0− 1}, the case k0 = 0 being trivial since s(q)0 = 1. We do the induction in
the case that k0 is even the odd case being similar.

So we have to prove that for λ0 ∈ {0, . . . , ak0+2 − 1}, P (λ0)/Q(λ0) for P (λ0) =
λ0s(p)k0+1 + s(p)k0

and Q(λ0) = λ0s(q)k0+1 + s(q)k0
is a best positive approximation of

second kind and that any best positive approximation of second kind is of this form.
We do an induction on λ0. For λ0 = 0, the result is an immediate consequence of

Proposition 1, because Q(0)s∞ − P (0) > 0 and P (0)/Q(0) is a best approximaiton of
second kind. We make the inductive hypothesis that for λ0 < ak0+2−1, P (λ0)/Q(λ0) is a
best positive approximation of second kind and we want to prove that P (λ0+1)/Q(λ0+1)
is the only next one. We suppose the contrary and let λ/µ, µ > 0 be a rational such that

Q(λ0)s∞ − P (λ0) > µs∞ − λ > 0, Q(λ0) < µ < Q(λ0 + 1). (17)

Set λ1 = λ − P (λ0) and µ1 = µ − Q(λ0). Then by Equation (17) and using the
fact that d(s, k0) > Q(λ0)s∞ − P (λ0) (because d(s, k0 + 1) < 0), we have: 0 > µ1s∞ −
λ1 > −s(d, k0). Moreover, because of Equation (17), we have µ1 < s(q)k0+1 so that by
Proposition 1, 0 > s(d, k0 + 1) > µ1s∞ − λ1. We can gather all the provious in the
inequalities:

0 > s(d, k0 + 1) > µ1s∞ − λ1 > −s(d, k0). (18)

But, by the induction hypothesis for k0 − 1, we know that if λ2/µ2 is a best negative
approximation of second kind of s∞ with µ2 the biggest such that 0 < µ2 < s(q)k0+1,
then µ2s∞ − λ2 = d(s, k0 − 1, ak0+1 − 1) = d(s, k0 + 1) − d(s, k0) because of Equation
(16). Comparing with Equation (18), we obtain:

0 > µ1s∞ − λ1 > µ2s∞ − λ2. (19)

Recall that µ1 < s(q)k0+1, the Inequality (19) contractids the hypothesis that λ2/µ2

is a best negative approximation of second kind of s∞ with µ2 the biggest such that
µ2 < s(q)k0+1.

We deduce that λ/µ verifying Equation (17) does not exists and so that P (λ0 +
1)/Q(λ0 + 1) is the only next best positive approximation of second kind of s∞ after
P (λ0)/Q(λ0).

Let η ∈ R and s = [a0; a1, . . .] be its continued fraction representation so that s∞ = η.
Let N be a positive integer and i ∈ {0, N − 1}. We consider the finite set K(N) = {iη
mod 1, i = 0, . . . , N−1} ⊂ [0, 1[. We suppose that the cardinal ofK(N) is N and we rank
the elements of K(N) by writing K(N) = {κj , j = 1, . . . , N − 1} such that κj ≤ κj+1

for j = 0, . . . , N − 2. Let χ be the permutation of {0, . . . , N − 1} such that κj = χ(j)η
mod 1. Let s = [a0; a1, . . .] be the continued fraction representation of s∞ = η. Denote
by DN the set of all d(s, k, λ), for k a positive integer and λ ∈ {0, . . . , ak − 1} such that
aks(q)k−1 + s(q)k−2 ≤ N . It is clear from Proposition 1 that DN is finite. In order to
compute ϵ((K(N)), we need to understand what are the quantities d(κj+1, κj). For this
we denote by I = {d(κj+1, κj), j = 1, . . . , N − 1}. We use the following Lemma :
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Lemma 3. For j ∈ {0, . . . N − 1}, let DN
j be the set of all d(s, k, λ) ∈ DN such that

χ(j) + (−1)k(λs(q)k+1 + s(q)k) ∈ {0, . . . , N − 1}. (20)

Let d(s, k0, λ0) be the smallest element of DN
j . Then we have χ(j + 1) = χ(j) +

(−1)k0(λ0s(q)k0+1 + s(q)k0) and d(κj+1, κj) = (−1)k0d(s, k0, λ0).

Proof. Let µ = χ(j + 1) − χ(j). We remark that µ > 0 (resp. µ < 0) if and only
if there exists λ such that λ/|µ| is the best positive (resp. negative) approximation of
second kind of η with µ < N − χ(j) (resp. with µ + χ(j + 1) > 0). Actually, if µ > 0,
let λ′/µ′ be the best positive approximation of η with µ′ < N − χ(j). If µ′ ̸= µ then
0 < ηµ′ − λ′ < ηµ− λ. But this means that

χ(j)η mod 1 < (χ(j) + µ′)η mod 1 < χ(j + 1)η mod 1 (21)

with χ(j) + µ′ ∈ {0, . . . , N − 1}. But this is a contracdiction with the definition of χ.
The negative case can be treated in the same manner.

Corollary 1. We let DN = {di} with di < di+1 and denote by DN
≤i0

the set {di, i ≤
i0} ⊂ DN . Let i0 be the smallest index such that DN

≤i0
contains d(s, k1, λ1), d(s, k2, λ2)

and such that:

1. (−1)k1 + (−1)k2 = 0;

2. |(λ1s(q)k1+1 + s(q)k1
) + (λ2s(q)k2+1 + s(q)k2

)| ≤ N

Then we have DN
≤i0
⊃ I.

Proof. For j ∈ {0, . . . , N −1}, we have to prove that χ(j+1)−χ(j) = (−1)k(λs(q)k+1+
s(q)k) for d(s, k, λ) ∈ DN

≤i0
. But the two hypothesis of the Corollary ensure that there

is d(s, k, λ) ∈ DN
≤i0

verifying (20) since χ(j) ∈ {0, . . . , N − 1}. Thus DN
≤i0

contains the
smallest d(s, k, λ) vérifying (20). By applying Lemma 3, we obtain the result.

As the distance between two points of K(N) are elements of I ⊂ DN
≤i0

verifying the
conditions of the previous Corollary, the set K(N) is especially uniformly distributed in
[0, 1[ when there exists such a DN

≤i0
with small cardinality. The following Corollary tells

that, it has the smallest possible cardinality which is 2 when N is a convergent not equal
to s∞ (this last case is covered by Lemma 1).

Corollary 2. Suppose that N = s(q)k for k ≥ 2 and s∞ ̸= s(p)k/s(q)k. Then, DN
≤i0

=
{d(s, k − 2, λ), λ = 0, . . . , ak − 1} and I = {|d(s, k − 2)|, |d(s, k − 2) + d(s, k)|}.

Proof. We apply Corollary 1 with d(s, k1, λ1) = d(s, k − 1, 0) and d(s, k2, λ2) = d(s, k −
2, ak − 1). Using Proposition 1, we have that

∑
i=1,2 λis(q)ki−1 + s(q)ki−2 = s(q)k = N ,

by hypothesis and it is clear that (−1)k1 + (−1)k2 = 0.
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Under the hpothesis of the Corollary it is easy to see that ϵ(K(s(q)k)) = d(s, k−2)+
d(s, k).

Recall that η can be measured easily using the algorithm deduced from Fact 2. Then
it is well known that the s = [a0; a1, . . .] can be obtained with a sequence of Euclidean
divisions as it is explained in Algorithm 4. From the continued fraction representation
of η it is trivial to obtain the set of convergent with the recurrence formulas of Propo-
sition 1. In the same way, in our first experiment of Section 3, we have considered an
OJMD with paremeters (α = 0.5, µ = 0.3376, σ = 10−3). The convergents of 0.6752 are
[1, 1, 3, 37, 40, 117, 507] whence the choice of 117 in our computations.

Algorithm 4: Algorithm to compute the continued fraction representation of ζ.

input :

• ζ ∈ R;

• n a positive integer.

output: s = [a0; a1, . . . , aM ] the M th remainder of the continued fraction
representation of ζ.

1 x← ζ;
2 s← [];
3 for i = 0, . . . ,M do
4 x0 ← ⌊x⌋;
5 r ← x− x0;
6 s← s+ [x0];
7 if r ̸= 0 then
8 x=1/r;
9 else

10 Break;
11 end

12 end
13 return s;

If we get back to the example presented in Section 2 for the oscillator with parameters
(α = 0.5, µ = 0.332, σ = 10−3). If we compute the successive s(q)k for the continued
fraction such that s∞ = 0.664, we obtain [1, 1, 2, 3, 125, . . .] which explains according to
the previous Corollary why the distribution of the {iµ mod 1, i = 1, . . . , N} looks more
uniformly distributed in Figure 4 for N = 125 than for N = 80 and thus the discrepancy
in the result of the measure when we choose N = 80.

5 Embedded implementation of the measure

5.1 Implementation

We have implemented and tested the algorithms of this paper on a FPGA XILINX
ARTIX-7 (28nm HPL technology of TSMC). We have implemented 32 rings oscillator Oi

18



for i = 0, . . . , 31 of different length together with a fixed sampling ring oscillator Oech.
A cell is implemented on the FPGA by a LUT. If the number n of cells is pair (resp.
odd), the ring oscillator is made of n − 1 inverters and one AND (resp. NAND) cell to
cycle the electric signal and enable the ring. We obtain 32 OJMD denoted OJMDi for
i = 0, . . . , 31, where OJMDi is made of the ring Oi of mean period Ti sampled by Oech

for mean period Tech by the way of a type-D flip flop.
Constraints for positioning each element of the ring as well as bounds on time delay

on the rings allow to control the reproducibility of the behaviour of the rings from an
implementation to another. Note that we use a AND (or NAND) gate so that the ring
is disabled when we set the configuration of the FPGA in order to avoid to have several
clock edges per period. A double counter in implemented, one of them counting the
edges of a clock the frequency of which is known and stabilized (for instance by a quartz)
allows to measure the frequency of the rings.

An acquisition module is implemented on the FPGA. It allows to save 262 144 bits
at the output of the each OJMD. These data are uploaded on a computer by the way of
a UART link and saved in a file. We get 100 files for each OJMD. The experiments are
done at ambient temperature and with the nominal voltage for the FPGA. For a complete
characterisation of a oscillator based TRNG furthers experiments would be necessary to
test the behavior each OJMD with respect to parameters which are known to have
influence on its operation (supply voltage, temperature, electromagnetic environment,
aging, technological dispersion).

The algorithms that we have implemented not only output the statistical parameters
(α, µ, σ2) of a OJMD but also curves providing information about the quality of the
measures. Denote by Ti(t) (resp. Tech(t)) the period of Oi (resp. Oech) at time t.
Denote by (bij) the output bit sequence of OJMDi where the bit bij is sampled at time
tj . One can compute a good approximation of Tech(tj0)/Ti(tj0) mod 1 using Fact 2 by
computing 1

2PSj0
{bi ̸= bi+1} with Sj0 = {bij0 , . . . , b

i
j0+L} for L big enough so that one

can compute the empirical probability PSj0
{bi ̸= bi+1} is small enough so that period of

time between bij0 and bij0+L is short.

5.2 Transient phenomena

In Figure 7, we see the evolution of Tech(t)/T0(t) mod 1 when the acquisition of data
begins just when Oech and O0 are enabled. We note that Tech(t)/T0(t) mod 1 gradually
slides down to a stable value. Our interpretation of the transient phenomenon is that
when enabled the ring produce heat which increase the temperature locally on the silicon
and thus modify the signal propagation time. This means that it is important to let some
time passes between when we enable the OJMD and the acquisition time to let it stabilize.
If one does not take this precaution, the variation of Tech(t)/T0(t) mod 1 can distort the
measuring result and increase the estimation of the physical noise.

5.3 Experiments and results

The method of continued fraction of Section 4.2 is used in order to compute a value of N
well suited so that SN,M gives a good approximation of the probability density function
D(M) for each acquisition file (Figure 8 for the OJMD0). We compute V (SN,M ) which
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index nb inv d ro min ns d ro max ns f max mhz f min mhz
ech 15 4,993 14,677 100,14 34,07
0 16 5,377 15,821 92,99 31,6
1 17 5,54 16,344 90,25 30,59
2 18 5,944 17,508 84,12 28,56
3 19 6,336 18,683 78,91 26,76
4 20 6,74 19,847 74,18 25,19
5 21 7,211 21,159 69,34 23,63
6 22 7,591 22,275 65,87 22,45
7 23 7,779 22,958 64,28 21,78
8 24 8,183 24,122 61,1 20,73
9 25 8,346 24,645 59,91 20,29
10 26 8,749 25,808 57,15 19,37
11 27 9,057 26,389 55,21 18,95
12 28 9,541 27,889 52,41 17,93
13 29 9,915 28,981 50,43 17,25
14 30 10,349 30,288 48,31 16,51
15 31 10,632 31,067 47,03 16,09
16 16 5,472 15,913 91,37 31,42
17 17 5,65 16,411 88,5 30,47
18 18 6,083 17,717 82,2 28,22
19 19 6,292 18,322 79,47 27,29
20 20 6,725 19,628 74,35 25,47
21 21 7,1 20,721 70,42 24,13
22 22 7,413 21,672 67,45 23,07
23 23 7,726 22,743 64,72 21,98
24 24 8,129 23,904 61,51 20,92
25 25 8,341 24,471 59,94 20,43
26 26 8,733 25,621 57,25 19,52
27 27 9,227 26,901 54,19 18,59
28 28 9,489 27,921 52,69 17,91
29 29 9,946 29,212 50,27 17,12
30 30 10,349 30,373 48,31 16,46
31 31 10,539 30,997 47,44 16,13

Figure 7: Evolution of Tech(t)/T0(t) mod 1 at startup
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Figure 8: SN,M for OJMD0.

Figure 9: V (SN,M ) as a function of M for a large span of M .

are normalized by 2.N so that they are in the interval [0, 0.5]. The Figure 9 shows
V (SN,M ) as a function of M for a large span of M (from 0 to 1000). We note the
quadratic shape of the curve due to flicker noises whenM is big. This quadratic behavior
is not visible on the simulated ring with only thermal noise.

In order to compute the slope of thermal component of the curve V (SN,M ), we use
a span of accumulation time M where the effect of flicker noise seems to be negligible:
with the condition M ≫ N , we can chose M in the interval [500, 700] with our settings.
The Figure 10 represents the values of V (SN,M ) for M in the span [500, 700]. Only the
squared points correspond to computed values and the lines between these points are
interpolations. We remark that in this span the law of V (SN,M ) is nearly affine. The
Figure 11 gives the centered distribution of the ci forM = 700. The general aspect of the
law is Gaussian as expected and we not see any hint of a folding that we experienced in
the simulations (see Section 3). We have furtherly checked this assumption by computing
successive moments of the law and comparing them with that of a Gaussian law. The
Figure 12 provides with the histogram of the values of σ2 that is the slope of the affine law
V (SN,M ) computed by linear interpolation. We note that the log normal distribution is
Gaussian probably because of the flicker noise. We this dataset we obtain a most values
of Q are around 2.16 10−6.

The Figure 13 gives the histogram of the values of Q the quality factor of a simulated
OJMD. With this data set, we obtain a value of Q of 2.36 10−6 for a Q injected in
simulation of 2.39 10−6.
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Figure 10: V (SN,M ) as a function of M for M ∈ [500, 700].

Figure 11: Distribution of ci for M = 700.

Figure 12: Histrogram of values of Q for simulated dataset.
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Figure 13: Histrogram of values of Q.

Figure 14: Values of Q for different OJMD.

In Figure 14, we see the values of Q for different OJMD. We find as expected that
the value of Q is increasing with the frequency of the sampled oscillator.

The Figure 15 gives the value of Ti and Tech for each OJMD. Some OJMD could not
be characterized because the continued fraction method could not allow us to obtain a
valid value of N .

6 Conclusion

In this paper, we have shown that the jitter measurement method of [] works at the
condition that one choose correctly the two parametersM and N upon which it depends.
Using simulations, we have highlighting the fact that bad choices of N and M produces

Figure 15: Values of Ti and Tech for each OJMD.
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outliers which affect the measure of the σ2 parameter of the phase jitter. We have
presented method that allows to choose correctly M and N which where not explained
in [2] and tested the resulting algorithms with simulations.
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