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 can have dramatic effects on its precision and reliability. In this paper, we propose a recipe for choosing good parameters and present some algorithmic tweaks to improve its robustness. We have extensively tested the new method with simulations and implemented it in hardware to verify its efficiency and practicality.

Introduction

Random numbers generators are essential security component used in every cryptographic hardware implementation for the production of confidential keys, initialization vectors, padding values, challenge for authentication protocols and also as random masks in side-channel attack countermeasures. They are usually composed of two stages: a non deterministic stage, called True Random Number Generator (TRNG) and a deterministic one, called Deterministic Random Number Generator (DRNG). The TRNG serves as an entropy source to guarantee unpredictability of generated numbers against an adversary with an unlimited computational power. The DRNG, which uses TRNG output as a seed, ensures that the output of the random number generator is unpredictable for an attacker with a bounded computational power even if the TRNG partially or temporarily fails according a security model such as the one of [].

1 This paper deals with the TRNG stage of a random number generator. It is still a challenging task to design such a device with a high level of certainty on its security which is measured for cryptographic application by its entropy rate. In order to do so, according to [], it is necessary to go thought a several steps process, the main points of which being:

1. identifying a unpredictable physical phenomenon that can be exploited in the operation of the electronic device and have a statistical model for this phenomenon;

2. design a TRNG using this phenomenon and have a stochastic model of the TRNG depending on parameters and giving the distribution of the output bits of the TRNG;

3. measure the parameters of the random phenomenons and using the stochastic model of the TRNG compute its entropy rate.

As far as we know, there is not much choice for a technological platform for which a simple and reliable implementation of all the steps of the preceding process in known. One known possibility uses the instability of the propagation time of the electric signal across logic gates called time jitter. It can be amplified in a so called ring oscillators which is composed of a sequence of inverters and delay elements connected in ring. A ring oscillator produces, when enabled, a clock signal the phase of which randomly fluctuate causing the so called phase jitter. The phase jitter can be exploited to produce random numbers. An example of simple well known design to do so, called Elementary Ring Oscillator based TRNG (ERO-TRNG) [START_REF] Fischer | Entropy computation for oscillator based trng[END_REF] is composed of two ring oscillators O 1 and O 2 , the signal of O 2 sampling that of O 1 with a type-D flipflop. More complex designs such as MRO-TRNG are described in [START_REF] Fischer | Entropy computation for oscillator based trng[END_REF].

The phase jitter is the result of several physical phenomenons or noises with different statistical properties. The paper [START_REF] Baudet | On the Security of Oscillator-Based Random Number Generators[END_REF] describes a statistical model to compute contribution of the thermal noise to the entropy rate of the TRNG. Since the thermal noise is statistically independent of the other sources of noises, this model, based on a unidimensional Weiner process, is sufficient to compute a lower bound on the entropy rate of a oscillator based TRNG. The statistical parameters of this model are given by the drift λ and volatility σ of a Weiner process [START_REF] Baudet | On the Security of Oscillator-Based Random Number Generators[END_REF]. Measuring the physical quantity related to these parameters is one of the most challenging part of the design of an oscillator based TRNG with a good level of certainty on its security. One difficulty lies in the fact that it is necessary to distinguish the different components of the phase jitter (see [START_REF] Baudet | On the Security of Oscillator-Based Random Number Generators[END_REF] for a more in depth discussion on this subject). A way to distinguish the thermal noise component of the phase jitter is to measure it at high frequency where it is predominant over other noise sources.

The phase jitter can be measured externally, the clock signal being analyzed by an oscilloscope or with the internal method described in [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF], the measure on the analog signal is done inside the chip and only numerical data are processed after this measure. The problem with the external method is that the acquisition chain add a lot of perturbation on the analog signals which make the measure less precise. It is also not practical because one can not use an oscilloscope on the assembly line of the chip. The second method is in theory far more accurate and practical. Still, in most cases, in practise, it does not achieve the goals displayed in [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF] to have a reliable and precise measure, simple enough to be embedded inside a chip (including the computational steps necessary to recover the parameters λ and σ). Actually, the good operation of the method depends on the choice of parameters and good configuration of the oscillators which is non trivial, not always possible and not explained. With a random choice of parameters and configurations in most cases the internal measure will lead to poor estimation of the statistical parameters of the thermal noise component of the phase jitter. This can lead to an overestimation of the entropy rate of the TRNG and thus a security vulnerability. The aim of this paper is to point to and explain the shortcomings of the method [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF] and explain how to tweak it to overcome these problems.

The paper in organized as follows. In Section 2, we briefly recall the method of [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF] in order to set the notations for the rest of the paper and explain in Section 3 the shortcomings of the method. In Section 4, we introduction improvements based an new algorithm to overcome the problems previously described. In Section 5, we present the outcome of our hardware implementation and extensive experiment of the new method to show its reliability. Then, we build upon the previous results to explain how to embed the internal measure method.

2 The internal measure method : summary and shortcomings

In this section, we briefly recall the method of [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF] in order to fix the notations, explain its shortcomings and hint at our improvements. In [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF], the authors show that what they call an elementary oscillator-based TRNG can be seen at the same time, for a different mode of operation, as an efficient measurement device for the phase jitter.

In order to simplify the presentation, we only describe the elementary oscillator-based TRNG in its configuration for measuring the phase jitter and call it an oscillator-based jitter measurement device (OJMD). An OJMD is composed of two oscillators, O i for i = 1, 2. The output clock signal of O 2 is used to determine the sampling times of O 1 . The sampling unit can be a synchronous D flip-flop (see Figure 1). In this case, the sample times correspond to the rising edges of the signal of O 2 .

For i = 1, 2, the output signal of O i is given by a quasi-periodic function s i (t) of time t that takes the form

s i (t) = f αi (ω i (t + ξ i (t))), (1) 
where for α ∈ [0, 1), we define f α as the real valued 1-periodic function such that f α (x) = 1 for all 0 < x < α and f α (x) = 0 for α < x < 1, and f α (0) = f α (α) = 1/2. The parameter α i accounts for the duty cycle of s i (t). Up to replacing f αi by 1 -f αi , we will always suppose in the following that α i ∈ [0, 0.5). For i = 1, 2, ω i is the mean frequency of the signal s i (t), ϕ i (t) = ω i (t + ξ i (t)) is its phase and the function ξ i (t) represents its absolute phase drift caused by the time jitter that we call phase jitter. Similarly, T i = 1/ω i is the mean period of s i (t). Following [START_REF] Baudet | On the Security of Oscillator-Based Random Number Generators[END_REF], for i = 1, 2, we model the evolution of the total phase ϕ i (t) = ω i (t+ξ i (t)) from Eq. ( 1), i.e. the phase of a ring oscillator O i subject to the thermal noise, using a stationary Wiener stochastic process Φ i (t) with drift µ i > 0 and volatility σ 2 i > 0. In other words, for any time t ≥ t 0 , the phase Φ i (t) conditioned by the value Φ i (t 0 ) = ϕ(t 0 ) follows a Gaussian distribution of expected value ϕ i (t 0 )+µ i (t-t 0 ) and variance σ 2 i (t-t 0 ). In [3, Appendix C], it is shown that, under general hypothesis always fulfilled in practise, the output of oscillator O 1 with duty cycle α 1 drift T 1 and volatility σ 2 1 , sampled at time intervals determined by oscillator O 2 with drift T 2 and volatility σ 2 2 produces the same distribution of output bits as that of a stable clock signal (a jitter-free signal) with period duty cycle 0.5 and period T 2 /T 1 sampling an oscillator O ′ 1 with duty cycle α 1 , drift 0 and volatility σ where σ = T2 T1 2 σ 2 2 + σ 2 1 . We call the triple:

(α = α 1 , µ = T 2 /T 1 mod 1, σ 2 = T 2 T 1 2 σ 2 2 + σ 2 1 ) (2) 
the statistical parameters of the OJMD composed of the oscillators O 1 and O 2 . The knowledge of these parameters are enough to reproduce the distribution of the output bits b = (b j ) j=1,...,n at sampling times (t j ) j=1,...,n of the OJMD. Actually, the internal state of a OJMD with parameters (α, µ, σ 2 ) can be represented by a phase ϕ(t) depending on t. The output at time t of the OJMD knowing the phase according to (1) is f α (ϕ(t)).

As said before, the evolution of ϕ(t) is given by a Wiener process Φ(t) over the interval [0, 1] with drift µ and volatility σ 2 . So, from the knowledge of ϕ(t 0 ) at time t 0 , at time t > t 0 , the phase at t is drawn at random following the Gaussian distribution with expected value µ and standard deviation σ. The Algorithm 1 uses this in order to produce a series of bits following the distribution of a OJMD with given parameters (α, µ, σ 2 ).

In [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF], the authors describe a method, which we briefly recall, to measure the statistical parameters (α, µ, σ 2 ) of a OJMD from the knowledge of a sample of its output bits. For n ∈ N * , let b = (b j ) j∈{1,...,n} be the output bits sequence corresponding to the sampling of O 1 at times (t j = t 0 + jµ) j∈{1,...,n} given by the rising edges of O 2 as depicted in Fig. 1. For any S ⊂ {1, . . . , n}, we define

P S {b j ̸ = b j+M } = #{j ∈ S|b j ̸ = b j+M } #S .
The method of [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF] is based on three facts that we state without recalling all the conditions upon which they rely for the sake of simplicity and because in the following we are going to discuss these conditions. Let N ∈ N and for i ∈ {1, . . . , n -N + 1}, we set S i = {i, . . . , i + N -1}.

Algorithm 1: Algorithm to simulate a OJMD subject only to the thermal noise input :

• (α, µ, σ 2 ) the statistical parameters of the OJMD;

• n a number of output bits;

• (t j ) j=1,...,n sampling times.

output: (b j ) j=1,...,n output bits. 

1 ϕ = 0.5 /* Comment Initial relative phase */ 2 t 0 ← t 1 -1; 3 for i = 1 to n do 4 Draw a random x following the distribution G(µ(t i -t i-1 ), σ 2 (t i -t i-1 )) ; 5 ϕ ← (ϕ + x) mod 1; 6 if ϕ < α then 7 b i ← 1;
D(M )(x)dx = P{(Φ(t 0 + M µ) ≤ x|Φ(t 0 )) = x 0 ∈ [a, b]} where Φ(t)
is the Wieiner process governing the evolution of the phase ϕ(t) of the OJMD with statistical parameters (α, µ, σ 2 ).

Using Fact 1, one can recover σ 2 by computing the empirical variance V (S N,M ) of S N,M with any variance estimator such as:

V (S N,M ) = 1 K K i=1 c 2 i -( 1 K K i=1 c 2 i ).
We remark that, if we make the hypothesis that O 1 and O 2 are only subject to the thermal noise component of the phase jitter, V (S N,1 ) = σ 2 and that V (S N,M ) = M V (S N,1 ), so that in order to improve the measure of σ 2 , one can compute a sample of V (S N,M ) for different values of M and recover σ 2 = V (S N,1 ) as the slope of the line obtained as the linear regression of the samples. If M is small enough, the thermal noise will be preponderant over other noise sources so that the behaviour of V (S N,M ) as a function of M will be linear that the slope of V (S N,M ) gives σ 2 . Fact 2. [2, Fact 2] Under certain hypothesis, we have for any S ⊂ S

1 2 P S {b i ̸ = b i+1 } = T 2 /T 1 mod 1 if T 2 /T 1 < 0.5 1 -T 2 /T 1 mod 1 otherwise. (3) 
Fact 2 immediately gives a way to recover µ = T 2 /T 1 mod 1.

Fact 3. [2, Fact 1] Under certain hypothesis, we can obtain the duty cicle of the oscillator O 1 of the OJMD as:

α = n i=1 b i n . (4) 
It is clear that together Fact 1, Fact 2 and Fact 3, in principle, allow to recover the statistical parameters (α, µ, σ 2 ) of the OJMD. Nonetheless, as stated, these facts depend on hypothesis that are not always easy to fullfil and control. We are going to see in the next section that if these conditions are not verified, the precision of the measures may be greatly affected resulting in some cases in absurd outcomes.

Shortcomings of the method

We first treat the case of Fact 3, which is the easiest. Recall that (t j ) j=1,...,n are the sampling times corresponding to the rising edges of the signal produced by O 2 . Then Fact 3 is true as long as (t i mod T 1 ) follows a uniform distribution in [0, T 1 ]. This property is guarantied over a long period of time by the jitter phenomenon even if we suppose it to be very small. By the central limit theorem, the precision of the measure is in the order of 10 log 10 (n)/2 with high probability.

As for Fact 2, it is true as long as (t i mod T 1 ) follows a uniform distribution in [0, T 1 ]. Again, the precision of the measure is, with high probability, in the order of 10 log 10 (n)/2 .

The analysis of Fact 1 is much more delicate than the other facts in part because it depends on the choices of the parameters N and M which may affect its outcome. In order to assess its precision and the conditions upon which it works, we have made simulations using Algorithm 1 to produce series of bits (b j ) j∈{1,...,n} by a simulated OJMD with well chosen statistical parameters (α, µ, σ 2 ) for the thermal noise and used Fact 1 to recover σ 2 with different choices of N, M .

A first observation is that the line obtained as the linear regression of the samples V (S N,M ) does not pass through the origin as it should in theory: its equation is of the form σ 2 x + b = 0 where in general b in non-zero. Using simulation it is easily seen that this is due to the quantization error when approximating ϕ(t 0 + (M + i)µ) -ϕ(t 0 + iµ) by c i . This means in particular that one has to compute V (S N,M ) for at least two values of M to be able to recover σ 2 .

In a first experiment, we have used Algorithm 1 with parameters (α = 0.5, µ = 0.3376, σ 2 = 10 -6 ). We have computed the samples (S 117,M ) for M = (300 + 5j) j=0,...,49 and plotted in Figure 2 the variance of these samples together with the line L σ 2 with slope 10 -6 = σ 2 that we should recover. We see that although most points V (S 117,M ) fit correctly with L σ 2 , there are a lot of outliers. For instance, although V (S 117,540 ) is very close to L σ 2 , V (S 117,545 ) is widely apart. If we look in Figure 3 at the cumulative distribution function of S 117,540 , we see that it is well approximating the cumulative distribution function of a Gaussian distribution as it should be for a Weiner process. This is not the case of the cumulative distribution function of S 117,545 on the right hand of Figure 3 where we note that the left tail of the expected Gaussian distribution is flattened.

How can we explain that ? In fact, if we have a closer look at the statement of [2, Fact 1], we see that the c i are not drawn following the probability density function D(M )(x) but rather that of ψ α (D(M )) where ψ α is the function defined as:

ψ α (x) = 2x if 0 ≤ x ≤ α, ψ α (x) = 2α if α ≤ x ≤ 1 -α, ψ α (x) = 2 -2x if 1 -α ≤ x ≤ 1.
(5) Using this we can explain the shape of the distributions obtained in Figure 3. In the left hand figure, the Gaussian distribution is contained in the interval [0, α] so that it is just stretched by a factor 2 by the function ϕ α . In the right hand figure, the expected value of the Gaussian distribution is in 0 so that it is folded by ψ α . This explains why, in the second case, the computation of the variance of the distribution is far lower than the expected one thus the corresponding abnormal point in the Figure 2. This problem occurs whenever the ϵ-support of the probability density function D(M ) intersects the set {0, α}. By ϵ-support, we mean the smallest interval I centered around the expected value of D(M ) such that I D(M ) ≥ 1 -ϵ for a small ϵ > 0. But the mean value of D(M ) in [0, 1] is given by M T 2 mod T 1 so that it is fixed by the parameter M . Thus we see that whether the empirical distribution of S N,M is a good approximation of D(M ) depends of a choice of M that is not explained in [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF]. We made a second experiment to illustrate the sensitivity of the method of [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF] with the N parameter of Fact 1. We have generated a bit sequence using Algorithm 1 with parameters (α = 0.5, µ = 0.332, σ 2 = 10 -6 ). We have computed the samples (S 80,M ) and (S 125,M ) for M = (300 + 5j) j=0,...,49 and plotted in Figure 5 the variance of these samples together with the line L σ 2 with slope 10 -6 = σ 2 that we should recover.

We see that V (S 125,M ) fits correctly with the expected L σ 2 but that V (S 80,M ) does not even looks like an affine law. The problem here is that Fact 1, rely on the hypothesis that the distribution of {iµ mod 1, i = 1, . . . , N } is ϵ-uniform for a small positive ϵ. This means that the number of samples of {iµ mod 1, i = 1, . . . , N } in the interval [a, b] over N is close (up to a small ϵ) to the expected one if the distribution of the {ξµ mod 1, i = 1, . . . , N } was uniform in the interval [0, 1] that is the size of the interval [a, b].

We see in Figure 4 that the distribution of {iµ mod 1, i = 1, . . . , N } is uniform in [0, 1] (represented by a circle in the figure) if N = 80 but this is not the case if N = 40. This time we see that whether the empirical distribution of S N,M is a good approximation of D(M ) also depends in a crucial manner on the choice of N .

Improvements

In the previous section, we have described cases when the distribution of S N,M that we can compute is not a good approximation of that of D(M ) that we want to recover. A first problem affects the choice of M and the second that of N so that if one does not take care when choosing the parameters of the method of [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF], the outcome may be very far from the result that we look for. In this section, we explain how to tweak the jitter measurement method of [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF] to overcome these defects and so to improve its precision and reliability.

Outlier detection and mitigation

We have seen that the distribution of the S N,M that we compute does not follow the probability density function D(M ) but rather that of ψ α (D(M )) where ψ α is defined by [START_REF] Lubicz | Towards an Oscillator Based TRNG with a Certified Entropy Rate[END_REF].

In the case that the ϵ-support of the distribution D(M ) intersects {0, α} the distribution of the S N,M will not be, in general, a good approximation of D(M ) up to a linear factor. In order to avoid this, one can filter out bad values of M so that the ϵ-support of S N,M does not meet {0, α}. We suppose that σ is very small compared to 1 which is the case in most of the measures that we have done on a wide range of different technologies.

A first idea to filter out bad values of M is to choose M so that

√ σ 2 M < ϵ 0 (6) |E(D(M )) -α/2| < ϵ 0 , (7) 
for ϵ 0 > 0 much smaller than α (for instance take ϵ 0 = α/4). Actually, if the variance of D(M ) is small and its expected value is far from {0, α} then the probability that the ϵ-support of D(M ) gets across {0, α} is small. We remark that, as one can evaluate T 2 /T 1 mod 1 and α using respectively Facts 2 and 3, it is possible to recover |E(D(M ))-α/2| as [M T 2 /T 1 mod 1-α/2| and so choosing a M verifying the second condition. Nonetheless, as don't know σ 2 because this is exactly what we want to measure, it is difficult to verify that the first condition is fulfilled. So the method works only if one knows an order of magnitude of σ 2 and take margins. The problem is then that we are going to discard a lot of values of M suitable for the computation of σ 2 . By being to much selective on M we take the risk to eliminate all possible values or diminish drastically the number of points used to compute a linear regression and so lose precision. We would like to be able to asses if the distribution S N,M actually gets across {0, α} without an a priori knowledge of σ 2 .

In order to explain how to do it, we suppose to simplify the explanation that S N,M gets across 0 (the case of α is similar). Let c i = 1 2 P Si {b j ̸ = b j+M } for i ∈ {1, . . . , n-N -M +1} and we recall that S i = {i, . . . , i + N -1}. Let δ(M, t) = ϕ(t + M µ) -ϕ(t). As the phase jitter per period is small, we have:

|δ(M, t 0 + iµ) -δ(M, t 0 + (i -1)µ)| < ϵ 1 , (8) 
for a small ϵ 1 (of the order of √ σ 2 T 2 ). Moreover, if the conditions of Fact 1 are fullfiled, there exists a small ϵ 2 (M ) > 0 such that for all i ∈ {1, . . . , n -

N -M }, |x -δ(M, t 0 + iµ)| < ϵ 2 (M ), (9) 
for x ∈ {c i , 1 -c i }. When c i is far from 0, c i and 1 -c i are far apart from each other so that it is easy to decide which one is the correct approximation of δ(M, t 0 + iµ) by induction on i: for c 0 we can choose at random any of c 0 and 1 -c 0 , this will act by -1 on the computed distribution of the δ(M, t 0 + iµ) for i = 1, . . . , N without affecting its variance. Then suppose that we have chosen a good approximation y ∈ {c i-1 , 1-c i-1 } of δ(M, t 0 + (i -1)µ) then by equations ( 8) and (9),

x ∈ {c i , 1 -c i } is a good approximation of δ(M, t 0 + iµ) if it verities |x -y| < ϵ 1 + 2ϵ 2 (M ).
But when c i is near to 0, we don't have a criterion to decide which of c i or 1 -c i is the good approximation of δ(M, t 0 + iµ) so we can not use the value of c i to detect if δ(M, t 0 + iµ) crosses 0 for different values of i. In order to improve that, using the fact that, in practise, the jitter by period √ σ 2 T 2 is small, for λ = ±1, we have for all t 0 :

|ϕ(t 0 + M µ) -(ϕ(t 0 + (M -λ)µ) + λµ)| < ϵ 1 for a small ϵ 1 of the order of √ σ 2 T . This means that: |δ(M, t 0 + iµ) -(δ(M -λ, t 0 + iµ) + λµ)| < ϵ 1 . (10) 
Based on this remark, keeping the definition for ϵ 1 , ϵ 2 (M ) from above, we have the following fact:

Fact 4. Let λ = ±1 be an integer, let c i = 1 2 P Si {b j ̸ = b j+M } and c ′ i = 1 2 P Si {b j ̸ = b j+M -λ }. Set ϵ = ϵ 1 + 2max(ϵ 2 (M ), ϵ 2 (M ± λ)). If we have |λµ mod 1| > ϵ, |λµ - 1 -2c i 2 mod 1| > ϵ, (11) 
there is a unique pair (x, y) where x ∈ {c i , 1 -c i } and y ∈ {c Proof. The existence of the pair (x, y) is an immediate consequence of the triangular inequality and the fact that for a

′ i + λµ, 1 -c ′ i + λµ} such that |x -y| < ϵ.
x ∈ {c ′ i , 1 -c ′ i }, |x -δ(M -λ, t 0 + iµ)| < ϵ 2 , for a y ∈ {c i , 1-c i }, |y-δ(M, t 0 +iµ)| < ϵ 2 and moreover that |δ(M, t 0 +iµ)-δ(M -λ, t 0 +iµ)+λη mod 1| < ϵ 1 .
For the unicity, suppose that

|c ′ i -c i + λµ| < ϵ. If |1 -c ′ i -c i + λµ mod 1| < ϵ then |λµ -1-2ci 2 mod 1| < ϵ. If |1 -c ′ i -1 -c i + λµ| < ϵ, then |λµ -0 mod 1| < ϵ. The case, |c ′ i -1 -c i + λµ| < ϵ is similar.
In order to use the preceding Fact, we remark that we can obtain a good approximation of µ using Fact 2 and then use it to check if the conditions (11) are fulfilled (in practise, one can take safely ϵ = 1/10). Then Fact 4 allows to lift the ambiguity about which of c i and 1 -c i is a good approximation of δ(M, t 0 + iµ) except in the rare cases when conditions (11) are not fulfilled. In this case, one can redo the computations with λ = -1. This gives a way to detect when c i gets across 0.

We can use it either to detect when a c i is likely to be an outlier and discard it as in Algorithm 3. It is also possible to compute c i taking into account of the fact that it has crossed 0 or α as in Algorithm 4. Note that in this last algorithm the distribution of c[i] that we compute can get across 0 or α but the P S (b j ̸ = b j+M ) is always in [0, 1] so that we have to glue them together using the integer offset that is updated by plus or minus 1 when the c[i] goes through 0 or 1.

We have tested the two algorithms with the Wiener process W (α = 0.5, µ = 0.3376, σ = 10 -6 ) and we have computed the samples (S 117,M ) for M = (300 + 5j) j=0,...49 exactly as for Figure 2. We remark in Figure 6 (left) that the new method allows to detect and remove all the outlier. When we use it to glue the distribution of c i together we still have some outlier but far less than with the old method as it is shown in Figure 6 (right). These outlier are due to the fact that it may happen very rarely that δ(M, t 0 + iµ) and δ(M -λ, t 0 + iµ) are far enough so that we are wrong when using it to decide whether to choose c i or 1 -c i .

Continued fractions and ϵ-uniformity

In this section, we consider that the interval [0, 1[ is a circle by identifying 0 and 1. We say that T ⊂ [0, 1[ is an interval if ∪ t∈Z (T + t) is an interval of R. • η = T 1 /T 2 mod 1, λ a small integer;

• M and N integers.

output: Fail or c[i] which have the same distribution as D(M ).

1 i ← 0; 2 for i in range(n -M -N ) do 3 S i ← [i + 1, . . . , i + N ]; 4 c = P Si (b j ̸ = b j+M ); 5 c ′ = P Si (b j ̸ = b j+M -λ ) + ηλ; 6 C = [c, 1 -c]; 7 C ′ = [c ′ , 1 -c ′ ]; 8 Let (k, l) such that |C[k] -C ′ [l]| = min{|x -y|, x ∈ C, y ∈ C ′ }; 9 c[i] = C[k]; 10 end 11 return c[i];
We have seen in Section 2 that the outcome of Fact 1 can be affected by the choice of N . In order to have a better understanding of the relation between N and the precision of the computation of σ 2 by Fact 1, we recall some definitions and statements from [START_REF] Baudet | On the Security of Oscillator-Based Random Number Generators[END_REF]. 

| ♯K ∩ [a, b] ♯K -(b -a)| ≤ ϵ. (12) 
In the following, for any K finite subset of [0, 1[, we denote by ϵ(K) the minimum of the set L = {ϵ > 0|K is ϵ-uniform} (such a minimum exists since L is closed and bounded from below by 0). For any i positive integer, we let

κ(i) = ϕ(t 0 + (i + M )µ) -ϕ(t 0 + iµ) mod 1 ∈ [0, 1[. We set S i = {i, . . . , i + N -1} for i = 1, . . . , n -N + 1 and for i = 1, . . . , n -N -M + 1, let K i = {κ(j), j ∈ S i }, E Si (κ) = 1 N j∈Si κ(j).
If we have a closer look at the statement of [3, Fact 1], we see that:

| 1 2 P Si {b j ̸ = b j+M } -min(E Si (κ), 1 -E Si (κ)| < ϵ(K i ).
In other words, the points that we compute in order to recover the distribution D(M ) are approximation up to ϵ(K i ) of the real points E Si (κ(i)) or 1 -E Si (κ(i)). We would like to choose N in order to obtain the smallest possible ϵ(K i ). A first question is: when K run through the set of finite subsets of cardinality N of [0, 1[, what is the span of ϵ(K) and for what configuration of K ϵ(K) is the smallest possible. This question is answered • η = T 1 /T 2 mod 1, λ a small integer;

• K, M and N integers.

output: c[i] which have the same distribution as D(M ). by the following lemma which explains that ϵ(K) is optimal when the points of K are uniformly distributed in [0, 1[. We state also the basic invariance of ϵ(K) with respect to translations.

1 for i = 0, . . . , K do 2 offset ← 0; 3 S i ← [N i + 1, . . . , N i + N ];
Lemma 1. Let K(N ) by a finite subset of [0, 1[ of cardinality N , we have:

• ϵ(K(N )) = ϵ(K(N ) + t) for any t ∈ R (invariance of ϵ(K(N )) by translation by t), ϵ(K(N )) < 1;

• if there exists ζ > 0 and 

I an interval of [0, 1[ such that d(I) = ζ, I ∩ K(N ) = ∅ then ϵ(K(N )) ≥ ζ; • ϵ({i/N mod 1, i = 0, . . . , N -1}) = 1/N . If K(N ) has cardinality N then ϵ(K(N )) ∈ [1/N,
Using Equations ( 13) and ( 14), we obtain that ϵ(K) ≤ 1/N . If K has cardinality N then min({d(x, y), x, y ∈ K} ≥ 1/N so that ϵ(K) ≥ 1/N whence the last claim.

As N is small, considering that the phase jitter is small during N T 2 , we can suppose that ϕ(iη) = iη mod 1. So we have to study the ϵ-uniformity of the set K(N ) = {iη mod 1, i = 0, . . . , N -1}. A basic remark is that if η is a rational, write it as P/N an irreducible fraction then K(N ) = {i/N, i = 0, . . . , N -1} and we have seen in Lemma 1 that ϵ(K(N )) = 1/N and is minimal among all finite subsets of [0, 1[ of cardinality N . However in our application, for typical values, η will be a real number known up to precision say 10 -3 using for instance Fact 2 to compute η with a sample of 10 6 bits. So that η is of the from P/N with N of the order to 10 3 and we would like to choose N of the order to 10 2 so that N is small enough to comply with the hypothesis that the jitter during N T 2 is small. So we can not apply the preceding naive approach. But it seems reasonable to think that ϵ(K(N )) will be the smallest when we choose N so that there exists a good rational approximation P/N of η. These good approximations are given by the theory of continued fractions (first introduced in [START_REF] Lubicz | Towards an Oscillator Based TRNG with a Certified Entropy Rate[END_REF] in the context of jitter measurement of oscillator based TRNG). We briefly recall the classical results and notations that we use in the following and refer the reader to [START_REF] Ya | Continued fractions[END_REF] for a more in-depth introduction to continued fractions.

Let x be a real number, we denote by [a 0 , a 1 , . . .] where a 0 , a 1 , . . . are positive integers, the (possibly infinite) continued fraction representation of x that is:

x = a 0 + 1 a 1 + 1 a2+... . ( 15 
)
If s = [a 0 ; a 1 , . . .] is a continued fraction and k a positive integer, we denote by s k = [a 0 ; a 1 , . . . , a k ] its k th segment of by s(p) k s(q) k its k th convergent. In other words, s(p) k s(q) k is the unique irreducible fraction representing [a 0 ; a 1 , . . . , a k ]. Let s ∞ be the real number represented by s. Denote by d(s, k) = s(q) k s ∞ -s(p) k and more generally by d(s, k, λ) = λd(s, k + 1) + d(s, k) for any λ ∈ {0, . . . , a k+2 } positive integer. We say, following [START_REF] Ya | Continued fractions[END_REF], that a/b a fraction with b > 0 is a best approximation of second kind of a real number α if for all λ/µ fraction such that λ/µ ̸ = a/b and 0 < µ < b, we have |bα -a| < |µα -λ|.

We have gathered in the following proposition the main results of the theory of continued fraction that we use:

Proposition 1 ([6]
). We have:

1. [START_REF] Ya | Continued fractions[END_REF][Theorem 4] for all k positive integer, (-1) k d(s, k) > 0 and the sequence

(-1) k (d(s, k)) k∈N is decreasing; 2. [6][Theorem 1]we have the relations s(p) k = a k s(p) k-1 +s(p) k-2 , s(q) k = a k s(q) k-1 + s(q) k-2
for all k ≥ 2;

3. [START_REF] Ya | Continued fractions[END_REF][Theorem 16] an irreducible fraction λ/µ is a best approximation of second kind of s ∞ if and only if λ/µ = s(p) k /s(q) k for a certain k.

It is clear that d(s, k, 0) = d(s, k) and by Proposition 1[2.], we have

d(s, k, a k+2 ) = d(s, k + 2). (16) 
We need a slight generalisation of the definition of approxiamtion of second kind:

Definition 1. We say that a fraction a/b, b > 0 is a best positive (resp. negative) approximation of second kind of a real number α if for all λ/µ such that µ > 0, λ/µ ̸ = a/b, 0 < µ < b, we have 0 < bα -a < µα -λ (resp. bα -a > µα -λ > 0).

With this definition, we can state the following lemma which will be useful:

Lemma 2. Let s = [a 0 ; a 1 , . . .] be the continued fraction representation of s ∞ . We have:

• For all k, λ positive integer such that λ ∈ {0, . . . , a k+2 -1}, (-1) k d(s, k, λ) > 0;

• The fraction λ/µ, µ > 0 is a best positive (resp. negative) approxmation of second kind of s ∞ if and only if λ = λ 0 s(p) k+1 + s(p) k and µ = λ 0 s(q) k+1 + s(q) k for λ 0 ∈ {0, . . . , a k+2 } and k even (resp. odd).

Proof. For the first claim, it is true for λ = 0 by Proposition 1 since d(s, k, 0) = d(s, k) by definition. Next, we suppose in order to simplify the notations that k is even and leave the odd case to the reader. Suppose that for a λ ∈ {0, . . . , a k+2 -1}, we have d(s, k, λ) < 0. Let λ 0 be the smalest positive integer realizing this condition. Then 0 ∈]d(s, k, λ 0 + 1), d(s, k, λ 0 )[ and we have d(s, k, λ 0 + 1) -d(s, k, λ 0 ) = d(s, k + 1) < 0 by definition. This means that |d(s, k, λ 0 )| < |d(s, k + 1)| and s(q) k + λ 0 s(q) k+1 < s(q) k+2 . But this contradicts Proposition 1 saying the only the convergeants are best approximation of second kind. We prove the second claim, by induction on k. We suppose it to be true for all k ∈ {0, . . . , k 0 -1}, the case k 0 = 0 being trivial since s(q) 0 = 1. We do the induction in the case that k 0 is even the odd case being similar.

So we have to prove that for λ 0 ∈ {0, . . . , a k0+2 -1}, P (λ 0 )/Q(λ 0 ) for P (λ 0 ) = λ 0 s(p) k0+1 + s(p) k0 and Q(λ 0 ) = λ 0 s(q) k0+1 + s(q) k0 is a best positive approximation of second kind and that any best positive approximation of second kind is of this form.

We do an induction on λ 0 . For λ 0 = 0, the result is an immediate consequence of Proposition 1, because Q(0)s ∞ -P (0) > 0 and P (0)/Q(0) is a best approximaiton of second kind. We make the inductive hypothesis that for λ 0 < a k0+2 -1, P (λ 0 )/Q(λ 0 ) is a best positive approximation of second kind and we want to prove that P (λ 0 +1)/Q(λ 0 +1) is the only next one. We suppose the contrary and let λ/µ, µ > 0 be a rational such that

Q(λ 0 )s ∞ -P (λ 0 ) > µs ∞ -λ > 0, Q(λ 0 ) < µ < Q(λ 0 + 1). ( 17 
)
Set λ 1 = λ -P (λ 0 ) and µ 1 = µ -Q(λ 0 ). Then by Equation ( 17) and using the fact that

d(s, k 0 ) > Q(λ 0 )s ∞ -P (λ 0 ) (because d(s, k 0 + 1) < 0), we have: 0 > µ 1 s ∞ - λ 1 > -s(d, k 0 ). Moreover, because of Equation (17), we have µ 1 < s(q) k0+1 so that by Proposition 1, 0 > s(d, k 0 + 1) > µ 1 s ∞ -λ 1 .
We can gather all the provious in the inequalities:

0 > s(d, k 0 + 1) > µ 1 s ∞ -λ 1 > -s(d, k 0 ). (18) 
But, by the induction hypothesis for k 0 -1, we know that if λ 2 /µ 2 is a best negative approximation of second kind of s ∞ with µ 2 the biggest such that 0 < µ 2 < s(q) k0+1 , then µ 2 s ∞ -λ 2 = d(s, k 0 -1, a k0+1 -1) = d(s, k 0 + 1) -d(s, k 0 ) because of Equation ( 16). Comparing with Equation (18), we obtain:

0 > µ 1 s ∞ -λ 1 > µ 2 s ∞ -λ 2 . (19) 
Recall that µ 1 < s(q) k0+1 , the Inequality (19) contractids the hypothesis that λ 2 /µ 2 is a best negative approximation of second kind of s ∞ with µ 2 the biggest such that µ 2 < s(q) k0+1 . We deduce that λ/µ verifying Equation (17) does not exists and so that P (λ 0 + 1)/Q(λ 0 + 1) is the only next best positive approximation of second kind of s ∞ after P (λ 0 )/Q(λ 0 ). Let η ∈ R and s = [a 0 ; a 1 , . . .] be its continued fraction representation so that s ∞ = η. Let N be a positive integer and i ∈ {0, N -1}. We consider the finite set K(N ) = {iη mod 1, i = 0, . . . , N -1} ⊂ [0, 1[. We suppose that the cardinal of K(N ) is N and we rank the elements of K(N ) by writing K(N ) = {κ j , j = 1, . . . , N -1} such that κ j ≤ κ j+1 for j = 0, . . . , N -2. Let χ be the permutation of {0, . . . , N -1} such that κ j = χ(j)η mod 1. Let s = [a 0 ; a 1 , . . .] be the continued fraction representation of s ∞ = η. Denote by D N the set of all d(s, k, λ), for k a positive integer and λ ∈ {0, . . . , a k -1} such that a k s(q) k-1 + s(q) k-2 ≤ N . It is clear from Proposition 1 that D N is finite. In order to compute ϵ((K(N )), we need to understand what are the quantities d(κ j+1 , κ j ). For this we denote by I = {d(κ j+1 , κ j ), j = 1, . . . , N -1}. We use the following Lemma : Lemma 3. For j ∈ {0, . . . N -1}, let D N j be the set of all d(s, k, λ) ∈ D N such that χ(j) + (-1) k (λs(q) k+1 + s(q) k ) ∈ {0, . . . , N -1}.

(20) Let d(s, k 0 , λ 0 ) be the smallest element of D N j . Then we have χ(j + 1) = χ(j) + (-1) k0 (λ 0 s(q) k0+1 + s(q) k0 ) and d(κ j+1 , κ j ) = (-1) k0 d(s, k 0 , λ 0 ).

Proof. Let µ = χ(j + 1) -χ(j). We remark that µ > 0 (resp. µ < 0) if and only if there exists λ such that λ/|µ| is the best positive (resp. negative) approximation of second kind of η with µ < N -χ(j) (resp. with µ + χ(j + 1) > 0). Actually, if µ > 0, let λ ′ /µ ′ be the best positive approximation of η with µ ′ < N -χ(j). If µ ′ ̸ = µ then 0 < ηµ ′ -λ ′ < ηµ -λ. But this means that χ(j)η mod 1 < (χ(j) + µ ′ )η mod 1 < χ(j + 1)η mod 1 (21) with χ(j) + µ ′ ∈ {0, . . . , N -1}. But this is a contracdiction with the definition of χ.

The negative case can be treated in the same manner.

Corollary 1. We let D N = {d i } with d i < d i+1 and denote by D N ≤i0 the set {d i , i ≤ i 0 } ⊂ D N . Let i 0 be the smallest index such that D N ≤i0 contains d(s, k 1 , λ 1 ), d(s, k 2 , λ 2 ) and such that:

1. (-1) k1 + (-1) k2 = 0; 2. |(λ 1 s(q) k1+1 + s(q) k1 ) + (λ 2 s(q) k2+1 + s(q) k2 )| ≤ N Then we have D N ≤i0 ⊃ I.

Proof. For j ∈ {0, . . . , N -1}, we have to prove that χ(j + 1) -χ(j) = (-1) k (λs(q) k+1 + s(q) k ) for d(s, k, λ) ∈ D N ≤i0 . But the two hypothesis of the Corollary ensure that there is d(s, k, λ) ∈ D N ≤i0 verifying (20) since χ(j) ∈ {0, . . . , N -1}. Thus D N ≤i0 contains the smallest d(s, k, λ) vérifying (20). By applying Lemma 3, we obtain the result.

As the distance between two points of K(N ) are elements of I ⊂ D N ≤i0 verifying the conditions of the previous Corollary, the set K(N ) is especially uniformly distributed in [0, 1[ when there exists such a D N ≤i0 with small cardinality. The following Corollary tells that, it has the smallest possible cardinality which is 2 when N is a convergent not equal to s ∞ (this last case is covered by Lemma 1).

Corollary 2. Suppose that N = s(q) k for k ≥ 2 and s ∞ ̸ = s(p) k /s(q) k . Then, D N ≤i0 = {d(s, k -2, λ), λ = 0, . . . , a k -1} and I = {|d(s, k -2)|, |d(s, k -2) + d(s, k)|}.
Proof. We apply Corollary 1 with d(s, k 1 , λ 1 ) = d(s, k -1, 0) and d(s, k 2 , λ 2 ) = d(s, k -2, a k -1). Using Proposition 1, we have that i=1,2 λ i s(q) ki-1 + s(q) ki-2 = s(q) k = N , by hypothesis and it is clear that (-1) k1 + (-1) k2 = 0.

Under the hpothesis of the Corollary it is easy to see that ϵ(K(s(q) k )) = d(s, k -2) + d(s, k).

Recall that η can be measured easily using the algorithm deduced from Fact 2. Then it is well known that the s = [a 0 ; a 1 , . . .] can be obtained with a sequence of Euclidean divisions as it is explained in Algorithm 4. From the continued fraction representation of η it is trivial to obtain the set of convergent with the recurrence formulas of Proposition 1. In the same way, in our first experiment of Section 3, we have considered an OJMD with paremeters (α = 0.5, µ = 0.3376, σ = 10 -3 ). The convergents of 0.6752 are [START_REF] Schindler | Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications[END_REF][START_REF] Schindler | Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications[END_REF][START_REF] Baudet | On the Security of Oscillator-Based Random Number Generators[END_REF]37,40,117,507] whence the choice of 117 in our computations. input :

• ζ ∈ R;
• n a positive integer.

output: s = [a 0 ; a 1 , . . . , a M ] the M th remainder of the continued fraction representation of ζ. If we get back to the example presented in Section 2 for the oscillator with parameters (α = 0.5, µ = 0.332, σ = 10 -3 ). If we compute the successive s(q) k for the continued fraction such that s ∞ = 0.664, we obtain [1, 1, 2, 3, 125, . . .] which explains according to the previous Corollary why the distribution of the {iµ mod 1, i = 1, . . . , N } looks more uniformly distributed in Figure 4 for N = 125 than for N = 80 and thus the discrepancy in the result of the measure when we choose N = 80.

5 Embedded implementation of the measure

Implementation

We have implemented and tested the algorithms of this paper on a FPGA XILINX ARTIX-7 (28nm HPL technology of TSMC). We have implemented 32 rings oscillator O i for i = 0, . . . , 31 of different length together with a fixed sampling ring oscillator O ech . A cell is implemented on the FPGA by a LUT. If the number n of cells is pair (resp. odd), the ring oscillator is made of n -1 inverters and one AND (resp. NAND) cell to cycle the electric signal and enable the ring. We obtain 32 OJMD denoted OJMD i for i = 0, . . . , 31, where OJMD i is made of the ring O i of mean period T i sampled by O ech for mean period T ech by the way of a type-D flip flop.

Constraints for positioning each element of the ring as well as bounds on time delay on the rings allow to control the reproducibility of the behaviour of the rings from an implementation to another. Note that we use a AND (or NAND) gate so that the ring is disabled when we set the configuration of the FPGA in order to avoid to have several clock edges per period. A double counter in implemented, one of them counting the edges of a clock the frequency of which is known and stabilized (for instance by a quartz) allows to measure the frequency of the rings.

An acquisition module is implemented on the FPGA. It allows to save 262 144 bits at the output of the each OJMD. These data are uploaded on a computer by the way of a UART link and saved in a file. We get 100 files for each OJMD. The experiments are done at ambient temperature and with the nominal voltage for the FPGA. For a complete characterisation of a oscillator based TRNG furthers experiments would be necessary to test the behavior each OJMD with respect to parameters which are known to have influence on its operation (supply voltage, temperature, electromagnetic environment, aging, technological dispersion).

The algorithms that we have implemented not only output the statistical parameters (α, µ, σ 2 ) of a OJMD but also curves providing information about the quality of the measures. Denote by T i (t) (resp. T ech (t)) the period of O i (resp. O ech ) at time t. Denote by (b i j ) the output bit sequence of OJMD i where the bit b i j is sampled at time t j . One can compute a good approximation of T ech (t j0 )/T i (t j0 ) mod 1 using Fact 2 by computing 1 2 P Sj 0 {b i ̸ = b i+1 } with S j0 = {b i j0 , . . . , b i j0+L } for L big enough so that one can compute the empirical probability P Sj 0 {b i ̸ = b i+1 } is small enough so that period of time between b i j0 and b i j0+L is short.

Transient phenomena

In Figure 7, we see the evolution of T ech (t)/T 0 (t) mod 1 when the acquisition of data begins just when O ech and O 0 are enabled. We note that T ech (t)/T 0 (t) mod 1 gradually slides down to a stable value. Our interpretation of the transient phenomenon is that when enabled the ring produce heat which increase the temperature locally on the silicon and thus modify the signal propagation time. This means that it is important to let some time passes between when we enable the OJMD and the acquisition time to let it stabilize. If one does not take this precaution, the variation of T ech (t)/T 0 (t) mod 1 can distort the measuring result and increase the estimation of the physical noise.

Experiments and results

The method of continued fraction of Section 4.2 is used in order to compute a value of N well suited so that S N,M gives a good approximation of the probability density function D(M ) for each acquisition file (Figure 8 for the OJMD 0 ). We compute V (S are normalized by 2.N so that they are in the interval [0, 0.5]. The Figure 9 shows V (S N,M ) as a function of M for a large span of M (from 0 to 1000). We note the quadratic shape of the curve due to flicker noises when M is big. This quadratic behavior is not visible on the simulated ring with only thermal noise.

In order to compute the slope of thermal component of the curve V (S N,M ), we use a span of accumulation time M where the effect of flicker noise seems to be negligible: with the condition M ≫ N , we can chose M in the interval [500, 700] with our settings. The Figure 10 represents the values of V (S N,M ) for M in the span [500, 700]. Only the squared points correspond to computed values and the lines between these points are interpolations. We remark that in this span the law of V (S N,M ) is nearly affine. The Figure 11 gives the centered distribution of the c i for M = 700. The general aspect of the law is Gaussian as expected and we not see any hint of a folding that we experienced in the simulations (see Section 3). We have furtherly checked this assumption by computing successive moments of the law and comparing them with that of a Gaussian law. The Figure 12 provides with the histogram of the values of σ 2 that is the slope of the affine law V (S N,M ) computed by linear interpolation. We note that the log normal distribution is Gaussian probably because of the flicker noise. We this dataset we obtain a most values of Q are around 2.16 10 -6 .

The Figure 13 gives the histogram of the values of Q the quality factor of a simulated OJMD. With this data set, we obtain a value of Q of 2.36 10 -6 for a Q injected in simulation of 2.39 10 -6 . In Figure 14, we see the values of Q for different OJMD. We find as expected that the value of Q is increasing with the frequency of the sampled oscillator.

The Figure 15 gives the value of T i and T ech for each OJMD. Some OJMD could not be characterized because the continued fraction method could not allow us to obtain a valid value of N .

Conclusion

In this paper, we have shown that the jitter measurement method of [] works at the condition that one choose correctly the two parameters M and N upon which it depends. Using simulations, we have highlighting the fact that bad choices of N and M produces outliers which affect the measure of the σ 2 parameter of the phase jitter. We have presented method that allows to choose correctly M and N which where not explained in [START_REF] Fischer | Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG[END_REF] and tested the resulting algorithms with simulations.
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 3 Figure 3: Distribution of values V (S 117,540 ) (left) and V (S 117,545 ) (right)
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 45 Figure 4: Example of distribution of values V (S 80,M ) (left) and V (S 15,M ) (right) for M = (300 + 5j) j=0,...,49
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 6 Figure 6: V (S 117,M ) for M = (300 + 5j) j=0,...,49 discarding outliers (left) and by gluing distributions (right)
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 2 Algorithm to compute the probability density function D(M ) input : The output sequence [b 1 , . . . , b n ] of an OJMD;

  For x, y ∈ [0, 1[, let d(x, y) = min(|x -y|, 1 -|x -y|). If I is an interval of [0, 1[, we define the diameter of I denoted by d(I) the quantity max(d(x, y), x, y ∈ I). Let K be a finite subset of the interval [0, 1[, we say that K is ϵ-uniform if for all [a, b] ⊂ [0, 1], we have:
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 3 Algorithm to compute the probability density function D(M ) input : The output sequence [b 1 , . . . , b n ] of an OJMD;

4 c 5 c 6 ν

 456 = P S (b j ̸ = b j+M ); ′ = P S (b j ̸ = b j+M -λ ) + ηλ; ← {min(x, y) x ∈ {c, 1 -c}, y ∈ {c ′ , 1 -c ′ }}; 7 if ν -c[i -1] > 0.5 then 8 offset ← offset + 1; 9 end 10 if ν -c[i -1] < -0.5 then 11 offset ← offset -1; 12 end 13 c[i] = c + offset; 14 end 15 return c[i];
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 1 and because of the preceding these bounds are optimal. Proof. The first two claims of the Lemma are clear. Let K = {i/N mod 1, i ∈ {0, . . . , N -1}. By applying the second claim to |0, 1/N [∩K = ∅, we have ϵ(K) ≥ 1/N . Let I ⊂ [0, 1[ be an interval, we have ⌊N d(I)⌋/N ≤ ♯(K ∩ I)/N ≤ ⌊(N d(I)⌋ + 1)/N (13) and moreover, ⌊N d(I)⌋/N ≤ d(I) ≤ ⌊N d(I)⌋/N + 1/N.
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 4 Algorithm to compute the continued fraction representation of ζ.

1 x ← ζ; 2 s 4 x 0 ← ⌊x⌋; 5 r ← x -x 0 ; 6 s

 2456 ← []; 3 for i = 0, . . . , M do ← s + [x 0 ];
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 7 Figure 7: Evolution of T ech (t)/T 0 (t) mod 1 at startup
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 8 Figure 8: S N,M for OJMD 0 .
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 9 Figure 9: V (S N,M ) as a function of M for a large span of M .
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 10 Figure 10: V (S N,M ) as a function of M for M ∈ [500, 700].
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 11 Figure 11: Distribution of c i for M = 700.
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 12 Figure 12: Histrogram of values of Q for simulated dataset.
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 14 Figure 14: Values of Q for different OJMD.
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 15 Figure 15: Values of T i and T ech for each OJMD.