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Abstract—Many applications like seismic data processing
or navigation system monitoring require detection of abrupt
changes. This paper considers the problem of signal detection
and recognition in the context of radar application applied
to a segmentation of an unknown received signal. Therefore
a well known algorithm in change point detection is being
implemented, the Cumulative Sum algorithm (CuSum), in order
to detect and extract signals of interest in radar recording. It
enables the localization of the beginning and ending of unknown
waveforms in a pulse train making its extraction from a noisy
background and its characterisation possible. Different models
of the problems are considered and compared. The capacity of
the algorithm to correctly retrieve the temporal parameters of
the signal is tested on both simulations and acquisitions.

Index Terms—Cumulative sum, change point detection, wave-
form, parameters extraction, recognition, signal processing.

I. INTRODUCTION

Detection and recognition of several signals with unknown
parameters in the presence of noise is a challenging task.
Being capable to detect and extract fundamental parameters
from an unknown emission is becoming ever more difficult.
Indeed, the increasing number of users and applications com-
bined with the implementation of new types of waveforms
induces an increase in signal emissions that complexifies the
electromagnetic environment. The need to quickly localize and
identify with precision a received signal is then becoming
of the utmost importance. Concerning radar applications, the
detection of unknown signals can help providing countermea-
sures, avoiding interference and localizing potential threats
and hostile emissions. For known signals, a matched filter is
typically used. However, it requires knowing the transmitted
signal. For unknown ones, other methods must hence be
considered and they are numerous. The most classic one is
the energy detection [1]. Commonly, a network of antennas
is also a good way to detect and localize signals of interest
[2]. More recently, the combination of time-frequency methods
(Short-Time Fourier Transform, Wigner-Ville Distribution or
Continuous Wavelet Transform) with machine learning has
been expanding. The main idea proposed in [3] - [4] is to
construct a mask around the detected component using time-
frequency methods and the recognition is processed by a
convolutional neural network (CNN).

This article deals with detection using a single antenna, and
mainly focuses on time of arrival (TOA) and duration estima-
tion, and treats this objective as a change detection problem.
In radar applications, change detection is mostly encountered
when trying to detect modifications between a series of Syn-
thetic Aperture Radar (SAR) images [5]. Among the proposed
methods, we found the Cumulative Sum (CuSum) algorithm
attractive for its simplicity, efficiency and its processing speed.
Usually, one of the difficulties in change detection arises when
several change points are to be identified [6]. In this case, the
computational cost of the proposed method usually explodes.
In the considered problem, we want to detect several signals
and to estimate for each one their TOA and duration. We
will propose a rather simple framework, based on the search
for local minima and maxima on the CuSum output, which
allows a correct segmentation of a pulse train. We evaluate
the potential of this method for unknown signals detection and
parameters extraction, using different models of the received
data. In particular, we show that the proposed method is
suitable to detect several change points (the beginning and
the end of several pulses). A proposition on how to set the
thresholds to detect those change points is also made.

This paper is organized as follows. Section II provides an
introduction to the CuSum algorithm and the signal distri-
bution being considered for change point detection. Section
III presents results obtained via the CuSum algorithm on
simulated data. In Section IV, tests on real signals are being
discussed. Lastly, section V draws the conclusion.

II. CHANGE POINT DETECTION THEORY

A. CUSUM basis

The Cumulative Sum (CuSum) algorithm was firstly intro-
duced by Page [7]. CuSum is among the most commonly used
algorithm in change point detection theory where the objective
is to identify moments when the probability distribution of
a time-serie changes. The algorithm searches for changes in
mean or variance. In this paper, it is applied to detect the
beginning and ending of unknown waveforms. This can be
considered as an initial step for further processing such as
signal classification or parameter estimation.

The following model describes the elementary problem in
change point detection: the detection of a single change point
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corresponding in our case to the search for a beginning of a
signal. It is later easily generalized to the detection of several
change points. Statistically, let the received data be modeled
by a discrete random variable x[n] (n ∈ [0, N ] where N
is the duration of the data) with a given probability density
function p(x[n], θ), θ being a deterministic parameter that has
two possible values, θ0 and θ1, depending whether the signal
of interest is absent or present. Two hypotheses are possible:

H1 : θ = θ1, The signal is present.
H0 : θ = θ0, Only observation noise is present.

Under each hypothesis, the probability density functions are
given by

px|H0
=

N∏
n=0

p(x[n], θ0), (1)

px|H1
=

τ−1∏
n=0

p(x[n], θ0)

N∏
n=τ

p(x[n], θ1), (2)

where τ ∈ [0 : N − 1] is the time when the signal starts.
This configuration means that for n < τ , samples are only
noise components. Following the detection theory, the log-
likelihood ratio (LLR) ∆χ is the best test (in the statistical
sense) to decide between the two hypotheses. Hypothesis H1

is validated if ∆χ > η, where η is a predefined threshold.
Otherwise we are still under the hypothesis H0

∆χ = ln

(
px|H1

px|H0

)
H1

≷
H0

η. (3)

Due to the impossibility to compute this LLR because
θ0, θ1 and τ are unknown, we define a generalised log-
likelihood ratio (GLLR) by taking the maximum-likelihood
estimate of each unknown (ML estimates). Letting θ̂0(τ)
and θ̂1(τ) the ML estimates of θ0 and θ1 for a fixed τ ,
the ML estimate τ̂ of τ is the value maximizing the like-
lihood p(x0:N−1|τ, θ̂0(τ), θ̂1(τ)), where p(x0:N−1) denotes
p(x0, x1, ..., xN−1). It can be checked that

τ̂ = argmax
0≤τ≤N−1

N∑
n=τ

ln

(
p(x[n], θ̂1)

p(x[n], θ̂0)

)
. (4)

Now let us introduce a few more notations. According to [7],
letting the instantaneous LLR (ILLR) at time n be defined by

s[n] = ln

(
p(x[n], θ̂1)

p(x[n], θ̂0)

)
, (5)

the cumulative sum of s from 0 to N is then

S[N ] =

N∑
n=0

s[n] = S[N − 1] + s[N ] (6)

and the change point can be defined as

τ̂ = argmax
0≤τ≤N−1

(S[N ]− S[τ − 1]), (7)

= argmin
0≤τ≤N−1

S[τ − 1]. (8)

The previous equation means that the algorithm tries to find a
minimum in the sum from which the next samples will have
a sufficient change of slope. The figure 1 illustrates this result
with a signal present after sample n = 10000. The change
of variation in the sum indicates the change point where the
signal starts.

Fig. 1: Results of the CuSum algorithm for the detection of a
single change point.

The elementary problem behind the CuSum algorithm thus
described, it is clear that the search for the beginning of one
signal leads to N tests. Yet in our case, we will focus in the
detection of NI pulses, which means detecting NI beginning
but also NI end of pulses. To obtain such results, we first need
to tackle the distribution assumed for each probability density
function under hypotheses H0 and H1 for the elementary
change detection. We will then propose a procedure to detect
the beginning and end of several pulses.

B. Signal distribution

In this section, we consider different models and calculate
the ILLR accordingly. For the data being analyzed, hypothesis
H0 describes portions with noise only and hypothesis H1,
the portions containing signal of interest. Usually, noise is
described as a random variable following a complex nor-
mal distribution with zero mean µ0 = 0 and variance
E[|x[n]|2] = σ2

0 :

p(x[n], θ0) =
1

πσ2
0

e
−|x[n]|2

σ2
0 . (9)

Concerning the signal, the familiar distribution in a radar
framework would be to consider the signal as an unknown
but deterministic variable. In that case, we assume that the
signal follows a Gaussian probability density function with a
certain unknown mean µ1 = u[n] (u the noise-free signal) and
a variance σ2

1 = σ2
0 :

p(x[n], θ1) =
1

πσ2
1

e
−|x[n]−µ1|2

σ2
0 . (10)

After estimation of µ̂1 = x[n], it leads to a classic energy
detection scheme where (5) becomes

s[n] =
|x[n]|2

σ2
0

. (11)
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Obviously, the Cumulative Sum using this ILLR will be
constantly increasing, leading to difficulties finding the change
points with the ML estimates (8). A solution could be to
use a slope detection, another detection algorithm with the
disadvantage of being time-consuming when used to find
several change points because of the number of hypotheses
to test [6]. A second strategy could be to use the Akaike
Information Criterion (AIC) [8], which adds a penalty to
the log-likelihood. The classic energy detection scheme (11)
becomes

s[n] = 2
|x[n]|2

σ2
0

− 2C. (12)

here, C = 2 is the number of parameters of our model (real
and imaginary part of the signal). The figure 2 shows the
CuSum results for the deterministic case with or without the
AIC penalty term compared to the random variable one with
Rayleigh-Rice (RR) distribution (introduced later in this pa-
per). As expected, the non-penalized deterministic case gives
an ever increasing CuSum value not allowing the detection
of a local minimum. For high enough SNR, the AIC enables
the CuSum to exhibit a strong change of slope along with a
change of sign of slope. This change of sign of slope is no
longer present at low SNR (bottom left graph in figure 2).

Fig. 2: Illustration of CuSum results for the RR distribution,
the deterministic case with and without AIC for a signal at
n = 10000 samples.

Since even with the AIC penalty, the deterministic model
leads to an unsatisfying test statistic, we consider another
approach. This time, the signal is modeled as a random
variable with unknown distribution. In fact it is difficult
to assume a particular distribution for every possible signal
because we are looking for unknown signals and the task
becomes even more difficult when looking for several different
signals. In order to be more general, this paper considers
that the event we are looking for has an unknown mean µ1.
This choice comes from the fact that the CuSum algorithm
is designed to detect changes in mean and/or variance [9]
and the signal of interest can in fact have an impact on both
parameters of the recorded signal. Moreover it could be of
interest for signals such as the ones used in noise radar or
non-coded pulses. Working with complex time series, we can

adopt the Rayleigh-Rice distribution. The noise and the signal
can be interpreted in terms of a real and imaginary part,
each following a normal distribution N (0,

σ2
0

2 ) for the noise,
N (νcosϕ,

σ2
1

2 ) and N (νsinϕ,
σ2
1

2 ) for the signal. It follows
that the variable r = |x| =

√
Re(x)2 + Im(x)2 is Rayleigh

distributed for the noise and Rice distributed for the signal of
interest.

p(r[n], θ0) =
2r[n]

σ2
0

e
−r2[n]

σ2
0 , (13)

p(r[n], θ1) =
2r[n]

σ2
1

e
−(r2[n]+ν2)

σ2
1 I0

(
2r[n]ν

σ2
1

)
, (14)

where I0(z) is the Bessel function. It gives the following ILLR
(5) :

s[n] =
r2[n]

σ2
0

− r2[n] + ν2

σ2
1

+ ln

(
σ2
0

σ2
1

I0

(
2r[n]ν

σ2
1

))
. (15)

The CuSum results using this model is illustrated in figure 2,
along with the previous deterministic model. We can see that
even at low SNR, this model could allow to detect a change
point with procedure (8).

Finally, in the case where we do not not assume that the
samples follow a RR distribution, we can find in [10] that
Tartakovsky proposed a more general ILLR of linear-quadratic
form with y[n] = |x[n]|−µ0

σ0
the centered scaled observation at

time n:
s[n] = C1y

2[n] + C2y[n]− C3, (16)

where

C1 =
1− q2

2
, C2 = δq2, C3 =

δ2q2

2
− ln q. (17)

with q = σ0

σ1
, δ = µ1−µ0

σ0
.

These two models performance will be tested in section III.
In the next subsection, we will propose a procedure to detect
several change points.

C. Generalization of the algorithm to the detection of multiple
change points

To compute the CuSum algorithm, we estimate the noise
in the record to get the variance of the noise σ2

0 , then the
mean and variance of the entire record (µ1, σ

2
1). It gives

coarse estimates of the parameters, but we will see in section
III that they are sufficient. The ILLR is calculated for each
time n according to the chosen distribution and added to
the cumulative sum S in equation (6). This sequence enables
a layout like the one visible in figure 3 where a zoom of
S(t) obtained for a chirp pulse train with parameters NI =
20 pulses, SNR = 0 dB,B1 = 26.73MHz, T1 = 19.66 µs is
displayed. The first two pulses are visible, and unlike figure 1,
each pulse is indicated by two change points. The beginning
and the end of a pulse correspond to local minima and maxima.
As mentioned earlier, the elementary problem of detecting a
single change point seems to become more complex because
we usually have to test all the possible combinations of change
points. However, in our case, we do not need to change the
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algorithm and complexify it that much but just need to adapt
the thresholds. Intuitively, and as it can be observed in figure
3, the portions of the data containing noise only will have
similar behaviors related to the noise variance. They result
in having similar decreasing slopes on the CuSum output. On
the contrary, distinct signals can display variable evolutions of
the CuSum. They will alternate with increasing slopes when
signal of interest is present in data. With coarse estimates of µ1

and σ2
1 , the procedure ”simply” consists in finding alternating

minimum and maximum. This procedure could be refined in
a second step, but this is not the scope of the paper.

Fig. 3: Results of the CuSum algorithm for a pulse train. Zoom
on the first two pulses.

The remaining difficulty is setting the thresholds. Two
thresholds ηmin and ηmax are defined to detect local minimum
and maximum. Time τ is evaluated to be a change point if:

Γmin,χ[N ] ≜ |S[N ]− min
1≤τ≤N−1

S[τ − 1]| > ηmin. (18)

Γmax,χ[N ] ≜ |S[N ]− max
1≤τ≤N−1

S[τ − 1]| > ηmax. (19)

We implemented two distinct thresholds based on the esti-
mation of noise in the signal and adapted to the search of a
minimum or a maximum.

To detect a minimum, we want to avoid false alarms. The
threshold is designed to be an empirical constant-threshold in-
spired from the one given in [11]. Before applying the CuSum
on the studied signal, the CuSum algorithm is computed with
the estimated σ2

0 , µ1 and σ2
1 for L noise series of M samples

to estimate a threshold to guaranty a certain false alarm. For
each noise serie, we analyze a local score

Sj
i = max(0, Sj

i−1 + sji ), where j ∈ [1, L] and i ∈ [1,M ].
(20)

And the maximum of this local score is saved mj = max Sj .
Finally, the threshold is set as :

ηmin = q1−Mα[m
j
1≤j≤L]. (21)

where α is the false alarm rate and then q1−Mα represents the
quantile of order (1−Mα). Figure 4 gives an example of the
setting of threshold ηmin. We generated L = 100 noise series
of M = 10000 samples and chose to take the quantile with
α = 1× 10−5.

Fig. 4: Setting of the minimum threshold. The blue curve
represents the maximum of each noise serie. The red line is
the obtained empirical threshold.

To detect a maximum, we need to set a threshold high
enough to avoid subdividing a single pulse into multiple
pieces. As the maximum detects the end of a pulse, what
follows is only noise and the CuSum shows a notable behavior
in the noise hypothesis. The sum is decreasing following a
linear behavior (visible on figure 3 before each pulse start)
and therefore can be described by an average slope factor a.
Again with L noise series of M samples, the CuSum algorithm
is computed and a mean slope factor amean is calculated. To
validate a maximum, we need to have this linear decreasing
slope for at least K points which means that the threshold can
be defined by:

ηmax = Kamean (22)

Considering a slope on K points should guaranty that the
CuSum is indeed decreasing because the signal is no longer
present and not just because of some unlucky noise trials.

III. SIMULATIONS

A. Simulated signals

Along this paper, we consider pulse trains of NI = 20
pulses with linear (Chirp) or hyperbolic frequency modulations
(HFM) and the following sets of parameters:

- Bandwidth B1 = 26.73MHz or B2 = 68.96MHz,
- Pulse duration T1 = 19.66µs or T2 = 2.56µs,
- Pulse Repetition Interval (PRI) Tpi = 10Ti.
Figure 5 shows the kind of pulses used in this section which

the CuSum algorithm has to find in a noisy recording

B. Performance indicators

To evaluate our algorithm, several performance indexes are
examined :

• The false alarm rate FAR being the ratio between the
number of false alarms and the number of samples.

• The mean decision delay Dd which evaluates the delay
needed for the algorithm to evaluate a change point.

• The mean time between false alarms MTBFA which
according to [11] is the inverse of the false alarm rate α.
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Fig. 5: Spectrograms of a Chirp and a Hyperbolic pulse with
set 1 of parameters B1 = 26, 73MHz, T1 = 19, 66µs.

• The root mean squared error (RMSE) on the estimation
of T the pulse duration.

The algorithm has been tested for varying SNR (0 to
30dB with 100 simulations at each SNR), for the different
configurations described earlier.

C. Results

Simulations for each distribution (RR, Tartakovsky) and sets
of parameters have been conducted and the figures 6 to 9
show the results for a false alarm rate α = 5 × 10−5 and
thresholds set from L = 100 noise series of M = 10000
samples (sampling frequency is Fs = 0.5GHz).

It is visible on figure 6 that the FAR is close to α for the
Chirp and HFM pulse train with set 1 of parameters. Slightly
higher deviations can be observed with the pulse train of HFM
with the second set of parameters. In this case the FAR is lower
which is not wrong but it is under evaluated because the signal
is in this case too short compared to the other two.

Fig. 6: False Alarm Rate against SNR.

The next performance index being evaluated is the mean
decision delay Dd for the detection of the start and end points
of a pulse respectively shown in figures 7 and 8. For a better
visualization, the y-axis is in logarithmic scale. It can be seen
that considering either a RR distribution or an unknown one
with the Tartakovsky model does not play an important role

according to the graphs. By looking at the evolution of those
mean decision times, we see that the higher the SNR, the
shorter the mean decision time to detect the beginning of a
signal. As the noise is less and less impacting the signal, the
CuSum value increases faster after the beginning of a pulse,
exceeding the threshold rapidly. On the contrary, the mean time
decision for end detection is increasing and it is again linked
to the threshold. Defined by (22), at high SNR the algorithm
reaches the K samples defined for the maximum threshold
before taking the decision hence in our case the mean time
decision push towards K

Fs
= 4 × 10−7s. The choice of K is

thus of importance to correctly estimate the end (and thus the
duration) of a signal. Moreover it is better to have a K large
enough which involves longer mean time decision for the end
detection but ensures to catch the end of the signal with a few
additional samples. To conclude on the first three performance
indexes, the correct detection and estimation of the start and
the end of a pulse are strongly dependent on the false alarm
allowed α and the number K of samples before making a
decision about the end of the signal.

Fig. 7: Mean decision delay for start detection against SNR.

Fig. 8: Mean decision delay for end detection against SNR.

The last index to check is the RMSE on the pulse duration
which requires a correct estimation of both the beginning and
the end of a pulse. Here again, it is visible in figure 9 that
the distribution does not play a role. Moreover the algorithm
gives good general accuracy for each type of pulse train. The
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matched filter will indeed have better results on TOA even
at low SNR (note that for the CuSum algorithm it is quite
promising) but we can only estimate this TOA and the PRI
because the searched signal is known. The CuSum algorithm
offers the possibility to detect the TOA but also the end of a
pulse without having preliminary information.

Fig. 9: RMSE for pulse duration against SNR.

IV. TESTS ON REAL DATA

The CuSum algorithm has been tested on a real radar signal
to check its capacities in a real situation. The tested signal was
composed of 13 pulse trains of 10 up- or down-chirp with
different durations and PRI. The figure 10 shows a portion of
this signal where the end and beginning of 2 distinct pulse
trains are visible with the black lines indicating the time
indices detected with the CuSum algorithm (RR distribution,
SNR = 20dB). The preliminary analyses show very good
results in estimating pulse duration and PRI for real signal.
It has also been tested on simulated OFDM signals with
realistic parameters which present amplitude modulation and
gave promising results as visible in figure 11.

Fig. 10: Real radar signal and CuSum splitting.

V. CONCLUSION

In the context of unknown radar signal detection and pa-
rameters extraction, this article has proposed a change point
detection algorithm based on the CuSum along with the

Fig. 11: OFDM and CuSum splitting. Top figure corresponds
to the temporal representation of the signal, where the vertical
lines show the segmentation resulting from our algorithm.
Bottom figure represents the spectrogram of the signal.

definition of thresholds. Mainly it is capable to detect signal
without preliminary knowledge, contrary to classical cross-
correlation radar receivers, and to achieve estimate of both its
time of arrival and duration. Moreover even at low SNR the
results are quite encouraging.
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