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We present a novel approach to the numerical computation of quasi-normal modes, based
on the first-order (in radial derivative) formulation of the equations of motion and using
a matrix version of the continued fraction method. This numerical method is particularly
suited to the study of static black holes in modified gravity, where the traditional second-
order, Schrödinger-like, form of the equations of motion is not always available. Our approach
relies on the knowledge of the asymptotic behaviours of the perturbations near the black hole
horizon and at spatial infinity, which can be obtained via the systematic algorithm that we
have proposed recently. In this work, we first present our method for the perturbations of a
Schwarzschild black hole and show that we recover the well-know frequencies of the QNMs
to a very high precision. We then apply our method to the axial perturbations of an exact
black hole solution in a particular scalar-tensor theory of gravity. We also cross-check the
obtained QNM frequencies with other numerical methods.

I. INTRODUCTION

The recent detection of gravitational waves (GW) has opened a new window on gravitational
physics by giving unprecedented access to the regime of strong gravity. So far, the GW mea-
surements are in good agreement with the predictions of general relativity (GR), but the rapidly
increasing number of events and the improved sensitivity of the detectors expected in the near
future will enable to verify GR to a high degree of precision or, alternatively, to detect some
deviations from GR.

In this perspective, it is important to consider alternative theories of gravity, or extensions of
GR, and study how their predictions deviate from GR, so that future analyses can extract the most
relevant information from upcoming GW data. Most extensions of GR are scalar-tensor theories,
which involve, directly or in disguise, a scalar field in addition to the usual metric tensor. The most
general scalar-tensor theories that propagate a single scalar degree of freedom have been classified
within the framework of DHOST theories, allowing for higher-order derivatives of the scalar field
in the action [1–5] (see [6, 7] for reviews). These theories possess a very rich phenomenology and
admit a number of exact static and spherically symmetric solutions (black holes or more exotic
objects) even though very few exact rotating solutions are known [8–21] (see also the review [22]).

In the GW signal from a binary black hole merger, the ringdown phase is particularly interesting
as it can be described by linear perturbations about a stationary black hole (BH) and is therefore
easier to predict in theories of modified gravity than the whole inspiral phase. The ringdown signal
mainly corresponds to a superposition of quasinormal modes, whose frequencies are quantised (see
e.g. [23–26] for reviews) and its detailed analysis via so-called “black hole spectroscopy”, represents
an invaluable tool to test GR and look for characteristic signatures of modified gravity [27, 28].

In parallel to semi-analytical methods (see e.g. [29] for recent works), many numerical tech-
niques have been developed to compute QNMs [25, 30, 31]. One particularly efficient method was
introduced by Leaver [32], who managed to compute a large number of QNMs for the Schwarzschild
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and Kerr solutions with a high level of accuracy. His idea was to start from the equation of motion
for the BH perturbations, written in the form of a second-order Schrödinger-like equation, thanks
to the seminal works of Regge-Wheeler [33] and Zerilli [34] for Schwarzschild, and of Teukolsky [35]
for Kerr, and to construct an ansatz for the solution that automatically implements the appropriate
boundary conditions near the BH horizon and at spatial infinity. The ansatz depends on a bounded
function, which can be expanded in a power series, and the equation of motion translates into a
three-term recurrence relation for the coefficients of the series. A viable solution corresponds to a
convergent series, associated with the so-called minimal solution of the recurrence relation, which
can be obtained by solving a continued-fraction equation.

In theories of modified gravity, the equations of motion for the BH perturbations become more
complicated than in GR and a nice second-order Schrödinger-like equation is not always available.
This is why we have recently developed a new approach that directly extracts the asymptotic
behaviour of the perturbations from the first-order system of the equations of motion [36]. In the
present work, we use this approach to construct an ansatz for the solution of the first-order system,
with the appropriate asymptotic behaviour. The ansatz now depends on several bounded functions
which, when expressed in power series, must satisfy a matrix recurrence relation, which we solve
numerically by using a matricial version of the continued fraction method.

In order to test this new numerical technique we have first applied it to the familiar Schwarzschild
case, starting directly from the first-order system of equations, in contrast with Leaver’s approach.
We show that the well-known QNM frequencies for Schwarzschild can be recovered in this way, with
a high precision. We then consider the axial perturbations of an exact BH solution in a scalar-
tensor theory, constructed in [8] and dubbed BCL here, which can be seen as a one-parameter
deformation of Schwarzschild. Using our first-order approach, we compute numerically the QNM
frequencies of the axial perturbations, for different values of the parameter. We also cross-check
the robustness of our technique with different numerical tests and comparison with other methods.
While the first-order system we study is of dimension 2, our method can in principle be applied to
higher-dimensional systems such as the ones appearing in the polar sector of perturbations [37, 38].
Note that a first order approach has already been used, in a case where the asymptotic analysis of
the perturbations is straightforward, to compute numerically QNMs with a shooting method (e.g.
in [39, 40] for Einstein-Gauss-Bonnet-Dilaton gravity).

This paper is structured as follows. In the next section, after a brief review of the derivation
of the equations of motion in the Schwarzschild case, we explain in detail the method of matrix
continued fraction for solving the first-order system of equations and show that we recover the
standard values of the Schwarzschild QNMs. In the subsequent section, we present the exact BH
in modified gravity and give the first-order system of equations satisfied by the axial perturbations.
In section IV, we apply our numerical technique to this new system and obtain the QNMs, which
depend on a single parameter, thus providing a continuum of modes in the complex plane relating
the Schwarzschild BH QNMs and those of this family of solutions. In section IV, we present
numerical convergence and consistency checks. We finally conclude with some perspectives. We
also provide some details and comparisons with other numerical methods in the appendices.

II. SCHWARZSCHILD BH QNM SPECTRUM

In this section, we briefly recall how to derive the equations for linear perturbations about a
Schwarzschild BH in GR, obtaining directly a system of two coupled first-order equations. Then,
we use this “simple” example to illustrate how one can adapt the well-known continuous fraction
method (originally used to compute the spectrum of Schrödinger-like operators) to such a first
order matrix system.
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A. Dynamics of linear perturbations

1. Perturbation equations in a first-order system

To derive the equations of motion for the linear perturbations, we substitute in the GR action,

SGR[gµν ] =

∫
d4x

√−g R , (2.1)

the perturbed metric

gµν = ḡµν + hµν , (2.2)

where ḡµν is the background solution and hµν the perturbation, and expand the action up to
quadratic order in hµν . The dynamics of the perturbations is governed by the quadratic action
Squad, which reads, when the Ricci tensor vanishes (since we are in vacuum),

Squad[hµν ] =

∫
d4x

√−ḡ
[ 1

2
(∇̄µh)(∇̄µh)− 2(∇̄µh

µ
ν)(∇̄ρh

ρ
ν )− (∇̄µh)(∇̄νh

µν)

+ 3(∇̄νhµρ)(∇̄ρhµν)− 1

2
(∇̄ρhµν)(∇̄ρhµν)− 2R̄µρνσh

µνhρσ
]
, (2.3)

where R̄µνρσ is the Riemann tensor of the background metric ḡµν and ∇̄ denotes the covariant
derivative compatible with ḡµν .

For a static and spherically symmetric background, the metric is of the form

ḡµν dx
µ dxν = −A(r) dt2 +

dr2

B(r)
+ C(r) dΩ2 ,

and in the particular case of the Schwarzschild solution, we have

A(r) = B(r) = 1− µ

r
, C(r) = r2 , (2.4)

where µ is a constant corresponding to twice the black hole mass.
The perturbations hµν are conveniently described via a 2+2 decomposition onto the sphere, in

which the various components are expanded in spherical harmonics Yℓm(θ, φ) according to

htt = A(r)
∑
ℓ,m

Hℓm
0 (t, r)Yℓm(θ, φ) ,

htr =
∑
ℓ,m

Hℓm
1 (t, r)Yℓm(θ, φ) ,

hrr =
1

B(r)

∑
ℓ,m

Hℓm
2 (t, r)Yℓm(θ, φ) ,

hta =
∑
ℓ,m

[
βℓ(t, r)∂a + hℓm0 (t, r) sin θ ϵab∂

b
]
Yℓm(θ, φ) ,

hra =
∑
ℓ,m

[
αℓm(t, r)∂a + hℓm1 (t, r) sin θ ϵab∂

b
]
Yℓm(θ, φ) ,

hab =
1

2

∑
ℓ,m

hℓm2 (t, r) sin θ(ϵac∇c∇b + ϵbc∇c∇a)Yℓm(θ, φ)

+
∑
ℓ,m

[
Kℓm(t, r)gab +Gℓm(t, r)∇a∇b

]
Yℓm(θ, φ) , (2.5)
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where h0, h1, h2, H0, H1, H2, α, β, K and G are functions of (t, r). The indices a and b denote
the angular coordinates {θ, φ} and ϵab is the fully antisymmetric tensor associated with the metric
of the 2-sphere. Since there is no mixing between modes with different values of ℓ and m at the
linear level, we will drop these labels in the following. Furthermore, it is convenient to work in the
frequency domain so that any function f(t, r) is replaced by f(r)e−iωt.

The equations of motion for the perturbations are given by

Eµν :=
δSquad

δhµν
= 0 . (2.6)

By a gauge transformation, one can always take α, β, G and h2 to be zero [41, 42]: this is the
well-known Regge-Wheeler gauge [33]. Substituting the expressions (2.5) into the perturbation
equations (2.6) yields two decoupled systems (see [36]) which can be written in a matrix form as
follows,

dXax

dr
= MaxXax ,

dXpo

dr
= MpolXpol . (2.7)

The first system corresponds to axial perturbations of the Schwarzschild black hole with

Xax =

(
h0
h1

)
and Max =

(
2
r −iω + 2iλ(r−µ)

ωr3

− iωr2

(r−µ)2
− µ

r(r−µ)

)
, (2.8)

where

λ =
ℓ(ℓ+ 1)

2
− 1 . (2.9)

The second system corresponds to polar perturbations with

Xpol =

(
K

H1/ω

)
and

Mpol =
1

3µ+ 2λr

 µ(3µ+(λ−2)r)−2r4ω2

r(r−µ)
2i(λ+1)(µ+λr)+2ir3ω2

r2

ir(9µ2−8λr2+8(λ−1)µr)+4ir5ω2

2(r−µ)2
2r4ω2−µ(3µ+3λr+r)

r(r−µ)

 . (2.10)

In the following, we focus our attention on the system of axial perturbations.

2. Definition of quasinormal modes

As described in [36], one can extract the asymptotic behaviours of the perturbations, at the hori-
zon and at spatial infinity, directly from the first-order system (2.8) by resorting to an asymptotic
expansion of the matrix Max.

Introducing the traditional tortoise coordinate defined by

dr∗
dr

=
1

1− µ/r
=⇒ r∗ = r + µ ln(r − µ) , (2.11)

the leading-order terms in the asymptotic expansion of the perturbations at the horizon (i.e. when
r → µ or equivalently r∗ → −∞) were found to be given by [36]

h0(r) = (chor+ eiωr∗ + chor− e−iωr∗)(1 +O(r − µ)) ,

h1(r) =
µ

r − µ
(−chor+ eiωr∗ + chor− e−iωr∗)(1 +O(r − µ)) , (2.12)
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where chor± are constants. At spatial infinity, i.e. when r, r∗ → +∞ , the corresponding leading-order
expressions are [36]

h0(r) = r(c∞− e−iωr∗ − c∞+ eiωr∗)(1 +O(1/r)) ,

h1(r) = r(c∞− e−iωr∗ + c∞+ eiωr∗)(1 +O(1/r)) , (2.13)

where c∞± are other constants and r∗ = r(1 + o(r)) at infinity.
Moreover, restoring the time dependence in e−iωt, one sees that the asymptotic terms in (2.12)

and (2.13), consist of the superposition of an ingoing mode, proportional to e−iω(t+r∗), and of an
outgoing mode, proportional to e−iω(t−r∗), propagating radially along the coordinate r∗ at speed
1.

Quasinormal modes are the perturbations that are purely ingoing at the BH horizon and out-
going at spatial infinity, which is possible only for a discrete set of specific frequencies. Therefore,
identifying the QNMs means finding the complex values ω such that the solution to (2.8) satisfies

c∞− = 0 and chor+ = 0 . (2.14)

We will see in the following subsection, how these QNM frequencies can be determined numerically.

B. Matrix continued fraction

We show below how to adapt the continuous fraction method to compute QNMs directly from
the first order system, without using a Schrödinger-like reformation of the perturbations equations,
as in the seminal work by Leaver [32].

1. Boundary conditions and ansatz

Imposing the QNM boundary conditions (2.14) in the general asymptotic behaviours of Xax

and using eiωr∗ = eiωr(r − µ)iµω, which follows from (2.11), we get

Xax(r) = chor− e−iωr(r − µ)−iµω

(
r − µ
µ

)(
1

r − µ
+O(1)

)
, when r → µ , (2.15)

Xax(r) = c∞+ eiωr(r − µ)iµω
(
−1
1

)
(r +O(1)) , when r → +∞ . (2.16)

In order to find a solution that satisfies simultaneously these two behaviours at the boundaries,
one starts with an ansatz of the form

Xax(r) = eiωrr1+iµω

(
r − µ

r

)−iµω

×
(

f0(u)
f1(u)/u

)
with u =

r − µ

r
. (2.17)

The two complex-valued functions f0 and f1 are supposed to be bounded (with no singularities)
for u ∈ [0, 1] and should satisfy the boundary conditions

f0(0) = f1(0) , f0(1) = −f1(1) , (2.18)

so that the appropriate asymptotic behaviours are indeed obtained.
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2. Recurrence relation

As the two functions are bounded for u ∈ [0, 1], they can be expanded in power series as follows,

f0(u) =

∞∑
n=0

anu
n and f1(u) =

∞∑
n=0

bnu
n , (2.19)

where an and bn are complex numbers. Substituting the ansatz (2.17) together with the expres-
sions (2.19) into the equations of motion (2.8) leads to a recurrence relation for the coefficients an
and bn. In order to write this recurrence relation in a compact form, it is convenient to view the
coefficients an and bn as the components of 2-dimensional vectors Yn, i.e.

Yn =

(
an
bn

)
, (2.20)

which in turn satisfy the relations

αnYn+1 + βnYn + γnYn−1 + δnYn−2 = 0 , ∀n ≥ 2 , (2.21)

where the matrix coefficients are given by

αn =

(n+1−iµω
µ iω

iµ2ω µ(n+ 1− iµω)

)
, βn =

(−2n−1+4iµω
µ −2iλ

/
µ2ω

0 µ(−2n+ 1 + 4iµω)

)
,

γn =

(n
µ − 2iω 4iλ

/
µ2ω

0 µ(n− 2− 2iµω)

)
, δn =

(
0 −2iλ

/
µ2ω

0 0

)
. (2.22)

This relation (2.21) still holds for 0 ≤ n < 2 in which cases the number of terms is reduced, defining
αn = βn = γn = δn = 0 when n < 0 by convention. When n = 0, it reduces to a 2-term relation as
it involves Y1 and Y0 only; when n = 1, it is a 3-term relation between Y2, Y1 and Y0.

In order to solve this 4-term recurrence relation (2.21), we first show that it can always be
reformulated as a 3-term recurrence relation. To prove this is indeed possible, we proceed by
induction. Hence, let us assume that it is possible to write (2.21) at some order n in the form

α̃nYn+1 + β̃nYn + γ̃nYn−1 = 0 , (2.23)

where α̃n, β̃n and γ̃n are matrices to be determined, a priori different from (2.22). If we assume, in
addition, that the matrix γ̃n is invertible, then we can express Yn−1 as an explicit linear combination
of Yn and Yn+1. As a consequence, the original 4-terms recurrence relation (2.21) at order n + 1
can also be reformulated as a 3-term recurrence relation as follows,

αn+1Yn+2 +
(
βn+1 − δn+1 · γ̃−1

n · α̃n

)
Yn+1 +

(
γn+1 − δn+1 · γ̃−1

n · β̃n
)
Yn = 0 . (2.24)

As (2.21) reduces to a 3-terms relation for n = 1 (and also a 2-terms relation for n = 0), it is
indeed possible to transform the recurrence relation into (2.23) for any n. The matrices entering
in the 3-term recurrence relation are recursively defined by

α̃n = αn , β̃n = βn − δn · γ̃−1
n−1 · α̃n−1 , γ̃n = γn − δn · γ̃−1

n−1 · β̃n−1 , for n ≥ 1 , (2.25)

with, at order n = 0, the initial matrices

α̃0 = α0 , β̃0 = β0 , γ̃0 = 0 . (2.26)
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3. Convergence of the series

In general, three-term recurrence relations like (2.23) have solutions that can be expressed as a
linear combination of two independent sequences (similarly to second order differential equations).
However, not every solution will lead to the convergence of the power series (2.19) whereas the
convergence of both power series is required in order to impose the right boundary condition at
infinity. In the case of scalar recurrence relations (where Yn are complex numbers), a condition
to ensure the convergence was found by Gautschi in [43], in the form of an equation containing a
continued fraction. It was then used by Leaver [32] to compute QNMs, leading to the “continued
fraction method”.

Later, this study was generalised to recurrence relations where Yn are vectors linked by matrix-
valued coefficients (see [30, 44, 45] for instance). Here, we apply these results to our problem to
ensure that f0 and f1 are regular functions of u in the whole interval [0, 1] with finite limits at the
boundaries u = 0 and u = 1. This corresponds to choosing the appropriate branch for Yn.

Let us proceed by first introducing invertible matrices Rn such that

Yn+1 = RnYn , n ≥ 0 . (2.27)

Note that such relations do not uniquely define the matrices Rn. If one substitutes the above
relation into the recurrence relation (2.23), one obtains

(α̃0R0 + β̃0)Y0 = 0 , (α̃nRn + β̃n + γ̃nR
−1
n−1)Yn = 0 for n ≥ 1 . (2.28)

This identity is trivially satisfied if the matrices Rn themselves satisfy a recurrence relation which
can be expressed as follows,

Rn−1 = −(β̃n + α̃nRn)
−1γ̃n for n ≥ 1 . (2.29)

Interestingly, when the matrices Rn satisfy this relation, the power series defining the two functions
f0 and f1 can be expected to be convergent. In other words, (2.29) selects the right branch for the
solution Yn. Furthermore, the zeroth order equation in (2.28) can be seen as a system of algebraic
equations for ω whose solutions are the quasi-normal frequencies of the Schwarzschild black hole.

Remarkably, one can construct an infinite number of algebraic equations satisfied by the QNMs.
Indeed, if we combine the n = 0 order equation in (2.28) with (2.29) for n = 1, we obtain a new
equation which links R1 to Y1,

(α̃0R0 + β̃0)Y0 = (α̃0R0 + β̃0)R
−1
0 R0Y0 =

[
α̃0 − β̃0γ̃

−1
1 (β̃1 + α̃1R1)

]
Y1 = 0

=⇒
[
α̃1R1 + β̃1 − γ̃1β̃

−1
0 α̃0

]
Y1 = 0 . (2.30)

It can be viewed again as an algebraic equation for the QNMs. Of course, we can proceed in this
way recursively to obtain, at any order n ≥ 0, relations of the form

(α̃nRn +Qn)Yn = 0 , (2.31)

where the matrices Qn must satisfy

forn ≥ 1, Qn = β̃n − γ̃n ·Q−1
n−1 · α̃n−1 and Q0 = β̃0 . (2.32)

Hence, the method is reminiscent of the usual construction of a continued fraction based on the
Schrödinger-like formulation. At each order, the equation (2.31) can be seen as an algebraic
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equation for ω and then, each solution of this equation corresponds to a QNM. Of course, there
exists a non-trivial solution of eq. (2.31) only when

det(α̃nRn +Qn) = 0 , (2.33)

which is the equation we will solve numerically in the following section. In principle, (2.33) is
necessary but not sufficient to satisfy (2.31). Therefore, we will need to check that the values of ω
we obtain by solving the former equation also solve the latter1. Further details on the numerical
resolution will be given in the next subsection IIC.

C. Numerical method and results

The numerical method consists in applying a root-finding algorithm in the complex plane to
determine the values of ω that solve (2.33), for given values of the black hole mass 2µ, of the
angular momentum integer ℓ, or equivalently λ, and the so-called inversion index n.

One must first determine the matrix Rn, which can be computed from Rn+1 via the inverse
recurrence relation (2.29). In practice, in order to compute Rn in a finite number of steps, a
truncation is necessary at some large value N , where we impose the simple condition

RN = 0 . (2.34)

The precision on the quasi-normal frequency is then controlled by the value of the truncation index
N . One should note that the value we choose for RN is arbitrary: it will introduce a small error
which turns out to be negligible when N is chosen to be large enough.

The other matrix appearing in (2.33), Qn, is computed via the recurrence relation (2.32). The
last step consists in finding the frequencies solving (2.33) thanks to the root-finding algorithm. One
finally checks that the values thus obtained are stable when the truncation integer N is increased.

We find empirically that increasing n leads to a better precision for the computation of high-
overtone modes. By choosing increasingly large values for N , we are able to compute several
hundreds of QNMs for the Schwarzschild black hole, up to very high precision (around 10 digits).
More details on the convergence and consistency checks are given in section V in the case of
the BCL black hole. Since the Schwarzschild QNMs are well-known, we simply provide the first
20 frequencies obtained by our method in table I. These values agree with existing data (for
example [25]) up to the 6-digit precision we set for our computation, which confirms the validity
of our method.

III. BCL BLACK HOLE IN SCALAR-TENSOR THEORIES

We now consider an exact black hole solution in a scalar-tensor theory of gravity, for which we
compute for the first time the axial quasi-normal modes, as presented in the next section.

A. BH solution in modified gravity

The scalar-tensor theory discussed here is described by an action of the form

S[gµν , ϕ] =

∫
d4x

√−g
[
F (X)R+ P (X) + 2

∂F

∂X
(ϕµνϕ

µν − (□ϕ)2)
]
, (3.1)

1 This is done in section VC.
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n ωn

0 0.747343-0.177924i

1 0.693422-0.547830i

2 0.602107-0.956554i

3 0.503010-1.410296i

4 0.415029-1.893690i

5 0.338598-2.391216i

6 0.266504-2.895821i

7 0.185645-3.407682i

8 0.000000-3.999000i

9 0.126527-4.605289i

n ωn

10 0.153107-5.121653i

11 0.165196-5.630884i

12 0.171456-6.137389i

13 0.174788-6.642460i

14 0.176478-7.146641i

15 0.177181-7.650211i

16 0.177265-8.153329i

17 0.176953-8.656100i

18 0.176381-9.158594i

19 0.175641-9.660860i

TABLE I: Values computed for the QNMs of the Schwarzschild black hole using the first order system
and the matrix continued fraction method. We set µ = 1 and λ = 2 (corresponding to ℓ = 2). We focus
only on modes with Re(ω) > 0; for each mode in this half-plane, there exists a mode with the same

imaginary part and an opposite real part.

where X ≡ ∇µϕ∇µϕ, ϕµν ≡ ∇µ∇νϕ and

F (X) = F0 + F1

√
X , P (X) = −P1X . (3.2)

This action, which depends on second derivatives of the scalar field ϕ, belongs to the subfamily
of Horndeski theories [46], itself included in the general family DHOST theories discussed in the
introduction.

Our motivation for choosing this specific theory is the existence of an exact BH solution, dubbed
BCL solution after its authors [8]. It is described by the metric

ds2 = −A(r) dt2 +
1

B(r)
dr2 + C(r) dΩ2 , (3.3)

with

A(r) = B(r) =
(
1− r+

r

)(
1 +

r−
r

)
, C(r) = r2 , (3.4)

where the (positive) quantities r+ and r− are defined by

r+r− =
F 2
1

2F0P1
, r+ − r− = µ and r+ > r− > 0 . (3.5)

The metric possesses only one horizon located at r = r+ and the function A can be rewritten as

A(r) = 1− µ

r
− µ2ξ

2r2
with ξ =

2r+r−
µ2

, (3.6)

which shows that µ corresponds to twice the ADM mass, as previously in the Schwarzschild case.
As for the scalar field, its configuration is given by

ϕ(r) = ± f1
p1
√
r+r−

arctan

[
(r+ − r−)r + 2r+r−

2
√
r+r−

√
(r − r+)(r + r−)

]
+ cst . (3.7)

The global sign of ϕ(r) and the constant are physically irrelevant [8].
Interestingly, the above solution can be seen as a one-parameter deformation of the

Schwarzschild solution, with r− playing the role of the deformation parameter. In the limit r− = 0,
corresponding to F1 = 0, one recovers precisely the Schwarzschild metric, while the scalar field van-
ishes.
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B. Perturbation equations

To obtain the equations of motion for the linear perturbations, one proceeds similarly to the
GR case presented in section IIA. We substitute in the action (3.1) the metric and scalar field

gµν = ḡµν + hµν , ϕ = ϕ̄+ δϕ , (3.8)

where ḡµν and ϕ̄ are respectively the metric and scalar field of the background, while hµν and δϕ
are the corresponding perturbations.

We then expand the action (3.1) up to quadratic order in hµν and δϕ, and obtain (after some
calculations) the quadratic action for linear perturbations

Squad[hµν , δϕ] . (3.9)

The equations of motion for the perturbations are then given by the Euler-Lagrange equations,

Eµν =
δSquad

δhµν
= 0 and Eϕ =

δSquad

δ(δϕ)
= 0 . (3.10)

One can check that the equation Eϕ = 0 is redundant due to Bianchi’s identities.
In the following, we only consider axial perturbations, for which the perturbation of the scalar

field vanishes, i.e. δϕ = 0. The situation is then analogous to the GR case, although the equations
of motion are now different. As shown in [37], we obtain the first-order system

dXax

dr
= MaxXax (3.11)

with

Xax =

(
h0
h1

)
, Max =

(
2
r −iω + 2iλ(r−r+)(r+r−)

r4ω

− iωr2(r2+2r−r+)
(r−r+)2(r−r−)2

− r(r+−r−)+2r+r−
r(r−r+)(r+r−)

)
. (3.12)

As we can see, we recover the Schwarzschild system (2.8) in the limit r− = 0, where µ = r+.

IV. AXIAL QUASINORMAL MODES OF THE BCL BLACK HOLE

In this section, we compute the axial QNMs of the BCL black hole using the “matrix continued
fraction” method introduced earlier for Schwarzschild. Then, we compare our results with those
obtained from already existing methods to perform consistency checks.

A. Ansatz and recurrence relation

In order to guess an appropriate ansatz, we need the asymptotic behaviours of axial perturba-
tions at both the horizon and spatial infinity. They have already been computed in [37] where we
found that the leading-order terms in the asymptotic expansion at spatial infinity (when r → ∞)
are given by

h0(r) = r(c∞+ eiωrriµω − c∞− e−iωrr−iµω)(1 +O(1/r)) ,

h1(r) = r(c∞+ eiωrriµω + c∞− e−iωrr−iµω)(1 +O(1/r)) , (4.1)



11

where c∞± are constant. And the asymptotic expansion near the horizon (when r → r+) yields, at
leading order,

h0(r) = (chor+ (r − r+)
+iωr0 + chor− (r − r+)

−iωr0)(1 +O(r − r+)) ,

h1(r) =
r0
r+

(−chor+ (r − r+)
+iωr0−1 + chor− (r − r+)

−iωr0−1)(1 +O(r − r+)) , (4.2)

where chor± are constant and r0, which has the dimension of a radius, is defined by

r0 = r+

√
r+(r+ + 2r−)

r+ + r−
. (4.3)

As usual, QNMs are outgoing at infinity and ingoing at the horizon, corresponding to the
boundary conditions c∞− = 0 and chor+ = 0. Following the same strategy as in the GR case, we
choose the following ansatz for the solution,

Xax(r) = eiωrriµω+1

(
r − r+

r

)−iωr0 ( f0(u)
f1(u)/u

)
with u =

r − r+
r

, (4.4)

where f0 and f1 are supposed to be bounded in the whole domain u ∈ [0, 1] and should satisfy the
boundary conditions

f0(0) =
r+
r0

f1(0) and f0(1) = −f1(1) , (4.5)

We again decompose the two functions f0 and f1 in power series,

f0(u) =
∞∑
n=0

anu
n and f1(u) =

∞∑
n=0

bnu
n , (4.6)

and the differential system (3.11) leads to a recurrence relation for the vector Yn, defined as in
(2.20), that now involves 5 terms,

αnYn+1 + βnYn + γnYn−1 + δnYn−2 + εnYn−3 = 0 , n ≥ 3 . (4.7)

The matrix coefficients are given explicitly in appendix A. This relation still holds for 0 ≤ n < 3 in
which cases the number of terms is reduced, defining αn = βn = γn = δn = ϵn = 0 when n < 0 by
convention. When n = 0, it reduces to a 2-terms relation as it involves Y1 and Y0 only; when n = 1,
it is a 3-terms relation (between Y2, Y1 and Y0); when n = 2, it is a 4-terms relation (between Y3,
Y2, Y1 and Y0).

The process of casting the recurrence relation (4.7) into a three-term recurrence relation is
completely similar to the one presented in section II B 2, with an additional step since the relation
in the BCL case is five-term long. It is therefore always possible to recover a recurrence relation
of the form (2.23), with values of the matrix coefficients α̃n, β̃n and γ̃n depending on r+ and r−.
The expressions of these matrices are given in appendix B.

B. Numerical results

In this subsection, we present the QNM frequencies obtained by our numerical method applied
to the BCL axial perturbations. Convergence tests and consistency checks (via comparison with
other references or methods) will be discussed in section V and in appendix C.
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As explained above, the QNM spectrum is obtained from a resolution of (2.33) with the trun-
cation (2.34) at a given rank N . We use a root-finding method to locate the position of the modes
and the threshold for convergence is set at variations smaller than 10−6, unless stated otherwise.

We work in units of r+, which corresponds to setting r+ = 1. On figure 1 where λ = 2 (which
corresponds to ℓ = 2), we show the first 40 modes and their migration in the complex plane when
r− goes from 0, which corresponds to the Schwarzschild case, to 0.5. Hence, as already mentioned,
r− parametrises the deviation from GR. We have also noticed that the evolution of these modes
with r− is very similar for higher values of lambda. For this reason we do not show the QNM
spectra for other values of λ.

−1.0 −0.5 0.0 0.5 1.0

<(ω)

−8

−6

−4

−2

0

=(
ω

)

Schwarzschild (GR)

BCL

FIG. 1: Axial quasinormal mode spectrum of the BCL black hole, for λ = 2 and r+ = 1. The parameter
r− varies between 0 (Schwarzschild case, represented by diamonds) and 0.5. Blue dots correspond to

increments of 0.05 to the value of r−.

We observe that higher-overtone modes are much more sensitive to small variations of r− (and
thus to deviations from GR) even though this does not seem to come from a spectral instability
[47] here. For high overtones, the QNM points appear to be aligned along a straight line which, in
contrast with the Schwarzschild case, is no longer vertical when r− ̸= 0. We can check that modes
of much higher overtone still follow the same line, which seems to indicate that it corresponds to
a real asymptote of the QNM spectrum. We have not been able to find an analytical argument
to explain this behaviour. On figure 2, we illustrate the existence of such an asymptote at high



13

overtones, which can be parametrised by the equation

Im(ω) = a× Re(ω) + b . (4.8)

The dependence on r− of the slope of the asymptote is shown in figure 3. The Schwarzschild case

−80−78−76−74−72−70

=(ω)

4.75

5.00

5.25

<(
ω

)

QNMs

Asymptote

FIG. 2: Asymptote of the QNM spectrum for λ = 2, r+ = 1 and r− = 0.5. The real and imaginary axes
are rotated by 90 degrees compared to figure 1 for the sake of clarity.

r− = 0 corresponds to a vertical asymptote with 1/a = 0. As r− becomes larger, the asymptote is
less and less vertical.

0.0 0.5 1.0 1.5

r−

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

1/
a

FIG. 3: Inverse of the slope a of the asymptote for r+ = 1 and λ = 2. Values of r− span between 0
(Schwarzschild case where the asymptote is vertical and 1/a = 0) and 1.5, with increments of 0.1.

As a final remark, we recall that the Schwarzschild QNM spectrum is well-known to contain
special modes which have a vanishing real part, meaning they are purely-damped (non-oscillating)
modes. They are associated with an “algebraically special” solution of the perturbation equa-
tions, obtained in [48], and linked to the Robinson-Trautman metric describing nonperturbative
gravitational waves onto a Schwarzschild background [49]. When ℓ = 2, there is one such mode
which corresponds to the overtone n = 8 on figure 1. In the case of the BCL black hole, one sees
that the mode of overtone n = 8 is no longer purely-damped: as r− becomes non-zero, this mode
splits into two modes of positive and negative real parts. Nevertheless, one can see that every
subsequent mode moves towards the imaginary axis when r− increases and, for some critical value
of r−, reaches this axis. As a consequence, for some particular values of r−, algebraically special
modes still exist for the BCL black hole.
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V. CONSISTENCY CHECKS

The numerical resolution of (2.33) requires a truncation of the recurrence relations at some
finite rank N (2.34). Such a truncation enables us to compute the matrices Rn for any n ≤ N and
then to solve (2.33).

A. Convergence of the method when N increases

As a first consistency check, we need to make sure that the QNM frequencies thus computed
converge towards a fixed value when N increases. This is shown on figure 4 where we plot the
difference between the computed QNM value ω in the Schwarzschild case (r− = 0) of axial per-
turbations and the known value ω∗ computed in [25]. We study several values of the overtone
n. We observe that as N increases, all modes converge to their theoretical value; however, higher
overtones need higher values of N to reach a good precision.

101 102 103 104

N

10−7

10−6

10−5

10−4

10−3

10−2

|ω
−
ω
∗|

n = 0

n = 15

n = 56

FIG. 4: Convergence of the computed QNM frequencies, for different overtones. The convergence
threshold is set at 10−6, which explains why the convergence does not improve beyond this value.

B. QNM mode functions

Given a value ω in the QNM spectrum, it is possible to perform a self-consistency check by
computing f0 and f1 in (4.6) and verifying that the resulting functions solve the perturbation
equations with the required boundary conditions as expected.

To see this is indeed the case, we first reformulate the perturbation equations in terms of f0
and f1. Hence, we substitute the ansatz (4.4) into the original perturbation equations (3.11-3.12),
and we obtain that f0 and f1 must satisfy

E0 ≡ g′0(r) + κ1(r)g0(r) + κ2(r)g1(r) = 0 ,

E1 ≡ g′1(r) + κ3(r)g0(r) + κ4(r)g1(r) = 0 , (5.1)
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where gi(r) = fi(u(r)) and the functions κi are given by

κ1(r) =
1

r

[
−1 + iω

(
r − r− + r+ − r2+r0

r − r+

)]
,

κ2(r) =
irω

r − r+
− 2iλ

r + r−
r3ω

,

κ3(r) =
ir(r2 + 2r+r−)

(r − r+)(r + r−)2
,

κ4(r) =
1

r + r−
+ iω

[
1 +

1

r

(
r+ − r− − r2+r0

r − r+

)]
. (5.2)

We recall that the constants r± and r0 are defined in (3.5) and in (4.3), respectively. Once we
have these equations, we wish to check that, when ω belongs to the QNM spectrum, the functions
f0 and f1 obtained numerically are indeed solutions. We perform two tests: first we pick up a
frequency which is not a QNM and then we compare to the case where ω belongs to the spectrum.

Let us start by considering an arbitrary value of ω. We compute the coefficients an and bn and
truncate the power series in (2.19) at some order M . We plot in figure 5 the values of an and bn
and see that they do not tend to zero, but on the contrary seem to diverge, which implies that the
series (2.19) are ill-defined. Furthermore, whereas equations E0 = 0 and E1 = 0 are verified close
to the horizon, which is consistent with the fact that the power series decomposition of f is done
with respect to the variable u = (r − r+)/r , while at high values of r, the equations are clearly
not satisfied very far from zero as E0 and E1 reach a constant value . As a consequence, when ω is
not a QNM frequency, the numerical method does not lead to a solution for f0 and f1.

0 50 100 150 200

n

101

103

105

|an|
|bn|

10−1 101 103

r−r+
r+

10−20

10−13

10−6

101

108

|E0|
|E1|

FIG. 5: Absolute value of the coefficients an and bn along with the absolute value of equations E0 and E1
for r+ = 1, r− = 0.2, λ = 2 and ω = 0.5− 0.3i. The truncation is taken at M = 200.

Let us now study the situation where ω belongs to the QNM spectrum. As an example, we take
the fundamental mode ω0 for ℓ = 2 when r− = 0.2. The numerical calculation gives

ω0 = 0.785460− 0.184148i or ω0 = 0.78546018859393− 0.18414793488781i , (5.3)

when the convergence threshold is put at 10−6 or at 10−14 respectively. Then, we compute the
coefficients an and bn for these two different precisions. The results are plotted in figure 6. We see
that the first coefficients do seem to converge to zero, at least up to a certain value of n represented
by a dotted vertical line. As the accuracy of the mode increases, the convergence of the sequences
an and bn improves. Henceforth, we should truncate the sequence at the point where the coefficients
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0 50 100 150 200

n

10−9

10−6

10−3

100

|an|
|bn|

(a) 6-digits accuracy

0 50 100 150 200

n

10−9

10−6

10−3

100 |an|
|bn|

(b) 14-digits accuracy

FIG. 6: Absolute values of the coefficients an and bn for r+ = 1, r− = 0.2, λ = 2 and ω = ω0. We consider
two cases: in 6a, we compute the value of ω0 up to 6 decimals and in 6b, we compute it up to 14 decimals.
In both cases, the truncation is taken at M = 200. The vertical dotted line corresponds to threshold values

of n above which the coefficients do not seem to converge to zero anymore.

start diverging: this means that with 6-digit accuracy, we should take M ≃ 20 while using 14-digit
accuracy, we should use M ≃ 100.

Finally we evaluate E0 and E1 to see whether the two series are indeed solutions of the equations.
As in the previous case, these two equations are satisfied near the horizon. It is more interesting
to look at these equations in the limit r → ∞ where both equations converge towards a constant
value at infinity similarly to what was seen in figure 5 for a non-QNM value of ω. Furthermore,
we notice that the asymptotic values for |E0| and |E1| are very close, and then we define E∞ by

E∞ = lim
r→∞

|E0| ≃ lim
r→∞

|E1| . (5.4)

On figure 7, we plot the values of E∞ for different truncation values M . We find that, at low
truncation rank M , E∞ decreases with M and reaches very low values. This means that the
equations are solved and the value of ω is indeed a QNM. At higher values of M however, equations
do not seem to converge to zero anymore: this is because the sequences of coefficients an and bn
have stopped converging (as one can see in figure 6). What is important is that this threshold on
M increases as the precision on the QNM gets better: an arbitrarily high precision on the QNM
frequency would lead to fully converging series of an and bn, and therefore a monotonous behaviour
of E∞.

In conclusion, we have shown that the QNM frequency ω computed with our method is associ-
ated with mode functions that do obey the perturbation equations (5.1). As the truncation value
of the series (2.19) increases, we have checked that equations E0 and E1 get closer to zero, at least
up to a threshold determined by the accuracy with which the QNM frequency was computed. This
constitutes a strong self-consistency check of our method.

C. Initial coefficient vs. boundary condition at the horizon

Each QNM computed is such that the determinant of α̃0R0+Q0 is zero, which means that this
matrix admits at least one null direction Y0 (2.28). However, Y0 is not arbitrary and it has been
fixed by the asymptotic behaviour of the differential system at the horizon, given by (4.5) for the
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25 50 75 100 125

M

10−7

10−6

10−5

10−4

10−3

10−2

E ∞
6-digits

14-digits

FIG. 7: Values of E∞ for r+ = 1, r− = 0.2, λ = 2 and ω = ω0, for varying values of the truncation. We see
that values decrease as M increases, which means that the perturbation equations are verified. When M
becomes too high, convergence stops. We see that this threshold on M increases with the precision sought

for the NM value: as the precision increases, the threshold also increases.

BCL black hole, which leads to

Y0 ∝
(
r+
r0

)
. (5.5)

In order to check this property, we compute a null vector U of α̃0R0 +Q0 for each QNM we have
identified. To compare the directions of U and Y0, we compute their determinant or, equivalently,
the quantity η defined by

η =
U1

U0
− r0

r+
. (5.6)

The results are given in table (II) for different QNMs and different BH parameters. One can
observe that the numerical vector U is colinear with theoretical null vector Y0, which is another
strong indication of the consistency of our method. Notice however that the agreement worsens as
the overtone increases. Interestingly, it has been observed (see [32]) that solving the equation

det(α̃mRm +Qm) = 0 (5.7)

for m > 0 gives a better precision for the computation of the overtone m. Then, in order to have a
good precision for high overtones, one should instead solve (5.7) for the corresponding value of m.

VI. DISCUSSION AND CONCLUSIONS

In the present work, we have implemented a numerical computation of the QNM frequencies
based on the first-order form of the BH perturbation equations, using a matrix continued fraction
method. To apply this method, an important ingredient is the knowledge of the asymptotic be-
haviours of the modes near the BH horizon and at spatial infinity. This information is obtained
by using our previous works which provided an algorithm that can systematically identify the
asymptotics of such first-order systems.

Here, we have applied our method to the Schwarzschild case, using the first-order form of the
GR perturbed equations rather than the second-order Schrödinger equation, as a way to check the
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n η

0 1.1× 10−6

1 1.5× 10−6

2 4.3× 10−6

3 3.8× 10−6

4 1.2× 10−5

5 3.4× 10−5

6 6.2× 10−5

7 1.9× 10−4

8 2.0× 10−4

9 3.0× 10−5

n η

0 9.9× 10−7

1 2.9× 10−6

2 7.1× 10−6

3 7.8× 10−6

4 2.1× 10−5

5 3.9× 10−5

6 6.3× 10−5

7 2.3× 10−4

8 3.9× 10−4

9 4.3× 10−4

n η

0 8.7× 10−7

1 2.6× 10−6

2 4.6× 10−6

3 1.2× 10−5

4 1.8× 10−5

5 3.7× 10−5

6 8.1× 10−5

7 2.1× 10−4

8 5.0× 10−4

9 6.5× 10−4

TABLE II: Value of η for r− = 0 (left), r− = 0.25 (middle) and r− = 0.5 (right). We have fixed r+ = 1,
λ = 2, N = 1000. We solved the equation (5.7) for m = 0.

validity of this new approach, qualitatively and quantitatively. We have indeed verified that the
Schwarzschild QNMs can be obtained in this way with a high precision.

We have then used the same method to compute, for the first time, the QNM frequencies of an
exact BH solution obtained in a particular Horndeski theory. Interestingly, since the BH solution
depends on a parameter that quantifies the deviation from the Schwarzschild solution, we can
visualise the migration, in the complex plane, of the initial Schwarzschild QNMs as this parameter
is increased. To check the robustness of our numerical results, we have performed various tests and
compare our results with those based on other techniques.

For simplicity, we have restricted the present work to axial perturbations, where the scalar field
perturbation vanishes, so that there is only one degree of freedom as in GR, even if the equations
of motion are different. In this case, the recurrence relation involves matrices defined in a 2-
dimensional vector space. Since this system can be easily rewritten in a second-order Schrödinger-
like equation, we were able to check the accuracy of our numerical method versus existing methods
that rely on such a reformulation. This constitutes a proof of concept for our numerical method,
confirming that it gives high-precision results.

Moreover, our method should be readily applicable to a first-order system of any dimension. In
particular, we expect the same technique to be applicable to polar perturbations, which contain
the scalar field perturbation in addition to one gravitational mode, leading to a recurrence relation
defined in a 4-dimensional space. We plan to pursue this in future work.

Beyond the specific numerical techniques used to compute the quasi-normal of a specific so-
lutions, let us mention that recent discussions have raised interesting questions concerning the
so-called spectral instability [47, 50–52]. Indeed, it has been observed that, under some hypothe-
ses, a “small-scale” deviation from General Relativity could lead to a “large” deviation of the
overtones, not necessary of very high (complex) frequency. These observations question the rele-
vance of using QNM to test deviations from GR in the ringdown, even though the deviation is very
“small”. However, in the case of the BCL Black Hole, we do not see such an instability: overtones
deviate from the ones of Schwarzschild but in a linear controlled manner. Hence, it would be
interesting to understand why some deviations lead indeed to a spectral instability and why others
do not.
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Appendix A: recurrence relation for the BCL black hole

The matrix coefficients entering the 5-term recurrence relation (4.7) that we have obtained for
the BCL black hole are given by

αn =

(
n+1−ir0ω

r+
iω

ir+(2r− + r+)ω (r+ + r−)
2 n+1−ir0ω

r+

)
, βn =

(
−2n−1+iω(2r++2r0−r−)

r+
−2iλ(r++r−)

r3+ω

−4ir+r−ω β22

)
,

γn =

(
n−iω(r++r0−r−)

r+

2iλ(2r++3r−)
r3+ω

2ir+r−ω γ22

)
, δn =

(
0 −2iλ(r++3r−)

r3+ω

0 δ22

)
,

εn =

0 2iλr−
r3+ω

0
r2−
r+

[n− 3− iω(r+ + r0 − r−)]

 .

The expressions of the coefficients β22, γ22 and δ22 are given by

β22 =
r+ + r−

r+

[
−2n(2r− + r+) + r+ + iω(2r2+ + r+(2r0 + r−) + r−(4r0 − r−))

]
,

γ22 =
3ir3−ω

r+
+

r2−
r+

[6(n− 1)− iω(r+ + 6r0)] + r−[6n− 8− iω(5r+ + 6r0)] + r+[n− 2− iω(r+ + r0)],

δ22 =
r−
r+

[
−2n(r+ + 2r−) + 5r+ + 8r− + iω(−3r2− + 2r+(r0 + r+) + 2r−(2r0 + r+))

]
.

One recovers the coefficients for the Schwarzschild recurrence relation given in (2.22) in the
limit r+ = µ and r− = 0.

Appendix B: Gaussian reduction for a 5-term recurrence relation

In this appendix, we describe the Gaussian reduction procedure that enables us to reduce the
five-term recurrence relation (4.7) into a three-term recurrence relation of the form (2.23). We give
a proof by induction. Let us assume that there exists p ≥ 3 such that the five-term recurrence
relation (4.7) for all n ≤ p can be equivalently reformulated into the form

α̃nYn+1 + β̃nYn + γ̃nYn−1 = 0 , (B1)

for all n ≤ p as well. Then, we want to prove that it is possible to cast the next order,

αp+1Yp+2 + βp+1Yp+1 + γp+1Yp + δp+1Yp−1 + εp+1Yp−2 = 0 , (B2)

into a similar form.
The first step consists in using (B1) at order p− 1,

α̃p−1Yp + β̃p−1Yp−1 + γ̃p−1Yp−2 = 0 . (B3)
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If we assume γ̃p−1 to be invertible, we can eliminate Yp−2 in (B2) and we obtain,

αp+1Yp+2 + βp+1Yp+1 +
(
γp+1 − εp+1 · γ̃−1

p−1 · α̃p−1

)
Yp +

(
δp+1 − εp+1 · γ̃−1

p−1 · β̃p−1

)
Yp−1 = 0 . (B4)

Now, we use once more (B1) but now at order p so that we can express Yp−1 in terms of Yp and
Yp+1 assuming that γ̃p is invertible. Hence, after a direct calculation, we end up with the 3-term
recurrence relation,

αp+1Yp+2 +
[
βp+1 −

(
δp+1 − εp+1 · γ̃−1

p−1 · β̃p−1

)
· γ̃−1

p · α̃p

]
Yp+1

+
[(
γp+1 − εp+1 · γ̃−1

p−1 · α̃p−1

)
−
(
δp+1 − εp+1 · γ̃−1

p−1 · β̃p−1

)
· γ̃−1

p · β̃p
]
Yp = 0 . (B5)

Finally, as the hypothesis (B1) is true for any n ≤ 3 (i.e. for p = 3), the five-term recurrence relation
can be equivalently reformulated as (B1) for any n. Furthermore, the new matrix coefficients α̃n+1,
β̃n+1 and γ̃n+1 can be computed recursively from

α̃n+1 = αn+1 , (B6)

β̃n+1 = βn+1 −
(
δn+1 − εn+1 · γ̃−1

n−1 · β̃n−1

)
· γ̃−1

n · α̃n , (B7)

γ̃n+1 =
(
γn+1 − εn+1 · γ̃−1

n−1 · α̃n−1

)
−
(
δn+1 − εn+1 · γ̃−1

n−1 · β̃n−1

)
· γ̃−1

n · β̃n . (B8)

Appendix C: Comparison with other methods

In order to further verify the authenticity of the computed QNMs, it is important to compare
their value outside of the Schwarzschild limit r− = 0. However, until now, there has been no
investigation of the QNMs of the BCL black hole in the literature. Therefore, we adapt existing
methods to the case of this black hole and compare the results obtained.

In the following, we use the fact that axial perturbations of the BCL black hole can be cast into
the Schrödinger-like form [37]

−d2Ψ

dr2∗
+ (V (r)− ω2)Ψ = 0 , (C1)

with the potential given by

V (r) =
(r − r+)(r + r−)

r4(r2 + 2r+r−)3
×

6∑
k=0

pkr
k , (C2)

where the coefficients pk are given by

p0 = r3+r
3
−(16λ− 5) , p1 = 3r2+r

2
−(r− − r+) , p2 = 6r2+r

2
−(4λ− 1) ,

p3 = 4r+r−(r− − r+) , p4 = 3r+r−(4λ− 1) , p5 = 3(r− − r+) ,

p6 = 2(λ+ 1) . (C3)

The tortoise coordinate r∗ is defined such that

dr∗
dr

=
1

A(r)
, (C4)

with A(r) given in (3.4).
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a. WKB method

The WKB method allows one to compute QNMs by approximating the potential V near its
maximum. It was proposed originally in [53], improved in [54, 55] and further improved in [56, 57]
(see [58] for a review). The results of [55], sufficient for our computation, can be summed up as
follows: if the potential V seen as a function of r∗ has a maximum at r∗ = r∗0, then one can
decompose the potential as

V (r∗) = V0 +
1

2
V

(2)
0 (r∗ − r∗0)

2 + ... = V0 +

+∞∑
k=2

1

k!
V

(k)
0 (r∗ − r∗0)

k . (C5)

If one truncates the decomposition of (C5) at order 6, then the QNMs ωn are given by the solutions
of

ω2
n =

(
V0 +

√
−2V

(2)
0 Λ

)
− i

(
n+

1

2

)√
−2V

(2)
0 (1 + Ω) , (C6)

where Λ and Ω are functions of V
(2)
0 , ..., V

(6)
0 whose expressions are given in [55].

Equation (C6) can then be solved for ωn. In table III, we compare the QNM values obtained
via the matrix continued fraction method and the WKB method for a nonzero r−.

n Matrix continued fraction WKB method

0 0.843719 - 0.197227i 0.843204 - 0.19805i
1 0.794262 - 0.607533i 0.793898 - 0.60744i
2 0.720858 - 1.059862i 0.715865 - 1.03543i
3 0.661666 - 1.556088i 0.615373 - 1.47301i
4 0.632640 - 2.077741i 0.490639 - 1.91668i
5 0.627338 - 2.610898i 0.340383 - 2.36668i
6 0.636227 - 3.149321i 0.164472 - 2.82404i

TABLE III: Comparison between the first QNM values obtained via our numerical method and the WKB
approximation, for λ = 2, r+ = 1, r− = 0.5.

We observe that the first overtones are very well approximated by the WKB method while this
method fails at higher values of n.

b. Spectral decomposition

We can also compare our QNM computation with another fully numerical computation, based on
the numerical resolution of the Schrödinger-like reformulation of the axial perturbations equations.
This method was developed in [59] and relies on a spectral decomposition of the mode function
in order to cast the QNM computation problem into a generalized eigenvalue problem. It is
available as a Mathematica package and only requires the Schrödinger-like equation (C1) and the
potential (C2), rescaled in an appropriate way.

In table IV, we compare the QNM values obtained via the matrix continued fraction method
and this numerical method (called QNMSpectral) for a non-zero r−.

We observe that both methods agree up to a very high precision on the first overtones (we
used a convergence threshold of 10−14 to account for this). However, it is not possible to reach
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n Matrix continued fraction QNMSpectral method

0 0.84371827443 - 0.19722719264i 0.84371827438 - 0.19722719255i
1 0.79426238123 - 0.60753311430i 0.79426237852 - 0.60753340736i
2 0.72085805503 - 1.05986135470i 0.72088369854 - 1.05978730679i

TABLE IV: Comparison between the first QNM values obtained via our numerical method and the
QNMSpectral numerical routine, for λ = 2, r+ = 1, r− = 0.5.

higher values of n using the QNMSpectral approach (and this method requires a Schrödinger-like
reformulation, which is not available for polar perturbations).
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