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IMPROVING RANS MODELING WITH DATA-ASSIMILATION FOR COMPRESSIBLE FLOWS

This work presents the data assimilation (DA) strategy implemented in a high-order Discontinuous Galerkin solver for compressible turbulent flows. We present three DA formulations to treat highly compressible flows: the first one is a Boussinesq-type correction, where we inject source terms in the momentum and energy equations; the second one is an eddyviscosity correction, where we aim at fixing the eddyviscosity alone; and the third one consists of using a source term in the Spalart-Allmaras transport equation. Advantages and inconveniences of each method are discussed. Results regarding a turbulent flow around a square cylinder show the predominance of the first DA formulation in the mean flow field reconstruction. Subsequently, the same formulation is tested in a configuration of shock-wave/turbulent boundarylayer interaction. If the entire field is taken into account in the cost function, a significant correction is achieved for the mean velocity field along with wall variables such as the skin-friction and pressure coefficient distributions. On the other hand, if only wall measurements are considered, the assimilated results are greatly improved but the skin-friction lacks accuracy.

Introduction

Reynolds-Averaged Navier-Stokes (RANS) simulations have an active role in the development of the aerospace industry. Due to their low computational cost, they are widely used in the design of airplanes and turbo-machines. However, a mathematical model is essential to describe the behavior of the unresolved turbulence, which is taken into account by the Reynolds stress tensor in the momentum equation and the turbulent heat flux in the energy equation. The use of data-assimilation (DA) and machine-learning (ML) algorithms has drastically impacted the development of new turbulence models. The availability of large databases from experiments and high-fidelity simulations contributed to fix classical turbulence models by seeking optimal field-parameters through an optimisation problem. In early works, [START_REF] Parish | A paradigm for datadriven predictive modeling using field inversion and machine learning[END_REF] used field inversion to obtain corrective spatially distributed functional terms, offering a route to directly address model-form errors and used machine learning techniques to reconstruct the model corrections in terms of variables that appear in the closure model. Recent results obtained on a strongly detached academic configuration are very encouraging: in the case of incompressible flows, Franceschini et al. (2020) showed that the Spalart-Allmaras (SA) model based on the Boussinesq hypothesis can be corrected by adding a vector source term to the momentum equations. Volpiani et al. (2021) coupled DA and ML techniques in order to map a source term in the momentum equations in the features space. Here, many DA formulations are proposed to treat highly compressible flows and the advantages and inconveniences of each method are explained. The work is organized as follows: Section 2 presents the baseline model problem and the numerical approach for the space-time discretization. In section 3, we describe the three DA strategies and test them on a turbulent flow around a squared cylinder in order to measures the feasibility and performance to correct the mean flow field. In section 4, the best DA formulation for the reconstruction of the mean velocity field is tested on the shockwave/turbulent boundary-layer interaction (SWTBLI) configuration. A discussion concerning the choice of the optimiser algorithm and the cost-functional expression is also presented. Finally, in section 5 we present conclusions and perspectives for future studies and applications.
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Baseline model problem and discretization

RANS equations

In the following, we focus our discussion on the discretization of the compressible Reynolds-averaged Navier-Stokes (RANS) equations using a Discontinuous Galerkin (DG) formulation. Let Ω ∈ R d be a bounded domain where d is the space dimension and consider the following system of equations:

∂ t u + ∇ • f c (u) -∇ • f v (u, ∇u) = 0 (1)
in Ω × (0, ∞) with initial condition u(•, 0) = u 0 (•) in Ω and ad-hoc boundary conditions prescribed on ∂Ω.

The vector u = ρ, ρv ⊤ , ρE ⊤ represents the conservative variables with ρ the density, v = (u, v, w) ⊤ the velocity vector and E = e + v 2 2 the total specific energy where e denotes the internal specific energy. The nonlinear convective fluxes in (1) are defined by

f c (u) =       ρu ρv ρw ρu 2 + p ρuv ρuw ρuv ρv 2 + p ρvw ρuw ρvw ρw 2 + p ρHu ρHv ρHw      
, where H = E + p ρ is the total specific enthalpy and p denotes the pressure defined by the equation of state for a polytropic ideal gas p = (γ-1)ρe with γ the ratio of the specific heats. The nonlinear diffusive fluxes in (1) are defined as

f v (u, ∇u) =   0 τ + τ r v ⊤ (τ + τ r ) -q ⊤ -q ⊤ t   ,
where τ and q denote respectively the viscous stress tensor and the heat flux vector. The Reynolds stress tensor τ r and the turbulent heat flux q t are modeled using a Boussinesq-like assumption:

τ r = µ t - 2 3 (∇ • v) I + ∇v + ∇v ⊤ , q t = - µ t C p P r t ∇T,
with µ t the turbulent dynamic viscosity, and P r t = 0.9 the turbulent Prandtl number.

Spalart-Allmaras one-equation model

In this work, we use the Spalart-Allmaras One-Equation model (SA), firstly proposed by [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF]. The turbulent dynamic viscosity is represented as

µ t = ρ νf v1 (2) 
with

f v1 = χ3 χ3 + c 3 v1 , χ = ρ ν µ .
The turbulent variable ν is obtained from the oneequation model by the following transport equation

∂ t ρ ν + ∇ • ρ νv ⊤ - 1 σ ∇ • ξ∇ ν ⊤ = c b1 Sρ ν -c w1 f w ρ ν 2 d 2 w + c b2 ρ σ ∇ ν • ∇ ν,
where the diffusive coefficient reads ξ = µ + ρ ν. Moreover, here S = S + S, with S = ∥∇ × v∥ L2 ,

S = νf v2 κ 2 d 2 w
, d w is the distance to the wall, and

f v2 = 1 - χ 1 + χf v1 , f w = g 1 + c 6 w3 g 6 + c w3 1 6 , g = r + c w2 r 6 -r , r = ν Sκ 2 d 2 w , c w1 = c b1 κ 2 + 1 + c b2 σ .
For sake of completeness, we give the values of the remaining involved constants: σ = 2 3 ,c b1 = 0.1355, c b2 = 0.622, κ = 0.41, c w2 = 0.3, c w3 = 2 and c v1 = 7.1. Negative values of the eddy viscosity (2) are limited using a negative version of the SA model as advocated in [START_REF] Allmaras | Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model[END_REF].

Different modifications of the original SA-model have been presented in order to improve the turbulence closure in a large variety of scenarios. Here, we present the correction proposed by [START_REF] Spalart | Correction to the Spalart-Allmaras Turbulence Model, Providing More Accurate Skin Friction[END_REF] 

Discontinuous Galerkin formulation

The DG method consists in defining a discrete weak formulation of the problem (1) with initial and boundary conditions. The domain Ω is partitioned into a shape-regular mesh Ω h consisting of nonoverlapping and nonempty elements κ. We look for approximate solutions in the function space of discontinuous polynomials of total degree at most p in order to obtain a (p + 1)-order accuracy in the spacial discretization. The numerical solution of the problem (1) is sought under the form

u h (x, t) = Np l=1 ϕ l κ (x)U l κ (t), ∀x ∈ κ, κ ∈ Ω h , ∀t ≥ 0,
where U l κ 1≤l≤Np are the degrees of freedom in the element κ. The subset ϕ l κ 1≤l≤Np constitutes a hierarchical and orthogonal modal basis of the function space of discontinuous polynomials, restricted onto the element κ and N p = (p+d)! p!d! is its dimension.

Data assimilation methodology

The DA procedure combines the Aghora CFD software, a high-order discontinuous Galerkin (DG) solver for compressible turbulent flows developed at ONERA by [START_REF] Renac | Aghora: A High-Order DG Solver for Turbulent Flow Simulations[END_REF], and the L-BFGS-M optimisation algorithm. The DA problem consists in looking for one or more optimal parameters that minimise the discrepancy between the RANS solution and a highfidelity solution, usually given by experiments, direct numerical simulations (DNS) or large-eddy simulations (LES). The discrepancy is measured via an objective function based on mean-flow physical quantities.

The L-BFGS-M algorithm belongs to the family of quasi-Newton methods and requires the gradient of the objective function with respect to the parameters to optimise. Finite-difference techniques are highly expensive for our test cases. Hence, we refers to Franceschini et al. ( 2019) work and use the so-called adjoint approach based on the Lagrangian formalism to estimate the required gradient.

DA-formulations

In this work, we develop independently three different DA formulations. The first approach consists in adding a source term f DA = (0, f x , f y , f z , f e + f x u + f y v + f z w) ⊤ in the steady momentum and energy equations:

∇ • f c (u) -∇ • f v (u, ∇u) = ρf DA .
This approach is totally independent of the turbulent model coupled with the RANS equations and represents an extension of [START_REF] Franceschini | Modeling Strategies for Aerodynamic Flow Reconstruction from partial measurements[END_REF] work to compressible flows.

The second approach focuses on the Boussinesq hypothesis: the Reynolds stress tensor τ R is assumed proportional to the trace-less mean strain rate tensor:

τ R = (1 + χ)µ t ∇u + ∇u ⊤ - 2 3 Tr(∇u) - 2 3 ρkI
where k is the turbulent kinetic energy. The DAcorrection is injected in the computation of the eddyviscosity coefficient by the non-dimensional scalar parameter χ. The correction is not directly linked to the turbulent model used to compute µ t . The only constraint is to use turbulence models based on the Boussinesq approximation. The third DA approach consists in the correction of the Spalart-Allmaras (SA) transport equation. A source term f ν is injected in the SA model

∇• ρ νv ⊤ - 1 σ ∇• ξ∇ ν ⊤ = Prod-Dest-Diff+ρνf ν
and aims at fixing the turbulent variable ν. For obvious reasons this approach is directly linked to the SA-model. Note that all kind of variations of the SAmodel are eligible to this approach since f ν is not dependent on any modeled term in the SA-transport equation.

Validation and benchmark test case

In order to validate progressively our approaches using the Aghora solver, we first consider an incompressible test case. We aim to correct the flow around a square cylinder (SQCYL) at high Reynolds number Re = 22000 and Mach number M = 0.1 based on the length of the square and freestream quantities. The reference field refers to a DNS solution on the same configuration as in [START_REF] Trias | Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study[END_REF]. The objective function that we choose to minimise is based on the L2-distance to the DNS velocity field.

Figure 1a compares the x-axis momentum ρu field in RANS and DNS simulations: the mean-flow field prediction is challenging because of the curvatures imposed by the sharp corners of the cylinder that generate flow separation, shear layers and an unsteady wake. The length of the recirculating bubble is overestimated by the RANS computation.

In figs. 1b to 1d we present the ρu-field for the three DA-RANS formulations and compare them with the reference DNS solution. The first and third approaches give the best correction of the velocity field. However, the second approach lacks precision and at the end of the optimisation, the assimilated parameter is not able to correct the flow field. 

Results on the SWTBLI case

The shock-wave/turbulent boundary-layer interaction is a relevant phenomenon which appears during the study of many practical supersonic and hypersonic flows applications. Indeed, in modern highspeed aerodynamics, a large number of circumstances can provoke the creation of strong shock waves. The collision of a shock wave over a boundary layer causes complex phenomena, including the retardation of the boundary layer flow and the propagation of the shock in a multilayered structure, as explained in [START_REF] Délery | Some physical aspects of shock wave/boundary layer interactions[END_REF]. In our work, we use the DNS database generated by [START_REF] Volpiani | Effects of a nonadiabatic wall on supersonic shock/boundary-layer interactions[END_REF][START_REF] Volpiani | Effects of a nonadiabatic wall on hypersonic shock/boundary-layer interactions[END_REF]. The high-fidelity database presents different Reynolds numbers, deflection angles φ of the shock wave, inlet Mach numbers and wall-torecovery temperature ratios Tw Tr . Several RANS simulations with the Low Reynolds SA-model and a p = 1 polynomial degree representation (SA-RANS-p1) were carried out with inlet Mach number M ∞ = 2.28, adiabatic walls and a set of deflection angles φ = {5.0 • , 6.5 • , 8.0 • , 9.5 • , 11.0 • }. Strong discrepancies between RANS-SA and the DNS were observed. First, an overestimation of the recirculating bubble size is identified. Second, the wall pressure jump does not match completely the DNS reference. Therefore, the main objective of the DA-procedure is to cor- rect the flow field downstream to the interaction with the shock wave. In this section, we present the DAresults obtained for M ∞ = 2.28, adiabatic walls and φ = 9.5 • but similar results were obtained for the other deflection angles.

Data assimilation on forces: error on velocity field weighted by the wall distance. The L2-norm error on the mean velocity fields was chosen as cost function to minimise. However, many observation have been done on the role and importance of the function aimed to be minimised. First, the flow configuration includes strong shocks in the far-field region of the domain and strong velocity jumps are present in the shock position. Relevant error values on the mean velocity field can undermine for slightly mismatches of the shock position. The risk of the optimiser to inject a significant quantitative of forces in the shock region is high and will affect harmfully the process of mean flow correction. Second, shear-flows are categorised by having low values of velocity near walls, due to the non-slip condition and the boundary-layer nature. It is possible that the function will present low values in the near-wall region, especially in the viscous sub-layer, which can affect the optimised parameters, and consequently the assimilated flow field, in this region. For these reasons, we use a geometrical weight w(x) in the cost function, which contributes to raise the importance of flow characteristics near the wall. Several forms of the geometrical weight function were tested and a general form can be written as

J (v) = w(x) 2 ∥v -v DNS ∥ 2 L2 with w(x) = δ 0 d w + ϵ
where δ 0 is the boundary layer thickness at the inlet of the RANS domain, d w is the wall-distance used as well in the SA-model and ϵ = 0.1 is an user-defined parameter to avoid division by zero and control the value of w(x) when d w -→ 0. A remarkable correction of the velocity field has been achieved with a relative reduction of the objective function between one and two orders of magnitude. The function w(x) plays a crucial role in the near-wall correction as shown by the velocity iso-lines in fig. 2.

The use of the geometrical weight allowed to almost perfectly correct the skin friction coefficient and the wall pressure, as shown in fig. 3. The skin friction coefficient in the DA-RANS solution mismatch with the reference DNS solution in the first part of the recirculating bubble but presents a good agreement in the reattachment point and the region downstream the reattachment. The wall pressure field is improved, especially in the shock collision zone. Indeed, the excessive smoothness in the wall pressure slope in the shock collision which appears in the SA-RANS-p1 solution is nicely corrected and matches the DNS solution. In fig. 4, the correction effects are analysed by visualising the mean streamwise velocity field with boundary layer profiles for different stations: the DA mean flow field reconstruction were able to correct the boundary layer zone (x = 30), the separation point prediction (x = 32.5), the velocity profile behaviour in the recirculating bubble, the shock reflection position (x = 35) and the velocity profile behaviour downstream the interaction (x = 37.5).

Comparison of different optimisation algorithms

In this part, we mainly focused on the limitations and capabilities of a few optimisation algorithms. Indeed, the whole optimisation process has been carried out by the L-BFGS-M algorithm and other optimisation algorithms have not been the protagonist of this work so far. Here, a suitable substitute of the L-BFGS-M algorithm is sought among three different algorithms from the family of stochastic gradient descent methods: the Adam algorithm, an algorithm for first-order gradient-based optimization based on adaptive estimates of lower-order moments; the AdaMax algorithm, a variant of Adam based on the infinity norm, both proposed by Kingma and Ba (2015); and the N-Adam algorithm, a variant of Adam with with Nesterov momentum, presented by Dozat ( 2016). An optimisation was performed for the three algorithms and the results obtained did not differ much from each other. The N-Adam algorithm brought slightly better results, which is why this algorithm was chosen to be compared with the L-BFGS-M algorithm. In fig. 5 the objective function and the norm of its gradient in respect to the optimal parameter are shown for the two algorithms. The N-Adam optimiser allows to reach a lower error in the mean velocity field but the number of the function evaluation n f.e. is drastically increased. Beneficial and non-beneficial aspects of the new optimisation algorithm also emerge in the reconstruction of wall quantities, as shown in fig. 6. Even though a better reconstruction of the skin friction coefficient is achieved with the N-Adam optimiser, the wall pressure prediction is negatively affected in areas where even the SA-RANS-p1 solution is closer to the DNS, as the boundary layer upstream the shock impinging. Thus, in this part of the study no optimiser manifested undisputed performances in the minimisation procedure but both algorithms are eligible to be used, depending on the availability of computational cost and required ac-curacy in the reconstruction. 

Wall data-assimilation results

In this section, only wall measurements are considered in the cost function to perform the optimisation. The mean pressure coefficient C p = pw-p∞ 1 2 ρ∞∥v∞∥ 2 is a good candidate, since it can be experimentally obtained. For this reason, the previous DA-procedure was evaluated on the same test case with an objective function based on the L2-norm of the pressure coefficient error. We managed to minimise the error on the pressure coefficient by three orders of magnitude. However, even if the velocity field was greatly improved, there are still differences near the wall if compared to the DNS. In fig. 7 the velocity and pressure is visualised by contours and different x-stations profiles are visualised. Moreover, fig. 8 shows that a great reconstruction is achieved for the wall-pressure distribution but disagreements with the DNS still persist in the skin-friction coefficient.

Conclusions

In the present work, capabilities and performances of three different DA-formulations were tested for compressible turbulent mean flow reconstruction. For the low-Mach number SQCYL test case, the approach based on the source term introduced in the momentum and energy equations outperformed the other two approaches and was tested on the SWTBLI case. The mean flow was successfully reconstructed and good agreement with the DNS was found both in the boundary layer and interaction zones, giving a much more accurate prediction of the recirculation bubble size. Thereafter, other optimisation algorithms were used on the same configuration to achieve a further reduction in error. The choice of the optimiser has a rel- evant impact on the reconstructed field and optimisation performances: higher computational cost and some gaps from the DNS can be avoided with the right choice. Finally, an assimilation using only data extracted from the wall was attempted. The wall pressure was perfectly reconstructed and the velocity field has been improved compared to the SA-model. Some deficiencies are still present in the skin friction coefficient prediction, due to the omission of the velocity field in the function to minimise. The reconstruction of such complex flows as the SWTBLI configuration can be helpful to understand deeply the inaccuracies of RANS models. Moreover, the optimal DA-parameter field can be further analyzed to understand how to model additive terms that complement the Reynolds tensor modelled solely with the assumption of the linear Boussinesq hypothesis.
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  for shear flows at low Reynolds numbers. The modified model is identical to the original model, except that the constant c w2 is changed to the following function c w2,LRe = c w4 + with c w4 = 0.21 and c w5 = 1.5. The effect of c w2,LRe vanishes for large Reynolds numbers value and therefore the calibration of the original model is still preserved for high Reynolds number shear flows.
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 1 Figure 1: ρu ρ∞u∞ ∈ [-0.2, 1.4] for the RANS solution (a) and the three DA-corrections (b-d).
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 2 Figure 2: Mean streamwise velocity iso-lines u u∞ ∈ [-0.1, 0.9]. Black continuous lines refers to DNS solution and coloured dashed lines are labeled in titles.
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 3 Figure 3: Skin friction coefficient C f and dimensionless wall pressure pw p∞ .
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 4 Figure 4: Mean streamwise velocity field with boundary layer profiles at different x-stations.

Figure 5 :

 5 Figure 5: Comparison of L-BFGS-M and N-Adam algorithms.
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 6 Figure 6: Skin friction coefficient C f and dimensionless wall pressure pw p∞ .
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 7 Figure 7: Mean streamwise velocity and pressure profiles at different x-stations and contours.