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CONTRIBUTION TO THE VARIATIONAL CALCULUS OF THE HYBRID RANS/LES PITM METHOD FOR THE SIMULATION OF TURBULENT FLOWS

Non-zonal hybrid RANS/LES methods are of practical interest for engineering applications. Among these methods, the partially integrated transport modeling (PITM) that varies continuously form RANS to DNS depends on a control parameter linked to the grid step size initially developed in spectral space for homogeneous turbulence. We show that variational calculus formally recovers the spectral PITM model derivation and extend its field of application to the case of non-homogeneous flows.

Introduction

Among the hybrid RANS-LES methods that have been developed in the past twenty years [START_REF] Chaouat | The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows[END_REF][START_REF] Schiestel | Turbulence modeling and simulation advances in CFD during the past 50 years[END_REF], the partially integrated transport modeling (PITM) method developed by [START_REF] Schiestel | Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations[END_REF] in the framework of eddy viscosity models (EVM) and [START_REF] Chaouat | A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows[END_REF] in second moment closure (SMC) allows us to transpose any RANS model into its hybrid LES counterpart with seamless coupling between the RANS and LES prevailing regions. Depending on the closure of the equations, the two-equation model accounting for the subfilter turbulent energy k (s) and its dissipation-rate ϵ (s) in EVM is rather used for engineering applications because of its numerical robustness whereas the subfilter stress τ (s) ij and ϵ (s) developed in the framework of second moment closure (SMC) [START_REF] Schiestel | Modeling and simulation of turbulent flows[END_REF] is more appropriate for academic flows with emphasis on fundamental aspects and requires an appropriate numerical procedure to be applied [START_REF] Chaouat | An efficient numerical method for RANS/LES turbulent simulations using subfilter scale stress transport equations[END_REF]. These EVM and SMC models relie on the control function appearing in the dissipation-rate transport equation ϵ (s) that is represented as an adjustable varying parameter in the source/sink term such that

C (s) ϵ2 = C (s) ϵ1 + R(r) (C ϵ2 -C ϵ1 ) (1) 
where C ϵ1 and C ϵ2 are the constant coefficients used in the RANS dissipation-rate equation and R(r), a func-tion of r = k (s) /k defined as the ratio of the modeled turbulence subfilter energy to the total energy. Considering that the R(r) function deserves a major importance in PITM simulations, we will show that the linear equation R(r) = r obtained previously for homogeneous flows in the spectral space (Chaouat andSchiestel, 2005, 2007) can be formally recovered in a mathematical sense from variational calculus in a general case of non-homogeneous flows. An extension to the transport equations for the passive scalar including the half-scalar variance k

θ and its dissipation rate ϵ (s) θ will be also undertaken and we will show that the linear equation R θ (r θ ) = r θ where r θ = k

(s)
θ /k θ is still verified. The variational calculus is also useful to link together different hybrid RANS/LES models [START_REF] Friess | A formulation of PANS capable of mimicking IDDES[END_REF].

Variational analysis

Viscous incompressible flow is considered here. In RANS methodology, each variable ϕ is then decomposed into a statistical mean part ⟨ϕ⟩ and a fluctuating part ϕ ′ such that ϕ = ⟨ϕ⟩ + ϕ ′ whereas in large eddy simulations, the variable ϕ is decomposed into a large scale (or resolved part) φ and a subfilter-scale fluctuating part ϕ > or modeled part such that ϕ = φ + ϕ > . The eddy viscosity PITM model consists in solving the instantaneous filtered equations including the momentum equation coupled with the k (s) and ϵ (s) equations represented in a mathematical form by (Chaouat and Schiestel, 2021)

K( ūi , k (s) , ϵ (s) ) = 0 E( ūi , k (s) , ϵ (s) , R) = 0 (2)
where ūi is the filtered velocity, with appropriate boundary conditions and initial conditions. The parameters k (s) , ϵ (s) , R are some functions of space x i and time t, while K and E denote functionals. Supposing model self-consistency, the variational system to solve, associated with (2) reads

                 δK = ∂K ∂k s δk (s) + ∂K ∂ϵ s δϵ (s) = 0 δE = ∂E ∂k s δk (s) + ∂E ∂ϵ s δϵ (s) + ∂E ∂R δR = 0 (3) 
The PITM method calculates the large scales and models the small scales. In practice, for steady flows in the mean, the system (3) can be considered in the statistical sense. Variations such as δk (s) and δϵ (s) are then random variables but not δR which is a numerical coefficient of the model itself.

General derivation for the dynamic variations in the k (s) -ϵ (s) model The k (s) -ϵ (s) EVM based on the transport equations of the subfilter energy and its dissipation-rate is considered here but the following development prevails also for the τ (s) ij -ϵ (s) model. The transport equation for the subfilter energy reads

Dk (s) Dt = P (s) k -ϵ (s) + J (s) k + d (s) k (4)
where the subfilter production is defined as

P (s) k = -τ (s) ij ∂u i ∂x j (5) 
the turbulent diffusion term is modeled as

J (s) k = ∂ ∂x j C k k (s) 2 ϵ (s) ∂k (s) ∂x j (6)
where C k is a constant coefficient, and the molecular diffusion reads

d (s) k = ∂ ∂x j ν ∂k (s) ∂x j (7) 
The transport equation for the subfilter dissipation-rate reads

Dϵ (s) Dt = C (s) ϵ1 P (s) k ϵ (s) k (s) -C (s) ϵ2 ϵ (s) 2 k (s) + J (s) ϵ + d (s) ϵ (8)
where the turbulent diffusion term is modeled as

J (s) ϵ = ∂ ∂x j C ϵ k (s) 2 ϵ (s) ∂ϵ (s) ∂x j (9)
where C ϵ is a constant coefficient, and the molecular diffusion reads

d (s) ϵ = ∂ ∂x j ν ∂ϵ (s) ∂x j (10) 
In Equations ( 4) and ( 8), D/Dt = ∂/∂t + ūj ∂/∂x j denotes the derivative along the filtered velocity field.

In Equation ( 8),

C (s) ϵ1 = C ϵ1 is a constant coeffi- cient while C (s)
ϵ2 given by Eq. ( 1) is a dynamic coefficient in the PITM method [START_REF] Schiestel | Modeling and simulation of turbulent flows[END_REF]Dejoan, 2005, Chaouat andSchiestel, 2005). The subfilter turbulent stress τ (s) ij is computed assuming the Boussinesq hypothesis where the turbulent eddy viscosity is given by

ν (s) t = C ν k (s) 2 ϵ (s) (11) 
C ν is a constant coefficient. The changes in the solution occurring in a functional space are described by the functional variations (3) in the turbulent field. For flows close to equilibrium, it is reasonable to assume that the material derivatives of any subgrid variable ϕ (s) along mean streamlines is negligible leading to

D ϕ (s) Dt = ∂ ϕ (s) ∂t + ⟨u j ⟩ ∂ ϕ (s) ∂x j = 0 (12)
where ϕ = k (s) or ϵ (s) , so that D k (s) /Dt = 0 and D ϵ (s) /Dt = 0. Consequently, averaging Equations ( 4) and ( 8) leads to

D k (s) Dt = P (s) k -ϵ (s) + J (s) k + j (r) k + d (s) k (13) 
and

D ε (s) Dt = C (s) ϵ1 P (s) k ε (s) k (s) -C (s) ϵ2 ε (s) 2 k (s) + J (s) ϵ + j (r) ϵ + d (s) ϵ ( 14 
)
where

j (r) k k (s) = - ∂ ∂x j u < j k (s) (15) and j (r) ϵ ϵ (s) = - ∂ ∂x j u < j ϵ (s) (16) 
are the new additional terms arising from the statistical procedure assuming the physical hypothesis (12). In order to pursue the variational analysis, the exact resolved flux denoted j

(r) ϕ for both j (r) k or j (r) ϵ
are analytically modeled assuming a gradient diffusion law as

J (r) ϕ (ϕ) = C ϕ ∂ ∂x j k (r) 2 ϵ (s) ∂⟨ϕ⟩ ∂x j (17)
At this step, it is of importance for the following to make clear the difference between the exact contribution j (r) ϕ and its corresponding modeling J (r) ϕ . Using (17), the total diffusion term can be computed as

J (s+r) ϕ = J (s) ϕ + J (r) ϕ ≈ C ϕ ∂ ∂x j k (s+r) 2 ϵ (s) ∂⟨ϕ⟩ ∂x j (18)
Analytical solution for the k (s) -ϵ (s) model Equilibrium in a statistical sense in Eqations ( 13) and ( 14) using ( 18) leads to the two balance equations 1), ( 19), ( 20) provides the resulting equation to be solved

P (s) k = ϵ (s) -J (s+r) k (19) and C (s) ϵ1 P (s) k ϵ (s) k (s) -C (s) ϵ2 ϵ (s) 2 k (s) = -J (s+r) ϵ (20) Combining Equations (
R(r) ∆C ϵ J (s+r) ϵ ϵ (s) 2 k (s) =   1 -C ϵ1 ϵ (s) k (s) J (s+r) k J (s+r) ϵ   (21) where ∆C ϵ = C ϵ2 -C ϵ1 or R(r)∆C ϵ ϵ (s) 2 k (s) = E J (s+r) ϵ ϵ (s) , (22) 
where

E = 1 -C ϵ1 ϵ (s) k (s) J (s+r) k k (s) J (s+r) ϵ ϵ (s) . (23) 
A long and tedious variational calculus of each function appearing in ( 22) finally yields the simple expression [START_REF] Chaouat | Variational calculus of seamless coupling in hybrid Reynolds averaged Navier-Stokes equations-large eddy simulations transport models with passive scalar[END_REF])

δR(r) R(r) = δ k (s) k (s) -2 δ ϵ (s) ϵ (s) (24) 
Keeping in mind that ϵ (s) is not affected by the cutoff wave number ∂ϵ (s) /∂κ c = 0 because it represents the flux of energy that is transferred from the large scales to the small scales [START_REF] Chaouat | Analytical insights into the partially integrated transport modeling method for hybrid Reynolds averaged Navier-Stokes equations-large eddy simulations of turbulent flows[END_REF], Equation ( 24) reduces to

δR(r) R(r) = δ k (s) k (s) (25) 
and from path functional integration

1 R δR R = k ⟨k (s) ⟩ δ k (s) k (s) (26) 
leading to the expected result

R(r) = k (s) k = r (27) 
as previously found in the PITM method considering the energy flux transfer in the spectral space [START_REF] Chaouat | A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows[END_REF], 2007[START_REF] Chaouat | Analytical insights into the partially integrated transport modeling method for hybrid Reynolds averaged Navier-Stokes equations-large eddy simulations of turbulent flows[END_REF]. This result differs from what has been found by [START_REF] Heinz | The continuous eddy simulation capability of velocity and scalar probability density function equations for turbulent flows[END_REF][START_REF] Heinz | Remarks on energy partitioning control in the PITM hybrid RANS/LES method for the simulation of turbulent flows[END_REF] who performed variational calculus yielding R(r) = r 3 essentially because the resolved diffusion terms ( 15) and ( 16) were not accounted for.

General derivation for the passive scalar variations in the k

(s) θ -ϵ (s)
θ model The case of a passive scalar transport field is considered where k (s) θ and ϵ (s) θ are the scalar variance and its dissipation rate. For EVM, the scalar flux transfer is computed as

τ (s) iθ = -C τ θ k (s) 2 ϵ (s) ∂ θ ∂x i (28)
where C τ θ is a numerical coefficient. The transport equation for the subfilter half-scalar variance k (s) θ reads (Chaouat and Schiestel, 2021)

Dk (s) θ Dt = P (s) θ -ϵ (s) θ + J (s) k θ + d (s) k θ ( 29 
)
where the subfilter production P (s) θ is given by

P (s) θ = -τ (s) jθ ∂ θ ∂x j (30) 
The turbulent diffusion term J (s) k θ is modeled using a simple gradient law hypothesis

J (s) k θ = ∂ ∂x j C k θ k (s) 2 ϵ (s) ∂k (s) θ ∂x j (31) 
where C k θ is a constant coefficient and the molecular diffusion reads

d (s) k θ = ∂ ∂x j σ ∂k (s) θ ∂x j ( 32 
)
where σ = ν/P r and P r denotes the molecular Prandtl number. The transport equation for the subfilter dissipation-rate ϵ (s) θ in its general formulation reads (Chaouat, 2021)

Dϵ (s) θ Dt = C (s) ϵ θθ 1 P (s) θ ϵ (s) θ k (s) θ + C (s) ϵ θk 1 P (s) k ϵ (s) θ k (s) -C (s) ϵ θk 2 ϵ (s) k (s) -C (s) ϵ θθ 2 ϵ (s) θ 2 k (s) θ +J (s) ϵ θ + d (s) ϵ θ (33) 
where the coefficients appearing in Eq. ( 33) are given by Chaouat and Schiestel (2021) C

(s)

ϵ θθ 1 = C ϵ θθ 1 = 1, C (s) ϵ θk 1 = C ϵ θk 1 = 1/2, C (s) ϵ θk 2 = C ϵ θk 2 = 1/2. and C (s)
ϵ θθ 2 is computed as

C (s) ϵ θθ 2 = C ϵ θθ 1 + R θ (r θ ) C ϵ θθ 2 -C ϵ θθ 1 (34)
where R θ is a function of r θ = k (s)

θ /k θ . The turbulent diffusion term J (s) ϵ θ is modeled using a simple gradient law hypothesis

J (s) ϵ θ = ∂ ∂x j C ϵ θ k (s) 2 ϵ (s) ∂ϵ (s) θ ∂x j (35)
where C ϵ θ is a constant coefficient. The molecular diffusion reads

d (s) ϵ θ = ∂ ∂x j σ ∂ϵ (s) θ ∂x j (36)
The equations ( 29) and ( 33) can be rewritten as

Dk (s) θ ϵ θ +d (s) ϵ θ ( 38 
)
where

j (r) ϕ (ϕ θ ) = - ∂ ∂x j u < j ϕ θ (39) for ϕ θ = k (s) θ or ϕ θ = ϵ (s)
θ . We take then the averaging of Equations ( 37) and ( 38). The exact diffusion term j (r)

ϕ (ϕ θ ) can be modeled by

J (r) ϕ = C ϕθ ∂ ∂x j k (r) 2 ϵ (s) ∂⟨ϕ θ ⟩ ∂x j (40)
so that in a first approximation, the total turbulent diffusion terms J (s+r) ϕ reads

J (s+r) ϕ = C ϕθ ∂ ∂x j k (s+r) 2 ϵ (s) ∂⟨ϕ θ ⟩ ∂x j (41)
Using the hypothesis of equilibrium along mean streamlines implying that D/Dt = 0, considering that the molecular diffusion terms are small, it is then possible to obtain the equations for the variance k (s)

θ and its dissipation-rate ϵ (s) θ that must be solved.

Analytical solution for the k

(s) θ -ϵ (s)
θ model This mathematical development leads to the two balance equations

P (s) θ -ϵ (s) θ + J (s+r) k θ = 0 (42) and 
C (s) ϵ θθ 1 P (s) θ ϵ (s) θ k (s) θ + C (s) ϵ θk 1 P (s) k ϵ (s) θ k (s) -C (s) ϵ θk 2 ϵ (s) k (s) -C (s) ϵ θθ 2 ϵ (s) θ 2 k (s) θ + J (s+r) ϵ θ = 0 (43)
Substituting the expression of the production terms P (s)

k and P (s) θ given by ( 19) and ( 42), respectively, into (43) and using (34) yields

(s) θ k θ = r θ (52) 
As a result of interest, Equation ( 52) is the same as the one found in the spectral space by considering the different turbulent processes (Chaouat and Schiestel, 2021).

Numerical results

The well known fully developed turbulent channel flow is performed for illustrating the results of the variational calculus. The dimensions of the channel in the streamwise, spanwise and normal directions along the x 1 , x 2 , x 3 axes are L 1 = 6.4δ, L 2 = 3.2δ and L 3 = 2δ. The simulation is performed on a medium grid with resolution 84 × 42 × 256 in the (x 1 , x 2 , x 3 ) directions. The grid in the normal direction to the wall is here refined not for the simulation itself but for accurately computing the exact resolved diffusion terms of the transport equations k (s) -ϵ (s) that will be compared with their corresponding modeling. The friction Reynolds number is R τ = 395 based on the friction velocity and the half channel width. The numerical code is based on an accurate finite volume technique [START_REF] Chaouat | An efficient numerical method for RANS/LES turbulent simulations using subfilter scale stress transport equations[END_REF]. The τ (s) ij -ϵ (s) model is applied here because it reproduces fairly well the turbulence anisotropy (Chaouat andSchiestel, 2005, 2012). As usually, the results are presented in dimensionless form using the dynamical viscosity ν, the friction velocity u τ . The profiles of the streamwise turbulence intensities including the subfilter, resolved and total scales is presented in Figure 1 as a preliminary check. With the present grid refinement, the PITM model runs more or less in almost RANS mode in the near wall region and in LES mode when moving away from the wall. A good agreement is obtained with the DNS data. Figure 2 shows the profile of the exact resolved diffusion term j (r) k where j (r) k is given by Eq. ( 15) and its modeled counterpart J of SMC that reads

J (r) k = C k ∂ ∂x 3 k (r) ϵ (s) τ (r) 33 ∂ k (s) ∂x 3 ( 53 
)
where C k = 0.22, versus the wall distance of the channel in dimensionless wall unit. The modeled and resolved turbulent diffusion terms display the same regular evolution in the channel cross section although the modeled contribution is somewhat under-predicted. This should be attributed to the modeling [START_REF] Chaouat | Contribution of direct numerical simulations to the budget and modelling of the transport equations for passive scalar turbulent fields with wall scalar fluctuations[END_REF]. However, the important point to see is that the resolved contribution is not reduced to zero and must be therefore accounted for in the variational calculus as it has been made. Figure 3 shows the profile of the exact resolved diffusion term j (r) ϵ

where j (r) ϵ is given by Eq. ( 16) and its modeled counterpart J (r) ϵ in the framework of SMC given by

J (r) ϵ = C ϵ ∂ ∂x 3 k (r) ϵ (s) τ (r) 33 ∂ ϵ (s) ∂x 3 (54) 
where C ϵ = 0.18, versus the wall distance across the channel. The modeled and resolved turbulent diffusion terms exhibit roughly the same evolution in the channel cross section, even if some discrepancies in the order of magnitude are visible. This is probably due to the gradient law hypothesis that is not always closely verified. Once again, the significant achievement in this result is to emphasize that the resolved contribution cannot be considered as negligible. To get the analysis one step further, Figure 4 shows the profiles of the turbulent energy diffusion including the total scales J k is computed from (15). As expected, a relatively good agreement is obtained between these two terms confirming that the diffusion of the resolved scales j (r) k must be absolutely accounted for in the variational analysis because of its non zero value. Obviously, the same result prevails for the resolved diffusion terms J / ⟨k θ ⟩. The well known fully developed turbulent channel flow has been performed for illustrating the results of the variational calculus. In particular, it has been shown that the resolved turbulent diffusion terms play a significant role in the acting mechanisms of turbulence and cannot be therefore neglected, even if these terms do not explicitly appear in the subfilter model because they are computed from the simulation itself and not modeled.

  Figure 1: Streamwise turbulence intensity versus the wall distance. Subfilter scales τ (s)+ 11 1/2
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 23 Figure 2: Diffusion of the resolved turbulent energy versus the wall unit distance. Simulation ■: j (r)+ k ;

  Figure 4: Diffusion of the turbulent energy including the subgrid and resolved scales. J (s+r)+ k : ■;

  the partially integrated transport model has been conducted in a mathematical framework. It has been found that the coefficient C (s) ϵ2 used in the dissipation-rate equation (8) for ϵ (s) still verifies a linear dependence in Equation (1) with the subfilter turbulent energy ratio k (s) / ⟨k⟩ establishing the result in the general case of non-homogeneous flows. The similar result has been found for the coefficient C (s) ϵ θθ 2 used in the dissipation-rate equation (33) ϵ (s) θ of the half-scalar variance which also verifies a linear dependence with the ratio k (s) θ