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Abstract
Non-zonal hybrid RANS/LES methods are of prac-

tical interest for engineering applications. Among
these methods, the partially integrated transport mod-
eling (PITM) that varies continuously form RANS to
DNS depends on a control parameter linked to the
grid step size initially developed in spectral space for
homogeneous turbulence. We show that variational
calculus formally recovers the spectral PITM model
derivation and extend its field of application to the case
of non-homogeneous flows.

1 Introduction
Among the hybrid RANS-LES methods that have

been developed in the past twenty years (Chaouat,
2017; Schiestel and Chaouat, 2022), the partially inte-
grated transport modeling (PITM) method developed
by Schiestel and Dejoan (2005) in the framework of
eddy viscosity models (EVM) and Chaouat and Schi-
estel (2005) in second moment closure (SMC) al-
lows us to transpose any RANS model into its hy-
brid LES counterpart with seamless coupling between
the RANS and LES prevailing regions. Depending on
the closure of the equations, the two-equation model
accounting for the subfilter turbulent energy k(s) and
its dissipation-rate ϵ(s) in EVM is rather used for en-
gineering applications because of its numerical ro-
bustness whereas the subfilter stress τ

(s)
ij and ϵ(s) de-

veloped in the framework of second moment closure
(SMC) (Schiestel, 2008) is more appropriate for aca-
demic flows with emphasis on fundamental aspects
and requires an appropriate numerical procedure to
be applied (Chaouat 2011). These EVM and SMC
models relie on the control function appearing in the
dissipation-rate transport equation ϵ(s) that is rep-
resented as an adjustable varying parameter in the
source/sink term such that

C(s)
ϵ2 = C(s)

ϵ1 +R(r) (Cϵ2 − Cϵ1) (1)

where Cϵ1 and Cϵ2 are the constant coefficients used in
the RANS dissipation-rate equation and R(r), a func-

tion of r = k(s)/k defined as the ratio of the modeled
turbulence subfilter energy to the total energy. Con-
sidering that the R(r) function deserves a major im-
portance in PITM simulations, we will show that the
linear equation R(r) = r obtained previously for ho-
mogeneous flows in the spectral space (Chaouat and
Schiestel, 2005, 2007) can be formally recovered in a
mathematical sense from variational calculus in a gen-
eral case of non-homogeneous flows. An extension to
the transport equations for the passive scalar including
the half-scalar variance k(s)θ and its dissipation rate ϵ(s)θ

will be also undertaken and we will show that the lin-
ear equation Rθ(rθ) = rθ where rθ = k

(s)
θ /kθ is still

verified. The variational calculus is also useful to link
together different hybrid RANS/LES models (Friess
and Davidson 2020).

2 Variational analysis
Viscous incompressible flow is considered here. In

RANS methodology, each variable ϕ is then decom-
posed into a statistical mean part ⟨ϕ⟩ and a fluctuating
part ϕ′ such that ϕ = ⟨ϕ⟩+ ϕ′ whereas in large eddy
simulations, the variable ϕ is decomposed into a large
scale (or resolved part) ϕ̄ and a subfilter-scale fluctu-
ating part ϕ> or modeled part such that ϕ = ϕ̄+ ϕ>.
The eddy viscosity PITM model consists in solving the
instantaneous filtered equations including the momen-
tum equation coupled with the k(s) and ϵ(s) equations
represented in a mathematical form by (Chaouat and
Schiestel, 2021)

{
K(ūi, k

(s), ϵ(s)) = 0

E(ūi, k
(s), ϵ(s), R) = 0

(2)

where ūi is the filtered velocity, with appropriate
boundary conditions and initial conditions. The pa-
rameters k(s), ϵ(s) , R are some functions of space xi

and time t, while K and E denote functionals. Sup-
posing model self-consistency, the variational system



to solve, associated with (2) reads

δK =

(
∂K
∂ks

)
δk(s) +

(
∂K
∂ϵs

)
δϵ(s) = 0

δE =

(
∂E
∂ks

)
δk(s) +

(
∂E
∂ϵs

)
δϵ(s)

+

(
∂E
∂R

)
δR = 0

(3)

The PITM method calculates the large scales and mod-
els the small scales. In practice, for steady flows in the
mean, the system (3) can be considered in the statisti-
cal sense. Variations such as δk(s) and δϵ(s) are then
random variables but not δR which is a numerical co-
efficient of the model itself.

General derivation for the dynamic variations in
the k(s) − ϵ(s) model

The k(s)-ϵ(s) EVM based on the transport equa-
tions of the subfilter energy and its dissipation-rate is
considered here but the following development pre-
vails also for the τ (s)ij −ϵ(s) model. The transport equa-
tion for the subfilter energy reads

Dk(s)

Dt
= P

(s)
k − ϵ(s) + J

(s)
k + d

(s)
k (4)

where the subfilter production is defined as

P
(s)
k = −τ

(s)
ij

∂ui

∂xj
(5)

the turbulent diffusion term is modeled as

J
(s)
k =

∂

∂xj

(
Ck

k(s)
2

ϵ(s)
∂k(s)

∂xj

)
(6)

where Ck is a constant coefficient, and the molecular
diffusion reads

d
(s)
k =

∂

∂xj

(
ν
∂k(s)

∂xj

)
(7)

The transport equation for the subfilter dissipation-rate
reads

Dϵ(s)

Dt
= C(s)

ϵ1

P
(s)
k ϵ(s)

k(s)
−C(s)

ϵ2

ϵ(s)
2

k(s)
+J (s)

ϵ +d(s)ϵ (8)

where the turbulent diffusion term is modeled as

J (s)
ϵ =

∂

∂xj

(
Cϵ

k(s)
2

ϵ(s)
∂ϵ(s)

∂xj

)
(9)

where Cϵ is a constant coefficient, and the molecular
diffusion reads

d(s)ϵ =
∂

∂xj

(
ν
∂ϵ(s)

∂xj

)
(10)

In Equations (4) and (8), D/Dt = ∂/∂t + ūj∂/∂xj

denotes the derivative along the filtered velocity field.

In Equation (8), C
(s)
ϵ1 = Cϵ1 is a constant coeffi-

cient while C
(s)
ϵ2 given by Eq. (1) is a dynamic co-

efficient in the PITM method (Schiestel and Dejoan,
2005, Chaouat and Schiestel, 2005). The subfilter tur-
bulent stress τ

(s)
ij is computed assuming the Boussi-

nesq hypothesis where the turbulent eddy viscosity is
given by

ν
(s)
t = Cν

k(s)
2

ϵ(s)
(11)

Cν is a constant coefficient. The changes in the solu-
tion occurring in a functional space are described by
the functional variations (3) in the turbulent field. For
flows close to equilibrium, it is reasonable to assume
that the material derivatives of any subgrid variable
ϕ(s) along mean streamlines is negligible leading to

D
〈
ϕ(s)

〉
Dt

=
∂
〈
ϕ(s)

〉
∂t

+ ⟨uj⟩
∂
〈
ϕ(s)

〉
∂xj

= 0 (12)

where ϕ = k(s) or ϵ(s), so that D
〈
k(s)

〉
/Dt = 0 and

D
〈
ϵ(s)
〉
/Dt = 0. Consequently, averaging Equa-

tions (4) and (8) leads to

D
〈
k(s)

〉
Dt

=
〈
P

(s)
k

〉
−
〈
ϵ(s)
〉
+
〈
J
(s)
k

〉
+
〈
j
(r)
k

〉
+
〈
d
(s)
k

〉
(13)

and

D
〈
ε(s)
〉

Dt
= C(s)

ϵ1

〈
P

(s)
k

〉 〈
ε(s)
〉〈

k(s)
〉 − C(s)

ϵ2

〈
ε(s)
〉2

k(s)

+
〈
J (s)
ϵ

〉
+
〈
j(r)ϵ

〉
+
〈
d(s)ϵ

〉
(14)

where
j
(r)
k

(
k(s)

)
= − ∂

∂xj

(
u<
j k

(s)
)

(15)

and
j(r)ϵ

(
ϵ(s)
)
= − ∂

∂xj

(
u<
j ϵ

(s)
)

(16)

are the new additional terms arising from the statisti-
cal procedure assuming the physical hypothesis (12).
In order to pursue the variational analysis, the exact re-
solved flux denoted

〈
j
(r)
ϕ

〉
for both

〈
j
(r)
k

〉
or
〈
j
(r)
ϵ

〉
are analytically modeled assuming a gradient diffusion
law as〈

J
(r)
ϕ (ϕ)

〉
= Cϕ

∂

∂xj

[〈
k(r)

〉2〈
ϵ(s)
〉 ∂⟨ϕ⟩

∂xj

]
(17)

At this step, it is of importance for the following to
make clear the difference between the exact contribu-
tion

〈
j
(r)
ϕ

〉
and its corresponding modeling

〈
J
(r)
ϕ

〉
.

Using (17), the total diffusion term can be computed
as 〈

J
(s+r)
ϕ

〉
=
〈
J
(s)
ϕ + J

(r)
ϕ

〉
≈ Cϕ

∂

∂xj

[〈
k(s+r)

〉2〈
ϵ(s)
〉 ∂⟨ϕ⟩

∂xj

]
(18)



Analytical solution for the k(s) − ϵ(s) model
Equilibrium in a statistical sense in Eqations (13)

and (14) using (18) leads to the two balance equations〈
P

(s)
k

〉
=
〈
ϵ(s)
〉
−
〈
J
(s+r)
k

〉
(19)

and

C(s)
ϵ1

〈
P

(s)
k

〉 〈
ϵ(s)
〉〈

k(s)
〉 − C(s)

ϵ2

〈
ϵ(s)
〉2〈

k(s)
〉 = −

〈
J (s+r)
ϵ

〉
(20)

Combining Equations (1), (19), (20) provides the re-
sulting equation to be solved

R(r)
∆Cϵ〈
J
(s+r)
ϵ

〉 〈ϵ(s)〉2〈
k(s)

〉 =

1− Cϵ1

〈
ϵ(s)
〉〈

k(s)
〉
〈
J
(s+r)
k

〉
〈
J
(s+r)
ϵ

〉


(21)
where ∆Cϵ = Cϵ2 − Cϵ1 or

R(r)∆Cϵ

〈
ϵ(s)
〉2〈

k(s)
〉 = E

〈
J (s+r)
ϵ

(
ϵ(s)
)〉

, (22)

where

E = 1− Cϵ1

〈
ϵ(s)
〉〈

k(s)
〉
〈
J
(s+r)
k

(
k(s)

)〉〈
J
(s+r)
ϵ

(
ϵ(s)
)〉 . (23)

A long and tedious variational calculus of each func-
tion appearing in (22) finally yields the simple expres-
sion (Chaouat and Schiestel, 2023)

δR(r)

R(r)
=

δ
〈
k(s)

〉〈
k(s)

〉 − 2
δ
〈
ϵ(s)
〉〈

ϵ(s)
〉 (24)

Keeping in mind that
〈
ϵ(s)
〉

is not affected by the
cutoff wave number ∂ϵ(s)/∂κc = 0 because it repre-
sents the flux of energy that is transferred from the
large scales to the small scales (Chaouat and Schies-
tel, 2012), Equation (24) reduces to

δR(r)

R(r)
=

δ
〈
k(s)

〉〈
k(s)

〉 (25)

and from path functional integration∫ 1

R

δR

R
=

∫ k

⟨k(s)⟩

δ
〈
k(s)

〉〈
k(s)

〉 (26)

leading to the expected result

R(r) =

〈
k(s)

〉
k

= r (27)

as previously found in the PITM method considering
the energy flux transfer in the spectral space (Chaouat
and Schiestel, 2005, 2007, 2012). This result differs
from what has been found by Heinz (2021,2022) who

performed variational calculus yielding R(r) = r3 es-
sentially because the resolved diffusion terms (15) and
(16) were not accounted for.

General derivation for the passive scalar variations
in the k

(s)
θ -ϵ(s)θ model

The case of a passive scalar transport field is con-
sidered where k

(s)
θ and ϵ

(s)
θ are the scalar variance and

its dissipation rate. For EVM, the scalar flux transfer
is computed as

τ
(s)
iθ = −Cτθ

k(s)
2

ϵ(s)
∂θ̄

∂xi
(28)

where Cτθ is a numerical coefficient. The trans-
port equation for the subfilter half-scalar variance k

(s)
θ

reads (Chaouat and Schiestel, 2021)

Dk
(s)
θ

Dt
= P

(s)
θ − ϵ

(s)
θ + J

(s)
kθ

+ d
(s)
kθ

(29)

where the subfilter production P
(s)
θ is given by

P
(s)
θ = −τ

(s)
jθ

∂θ̄

∂xj
(30)

The turbulent diffusion term J
(s)
kθ

is modeled using a
simple gradient law hypothesis

J
(s)
kθ

=
∂

∂xj

(
Ckθ

k(s)
2

ϵ(s)
∂k

(s)
θ

∂xj

)
(31)

where Ckθ
is a constant coefficient and the molecular

diffusion reads

d
(s)
kθ

=
∂

∂xj

(
σ
∂k

(s)
θ

∂xj

)
(32)

where σ = ν/Pr and Pr denotes the molecular
Prandtl number. The transport equation for the subfil-
ter dissipation-rate ϵ(s)θ in its general formulation reads
(Chaouat, 2021)

Dϵ
(s)
θ

Dt
= C(s)

ϵθθ1
P

(s)
θ

ϵ
(s)
θ

k
(s)
θ

+ C(s)
ϵθk1

P
(s)
k

ϵ
(s)
θ

k(s)

−C(s)
ϵθk2

ϵ(s)

k(s)
−C(s)

ϵθθ2

ϵ
(s)
θ

2

k
(s)
θ

+J (s)
ϵθ

+ d(s)ϵθ
(33)

where the coefficients appearing in Eq. (33) are given
by Chaouat and Schiestel (2021) C(s)

ϵθθ1
= Cϵθθ1

= 1,

C
(s)
ϵθk1

= Cϵθk1
= 1/2, C(s)

ϵθk2
= Cϵθk2

= 1/2. and

C
(s)
ϵθθ2

is computed as

C(s)
ϵθθ2

= Cϵθθ1
+Rθ(rθ)

(
Cϵθθ2

− Cϵθθ1

)
(34)

where Rθ is a function of rθ = k
(s)
θ /kθ. The turbulent

diffusion term J
(s)
ϵθ is modeled using a simple gradient

law hypothesis

J (s)
ϵθ

=
∂

∂xj

(
Cϵθ

k(s)
2

ϵ(s)
∂ϵ

(s)
θ

∂xj

)
(35)



where Cϵθ is a constant coefficient. The molecular dif-
fusion reads

d(s)ϵθ
=

∂

∂xj

(
σ
∂ϵ

(s)
θ

∂xj

)
(36)

The equations (29) and (33) can be rewritten as

Dk
(s)
θ

Dt
= P

(s)
θ − ϵ

(s)
θ + J

(s)
kθ

+ j
(r)
kθ

+ d
(s)
kθ

(37)

Dϵ
(s)
θ

Dt
= C(s)

ϵθθ1
P

(s)
θ

ϵ
(s)
θ

k
(s)
θ

+ C(s)
ϵθk1

P
(s)
k

ϵ
(s)
θ

k(s)

−C(s)
ϵθk2

ϵ(s)

k(s)
− C(s)

ϵθθ2

ϵ
(s)
θ

2

k
(s)
θ

+ J (s)
ϵθ

+ j(r)ϵθ

+d(s)ϵθ
(38)

where
j
(r)
ϕ (ϕθ) = − ∂

∂xj

(
u<
j ϕθ

)
(39)

for ϕθ = k
(s)
θ or ϕθ = ϵ

(s)
θ . We take then the averaging

of Equations (37) and (38). The exact diffusion term〈
j
(r)
ϕ (ϕθ)

〉
can be modeled by

〈
J
(r)
ϕ

〉
= Cϕθ

∂

∂xj

[〈
k(r)

〉2〈
ϵ(s)
〉 ∂⟨ϕθ⟩

∂xj

]
(40)

so that in a first approximation, the total turbulent dif-
fusion terms J (s+r)

ϕ reads

〈
J
(s+r)
ϕ

〉
= Cϕθ

∂

∂xj

[〈
k(s+r)

〉2〈
ϵ(s)
〉 ∂⟨ϕθ⟩

∂xj

]
(41)

Using the hypothesis of equilibrium along mean
streamlines implying that D/Dt = 0, considering that
the molecular diffusion terms are small, it is then pos-
sible to obtain the equations for the variance k

(s)
θ and

its dissipation-rate ϵ
(s)
θ that must be solved.

Analytical solution for the k
(s)
θ -ϵ(s)θ model

This mathematical development leads to the two
balance equations〈

P
(s)
θ

〉
−
〈
ϵ
(s)
θ

〉
+
〈
J
(s+r)
kθ

〉
= 0 (42)

and

C(s)
ϵθθ1

〈
P

(s)
θ

〉 〈ϵ(s)θ

〉
〈
k
(s)
θ

〉 + C(s)
ϵθk1

〈
P

(s)
k

〉 〈ϵ(s)θ

〉
〈
k(s)

〉
−C(s)

ϵθk2

〈
ϵ(s)
〉〈

k(s)
〉 − C(s)

ϵθθ2

〈
ϵ
(s)
θ

〉2
〈
k
(s)
θ

〉 +
〈
J (s+r)
ϵθ

〉
= 0 (43)

Substituting the expression of the production terms
P

(s)
k and P

(s)
θ given by (19) and (42), respectively, into

(43) and using (34) yields

∆Cϵθk

〈
ϵ
(s)
θ

〉 〈
ϵ(s)
〉〈

k(s)
〉 +Rθ(rθ)∆Cϵθθ

〈
ϵ
(s)
θ

〉2
〈
k
(s)
θ

〉
=
〈
J (s+r)
ϵθ

〉
− Cϵθθ1

〈
J
(s+r)
kθ

〉 〈ϵ(s)θ

〉
〈
k(s)
〉

−Cϵθk1

〈
J
(s+r)
k

〉 〈ϵ(s)θ

〉
〈
k(s)

〉 . (44)

where
∆Cϵθθ = Cϵθθ2

− Cϵθθ1
(45)

and
∆Cϵθk = Cϵθk2

− Cϵθk1
(46)

or equivalently, the resulting equation is

Rθ(rθ)∆Cϵθθ

〈
ϵ
(s)
θ

〉2
〈
k
(s)
θ

〉 =
〈
J (s+r)
ϵθ

〉
F (47)

where the function F is given by

F = 1−
A
〈
ϵ
(s)
θ

〉
〈
J
(s+r)
ϵθ

〉 (48)

with

A = Cϵθθ1

〈
J
(s+r)
kθ

〉
〈
k
(s)
θ

〉 − Cϵθk1

〈
J
(s+r)
k

〉
〈
k(s)

〉 (49)

Considering that ϵ(s)θ remains unaffected by the cut-
off wave number location κc of the grid, i.e.,
∂ϵ

(s)
θ /∂κc = 0, the variational calculus of Equation

(47) finally yields the simple expression (Chaouat and
Schiestel, 2023)

δRθ(rθ)

Rθ(rθ)
=

δ
〈
k
(s)
θ

〉
〈
k
(s)
θ

〉 (50)

and from path integration

∫ 1

Rθ

δRθ

Rθ
=

∫ kθ〈
k
(s)
θ

〉 δ
〈
k
(s)
θ

〉
〈
k
(s)
θ

〉 (51)

leading to

Rθ(rθ) =

〈
k
(s)
θ

〉
kθ

= rθ (52)

As a result of interest, Equation (52) is the same as
the one found in the spectral space by considering the



different turbulent processes (Chaouat and Schiestel,
2021).

3 Numerical results
The well known fully developed turbulent chan-

nel flow is performed for illustrating the results of the
variational calculus. The dimensions of the channel in
the streamwise, spanwise and normal directions along
the x1, x2, x3 axes are L1 = 6.4δ, L2 = 3.2δ and
L3 = 2δ. The simulation is performed on a medium
grid with resolution 84× 42× 256 in the (x1, x2, x3)
directions. The grid in the normal direction to the wall
is here refined not for the simulation itself but for ac-
curately computing the exact resolved diffusion terms
of the transport equations k(s)-ϵ(s) that will be com-
pared with their corresponding modeling. The fric-
tion Reynolds number is Rτ = 395 based on the fric-
tion velocity and the half channel width. The numer-
ical code is based on an accurate finite volume tech-
nique (Chaouat, 2011). The τ

(s)
ij − ϵ(s) model is ap-

plied here because it reproduces fairly well the turbu-
lence anisotropy (Chaouat and Schiestel, 2005, 2012).
As usually, the results are presented in dimensionless
form using the dynamical viscosity ν, the friction ve-
locity uτ . The profiles of the streamwise turbulence

0 100 200 300 400

x
3

+

0

1

2

3

Figure 1: Streamwise turbulence intensity versus the wall

distance. Subfilter scales
〈
τ
(s)+
11

〉1/2

: ▼; Re-

solved scales
〈
τ
(r)+
11

〉1/2

: ▲; Total scales〈
τ
(s+r)+
11

〉1/2

: •; DNS Rτ = 395 (Chaouat
2023) : +++.

intensities including the subfilter, resolved and total
scales is presented in Figure 1 as a preliminary check.
With the present grid refinement, the PITM model runs
more or less in almost RANS mode in the near wall re-
gion and in LES mode when moving away from the
wall. A good agreement is obtained with the DNS
data. Figure 2 shows the profile of the exact resolved
diffusion term

〈
j
(r)
k

〉
where j

(r)
k is given by Eq. (15)

and its modeled counterpart
〈
J
(r)
k

〉
in the framework
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x
3

+

−0.01

−0.005

0

0.005

0.01

Figure 2: Diffusion of the resolved turbulent energy versus

the wall unit distance. Simulation ■:
〈
j
(r)+
k

〉
;

Modeling ▲ :
〈
J
(r)+
k

〉
.
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Figure 3: Diffusion of the resolved dissipation-rate versus

the wall unit distance. Simulation ■:
〈
j
(r)+
ϵ

〉
;

Modeling ▲ :
〈
J
(r)+
ϵ

〉
.

of SMC that reads〈
J
(r)
k

〉
= Ck

∂

∂x3

(〈
k(r)

〉〈
ϵ(s)
〉 〈τ (r)33

〉 ∂
〈
k(s)

〉
∂x3

)
(53)

where Ck = 0.22, versus the wall distance of the chan-
nel in dimensionless wall unit. The modeled and re-
solved turbulent diffusion terms display the same reg-
ular evolution in the channel cross section although the
modeled contribution is somewhat under-predicted.
This should be attributed to the modeling (Chaouat,
2023). However, the important point to see is that the
resolved contribution is not reduced to zero and must
be therefore accounted for in the variational calculus
as it has been made. Figure 3 shows the profile of
the exact resolved diffusion term

〈
j
(r)
ϵ

〉
where j

(r)
ϵ is

given by Eq. (16) and its modeled counterpart
〈
J
(r)
ϵ

〉



in the framework of SMC given by〈
J (r)
ϵ

〉
= Cϵ

∂

∂x3

(〈
k(r)

〉〈
ϵ(s)
〉 〈τ (r)33

〉 ∂
〈
ϵ(s)
〉

∂x3

)
(54)

where Cϵ = 0.18, versus the wall distance across the
channel. The modeled and resolved turbulent diffu-
sion terms exhibit roughly the same evolution in the
channel cross section, even if some discrepancies in
the order of magnitude are visible. This is probably
due to the gradient law hypothesis that is not always
closely verified. Once again, the significant achieve-
ment in this result is to emphasize that the resolved
contribution cannot be considered as negligible. To
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Figure 4: Diffusion of the turbulent energy including the

subgrid and resolved scales.
〈
J
(s+r)+
k

〉
: ■;〈

J
(s)+
k + j

(r)+
k

〉
: •.

get the analysis one step further, Figure 4 shows the
profiles of the turbulent energy diffusion including the
total scales J (s)

k + j
(r)
k and J

(s+r)
k where j

(r)
k is com-

puted from (15). As expected, a relatively good agree-
ment is obtained between these two terms confirming
that the diffusion of the resolved scales j

(r)
k must be

absolutely accounted for in the variational analysis be-
cause of its non zero value. Obviously, the same result
prevails for the resolved diffusion terms J (s)

ϵ +j
(r)
ϵ and

J
(s+r)
ϵ .

4 Conclusion
Variational analysis of the partially integrated

transport model has been conducted in a mathematical
framework. It has been found that the coefficient C(s)

ϵ2

used in the dissipation-rate equation (8) for ϵ(s) still
verifies a linear dependence in Equation (1) with the
subfilter turbulent energy ratio

〈
k(s)

〉
/ ⟨k⟩ establish-

ing the result in the general case of non-homogeneous
flows. The similar result has been found for the coef-
ficient C(s)

ϵθθ2
used in the dissipation-rate equation (33)

ϵ
(s)
θ of the half-scalar variance which also verifies a

linear dependence with the ratio
〈
k
(s)
θ

〉
/ ⟨kθ⟩. The

well known fully developed turbulent channel flow has
been performed for illustrating the results of the vari-
ational calculus. In particular, it has been shown that
the resolved turbulent diffusion terms play a signifi-
cant role in the acting mechanisms of turbulence and
cannot be therefore neglected, even if these terms do
not explicitly appear in the subfilter model because
they are computed from the simulation itself and not
modeled.
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