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Direct numerical simulation of passive scalar turbulent fields with wall scalar fluctuations at low, medium and high Prandtl numbers

Introduction

Turbulent flows involving the transport of passive scalar are of major importance in many engineering applications and in nature like for instance the pollution dispersal in atmosphere. In various flow configurations involving heat transfer between impermeable walls like for instance liquid metal-cooled reactors, the temperature fluctuations at the wall are not reduced to zero and may lead to thermal fatigue failure of solid structures. Considering that the temperature fluctuations play an important role in industrial devices, the objective of this paper is to perform direct numerical simulation (DNS) of turbulent channel flows to investigate the effect of the wall-scalar fluctuations on scalar fields [START_REF] Tiselj | Effect of wall boundary condition on scalar transfer in a fully developed turbulent flume[END_REF]Flageul et al. 2015, Chaouat and[START_REF] Chaouat | Investigation of the wall scalar fluctuations effect on passive scalar turbulent fields at several Prandtl numbers by means of direct numerical simulations[END_REF]. Simulation are worked out for the Reynolds number R τ = u τ δ/ν = 395 based on the friction velocity u τ , the channel half-width δ and the molecular viscosity ν, and the Prandtl numbers P r = 0.1, 1 and 10. A special interest is devoted to the budget of the scalar variance k + θ and the turbulent scalar fluxes τ + iθ . This DNS database will be useful to validate turbulence models with heat transfer (Schiestel, 2008, Hanjalic and[START_REF] Hanjalic | Modelling turbulence in engineering and the environnement. Secondmoment route to closure[END_REF][START_REF] Chaouat | The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows[END_REF][START_REF] Schiestel | Turbulence modeling and simulation advances in CFD during the past 50 years[END_REF].
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Equations, boundary conditions and numerical procedure

The momentum equation reads

∂u + i ∂t + + ∂ ∂x + j (u + i u + j ) = - ∂p + ∂x + i + 1 R τ ∂ 2 u + i ∂x + j ∂x + j + G i (1) 
where u i and p denote the velocity and pressure, respectively, the coordinate and flow variables are normalized by δ, the friction velocity u τ , the kinematic viscosity ν and constant density ρ. The quantity G i = δ 1i is the source term to get periodic condition. As the mean scalar variable ⟨Θ⟩ increases linearly in the x 1 direction, a change of variable is made by introducing the new scalar variable [START_REF] Kozuka | DNS of turbulent heat transfer in a channel flow with a high spatial resolution[END_REF]. The transport equation for the passive scalar θ reads

θ = x 1 ∂ ⟨Θ m ⟩/∂x 1 -Θ (
∂θ + ∂t + + ∂ ∂x + j (θ + u + j ) = 1 R τ P r ∂ 2 θ + ∂x + j ∂x + j + Q (2)
where

Q = -u + 1 /U + b denotes the source term, U +
b is the bulk velocity. The variable θ is normalized by θ τ = q w /(ρc p u τ ) where ρ, c p and q w are the fluid density, the specific heat at constant pressure and the heat flux at the wall. The heat flux is q w = -κ(∂θ/∂x 3 ) w where κ stands for the thermal conductivity κ = ρc p ν/P r . The thermal diffusivity is σ = κ/(ρc p ) = ν/P r .

Boundary conditions

The flow solution at the interface for the solid-fluid conjugate system depends on the thermal effusivity ratio of the gas to the solid given by K = a/a w where a = √ ρc p κ involving the density ρ, the specific heat at constant pressure c p , and the scalar conductivity κ, the subscript w referring to the properties of the wall. Usually, the ratio of the effusivity of gas to the one of structural materials is very small K ≤ 10 -3 but not for liquids where it is of order unity [START_REF] Kasagi | Numerical investigation of near-wall turbulent heat transfer taking into account the unsteady heat conduction in the solid wall[END_REF]. For a turbulent flow subjected to heat fluxes through the wall, two limiting boundary conditions can be considered depending on the fluid and solid properties. The first one is the isoscalar boundary condition with a constant wall scalar (case I) implying that its fluctuation at the wall θ ′ w and its rms ⟨θ ′ θ ′ ⟩ w are zero and corresponds to the usual case where K ≪ 1, i.e., a ≪ a w with a large wall thickness at the interface. The second one is the isoflux boundary condition implying non-zero scalar fluctuations at the wall (case II) and corresponds to the case where K ≫ 1, i.e., a ≫ a w with an infinitesimal wall thickness, the derivative (∂θ ′ w /∂x n ) w along the normal direction to the wall x n is zero because q ′ w = 0 leading to (∂ ⟨θ ′ θ ′ ⟩ /∂x n ) w = 0. 

Numerical procedure

The dimension of the channel in the streamwise, spanwise and normal directions along the x 1 , x 2 , x 3 axes are L 1 = 6.4δ, L 2 = 3.2δ and L 3 = 2δ. For the Reynolds and Prandtl number values studied here, the number of grid points varies from the mesh M 1 of resolution 512 × 256 × 512 for P r = 0.1 and 1 to M 2 of extremely high resolution 1024 × 512 × 1024 for P r = 10. The grid refinement allows to solve both the Kolmogorov scale η κ = (ν 3 /ϵ) 1/4 and the Batchelor length-scale η θ (Batchelor, 1959;[START_REF] Tennekes | A First Course in Turbulence[END_REF] which approaches η κ at P r of order of unity, η θ = (σ 3 /ϵ) 1/4 = η κ /P 3/4 r at small Prandtl numbers and η θ = (νσ 2 /ϵ) 1/4 = η κ /P 1/2 r at large Prandtl numbers as shown in Figure 1. The equations are integrated in time using an explicit Runge-Kutta scheme of fourth order accuracy in time and solved in space by means of a centered scheme of fourth order accuracy in space. The CFD code [START_REF] Chaouat | An efficient numerical method for RANS/LES turbulent simulations using subfilter scale stress transport equations[END_REF] is based on the finite volume technique and is optimized with message passing interface (MPI).

Numerical results

Figure 2 is a snapshot view of the scalar field θ in the (x 1 , x 3 ) mid-plane for the Prandtl number P r = 10. This figure highlights substantial detachment of swirling vortex elements growing from the boundary layer to the central region of the channel along the normal direction to the wall. Figure 3 shows the contours plots of the instantaneous scalar field θ in the (x 1 , x 3 ) mid-plane, respectively, for the Prandtl numbers P r = 0.1, 1 and 10. It is found that the topology of these structures considerably changes as the Prandtl number increases from P r = 0.1 to 10. Indeed, these structures get thinner because of the important decrease of the Batchelor length-scale η θ according to the power law η θ = η κ /P 1/2 r . They are relatively smooth and organized with dominant large scales at the lower Prandtl number P r = 0.1 but become more and more chaotic as the Prandtl number increases from 0.1 to 10, the gradients being sharper.

Mean scalar and half-scalar variance

Previous simulations [START_REF] Chaouat | Investigation of the wall scalar fluctuations effect on passive scalar turbulent fields at several Prandtl numbers by means of direct numerical simulations[END_REF]) have shown that the mean scalar ⟨θ + ⟩ remains not affected by the wall scalar fluctuations but in the contrary, the half scalar variance k + θ = ⟨θ ′+ θ ′+ ⟩ /2 is highly impacted essentially in the near wall region. For instance, Figure 4 illustrates the rms fluctuation intensities for P r = 1 indicating a change in the immediate vicinity of the wall. As expected, the rms reduces to zero for the isoscalar boundary condition (case I) but not for the isoflux boundary condition (case II) where it is relatively high satisfying the wall condition

(∂ ⟨θ ′ θ ′ ⟩ /∂x n ) w = 0.

Transport equation for the half-scalar variance

The budget terms appearing in the transport equation for the half-scalar variance k + θ are nondimensionalized by the factor u 2 τ θ 2 τ /ν. The transport equation for k + θ reads

0 = τ + 1θ ∂ ⟨Θ + m ⟩ ∂x + 1 -τ + jθ ∂ ⟨θ + ⟩ ∂x + j - ∂ ∂x + j u ′+ j θ ′+2 + 1 P r ∂ 2 k + θ ∂x 2+ j - 1 P r ∂θ ′+ ∂x + j ∂θ ′+ ∂x + j (3)
where the terms appearing in this equation are the production P + θ , the turbulent diffusion due to the correlation of the scalar-velocity T + θ , the molecular diffusion d + θ and the dissipation-rate ϵ + θ of the half-scalar variance k + θ . The first production term is negligibly small compared with the second term because 5 shows the budget of the transport equation for the scalar variance k + θ . The curves are somewhat flattened for P r = 0.1 but become very sharp for P r = 10 and also their peak move closer to the wall as the Prandtl number increases. The dominant processes in the central region of the channel are the production as a gain term and the dissipation rate as a sink term that balance each other at all Prandtl numbers. The viscous and turbulent diffusion terms are of appreciable magnitude in the very near wall region showing that they both play an important role in the transfer of the passive scalar. It appears that the dissipation-rate term ϵ + θ and the viscous diffusion term d + θ are still of the same order of magnitude away from the wall but they are significantly smaller in the vicinity of the wall for case II in comparaison with case I. The other terms such as the production P + θ and the turbulent diffusion T + θ remain relatively unaffected by the type of boundary condition, although the turbulent diffusion T + θ is however slightly attenuated 

∂ ⟨Θ + m ⟩/∂x + 1 ≪ ∂ ⟨θ + ⟩/∂x + 3 . Figure
+ iθ = u ′+ i θ ′+ reads 0 = τ + 1i ∂ ⟨Θ + m ⟩ ∂x + 1 -τ + ij ∂ ⟨θ + ⟩ ∂x + j -τ + jθ ∂ u + i ∂x + j - ∂ ∂x + j u ′+ i u ′+ j θ ′+ + ∂ ∂x j θ ′+ ∂u ′+ i ∂x + j + 1 P r ∂ ∂x j u ′+ i ∂θ ′+ ∂x + j -θ ′+ ∂p ′+ ∂x + i -1 + 1 P r ∂u ′+ i ∂x + j ∂θ ′+ ∂x + j (4)
where in this equation, = -τ + 3θ ∂ u + 1 /∂x + 3 involving the interaction between the turbulent shear stress and the mean scalar gradient as well as the interaction between the wallnormal turbulent scalar flux and the mean streamwise velocity gradient. The dissipation term ϵ + 1θ remains large all over the channel cross-section due to the high correlation of the fluctuating velocity-scalar gradients ∂u ′+ 1 /∂x + j ∂θ ′+ /∂x + j . It is found that the curves corresponding to the different terms appearing in (4) are departing further in the wall region but start to merge as the wall distance increases from the wall. The dissipation-rate and molecular diffusion terms are considerably attenuated at the wall. Moreover, the scalar-pressure gradients Π + 1θ remains not affected by the wall scalar fluctuations for all Prandtl numbers. Figure 7 exhibits the evolution of the wallnormal turbulent scalar flux τ + 3θ versus the wall distance. The production term P + 3θ appearing in ( 4) is here mainly governed by the two terms P

τ + ij = u ′+ i u ′+ j .
+(2) 3θ = -τ + 33 ∂ ⟨θ + ⟩ /∂x + 3 and P +(3) 3θ = -τ + 3θ ∂ u + 3 /∂x + 3
involving the interaction of the wall-normal turbulent stress τ + 33 with the mean scalar gradient as well as the interaction between the wall-normal turbulent scalar flux with the mean normal velocity gradient. The scalar dissipation-rate ϵ + 3θ is caused by the correlation of the fluctuating velocity-scalar gradients ∂u ′+ j /∂x + j ∂θ ′+ /∂x + j while the scalar pressure gradient correlation term is computed as Π + 3θ = -θ ′+ ∂p ′+ /∂x + 3 . For all Prandtl numbers, the production is here negative, while the dissipation-rate as well as the pressure gradient correlation terms are positive. It appears that the scalar-pressure gradient correlation term Π + 3θ gradually increases as the Prandtl number increases so that it contributes more significantly to the budget. The budget for τ 3θ highly de-pends on the Prandtl number. For P r = 0.1, P + 3θ balance with the two sink terms Π + 3θ and ϵ + 3θ whereas for P r = 10, P + 3θ roughly balances with Π + 3θ that becomes dominant among the other terms. This result show that the contribution of the scalar-pressure gradient correlation term Π + 3θ is essential and cannot be ignored in the budget equation. At a first sight, no apparent differences between the curves associated with and without wall scalar fluctuations are visible from the wall to the centerline of the channel.

Turbulent fluxes

The knowledge of the turbulent scalar fluxes τ iθ = ⟨u ′ i θ ′ ⟩ is of particular interest in mass and heat transfer. In eddy viscosity models (EVM), it is computed assuming a gradient hypothesis [START_REF] Hanjalic | Modelling turbulence in engineering and the environnement. Secondmoment route to closure[END_REF])

τ iθ = - ν t P r t ∂ ⟨θ⟩ ∂x i (5) 
where P r t is the turbulent Prandtl number and ν t denotes the turbulent viscosity. The turbulent Prandtl number is defined itself as the ratio of the turbulent eddy viscosity ν t to the turbulent eddy diffusivity σ t as

P r t = ν t σ t = τ 13 τ 3θ ∂⟨θ⟩ ∂x 3 ∂⟨u 1 ⟩ ∂x 3 -1 (6) 
Figure 8 exhibits the profile of the turbulent Prandtl number versus the wall unit distance from the DNS simulations performed for P r = 1. The turbulent Prandtl number reaches a decreasing asymptotic behavior close to unity except in the immediate vicinity of the wall where occurs a deviation from the asymptote. This result validates the hypothesis of an approximately constant turbulent Prandtl number with and without wall scalar fluctuations roughly around unity away from the wall.

5 Time-scale ratio R = (k θ ϵ)/(kϵ θ )

It is advantageous for engineering applications to compute the passive scalar to dynamic time-scale ratio R = (k θ ϵ)/(kϵ θ ) to get an estimate of the dissipationrate ϵ θ = (k θ ϵ)/(Rk). Figure 9 describes the evolution of this ratio R for the Prandtl numbers P r = 1 versus the wall unit. It is found that R is not a universal constant but is a function of the wall unit distance. For both cases, it gradually decreases from high to low values in the near wall region and reaches a common asymptotic value when moving away from the wall. As the dissipation-rate ϵ θ is close to zero at the wall for case II, R takes on extremely high values at x 3 = 0 in comparison with its corresponding values obtained for case I. Physically, this observation means that the time scale of the dynamic turbulent field k/ϵ differs from the time scale of the passive scalar field k θ /ϵ θ and that in the very near wall region the use of R is physically not relevant in practice for modeling closures. 

Conclusion and perspective

Direct numerical simulations of turbulent channel flow with scalar transport have been performed on different meshes for R τ = 395 and P r = 0.1, 1 and 10. This work provides a useful high resolution DNS database [START_REF] Chaouat | Contribution of direct numerical simulations to the budget and modelling of the transport equations for passive scalar turbulent fields with wall scalar fluctuations[END_REF]. The budget of the transport equations for the scalar variance k + θ and the streamwise turbulent flux τ + 1θ were obtained and the effect of the Prandtl number was investigated for case II in comparaison with case I. It has been found that the budget for k + θ is largely dominated by the production and the dissipation terms that balance each other at all Prandtl numbers, whereas the molecular and turbulent diffusion terms are effective in the vicinity of the wall. The dissipation-rate ϵ + θ and the molecular diffusion d + θ terms are highly modified in the vicinity of the wall depending on the wall scalar boundary condition. As for k + θ , the budget for τ + 1θ is mainly controlled by the production term P

+(1) 1θ

and the dissipation-rate term ϵ + 1θ away from the wall but the diffusion terms d + 1θ and T + 1θ are however appreciable in the vicinity of the wall. The dissipation and molecular diffusion terms are highly influenced by the wall scalar fluctuations but not the scalar-pressure gradient term Π + 1θ . In contrast to the budget for τ + 1θ , the budget for τ + 3θ highly depends on the Prandtl number and is essentially governed by the production term P + 3θ , the dissipation term ϵ + 3θ but also the scalar-pressure gradient correlation term Π + 3θ . No substantial perceptible differences are observed for the budget τ + 3θ with respect to the wall boundary condition. The computations of the turbulent Prandtl-number P r t and the passive scalar to dynamic time-scale ratio R were performed at P r = 1. These results show that accounting for wall scalar fluctuations should be considered in numerical simulations of turbulent flows involving fluid and solid combinations at the interface.
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 1 Figure 1: Kolmogorov and Batchelor length-scales η + κ , η + θ computed for the Prandtl numbers Pr = 0.1, 1 and 10 ---: ∆ + 3 (M1); -: ∆ + 3 (M2); ▲: η + θ (Pr = 0.1); ■ η + θ = η + κ (Pr = 1); •: η + κ (Pr = 10). Rτ = 395.
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 23 Figure 2: Snapshot view of the scalar field θ in the (x1, x3) mid-plane. θ ′ w = 0 (case I). Pr = 10.
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 4 Figure 4: Root-mean square of the scalar variance θ + rms = ⟨θ ′+ θ ′+ ⟩ versus the wall unit distance. θ ′ w = 0 (case I), •. q ′ w = 0 (case II), ▲ . (c) P r = 1; R τ = 395.
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 56 Figure 5: Budget of the transport equation for the scalar variance k + θ versus the wall unit distance. θ ′ w = 0, •: P + θ ; ▲ : ϵ + θ ; ♦ : d + θ ; ■ : T + θ . q ′ w = 0, •: P + θ ; △ : ϵ + θ ; ♢ : d + θ ; □ : T + θ . (a) Pr = 0.1; (b) Pr = 1; (c) Pr = 10; Rτ = 395.
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 7 Figure 7: Budget of the transport equation for the wallnormal turbulent scalar flux τ + 3θ = u ′+ 3 θ ′+ versus the wall unit distance. θ ′ w = 0, •: P + 3θ ; ▲ : ϵ + 3θ ; ♦ : d + 3θ ; ■ : T + 3θ ; ▼ : Π + 3θ . q ′ w = 0, •: P + 3θ ; △ : ϵ + 3θ ; ♢ : d + 3θ ; □ : T + 3θ . ▽ : Π + 3θ . (a) Pr = 0.1; (b) Pr = 1; (c) Pr = 10; Rτ = 395.
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 89 Figure 8: Profiles of the turbulent Prandtl number versus the wall unit distance. θ ′ w = 0 (case I), •. q ′ w = 0 (case II), ■ P r = 1; R τ = 395.
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