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A global dataset on phosphorus in 
agricultural soils
Bruno Ringeval   1 ✉, Josephine Demay1, Daniel S. Goll2, Xianjin He   2, Ying-Ping Wang   3, 
Enqing Hou   4, Sarah Matej5, Karl-Heinz Erb   5, Rong Wang   6, Laurent Augusto   1, Fei Lun7, 
Thomas Nesme   1, Pasquale Borrelli8,9, Julian Helfenstein10, Richard W. McDowell   11,12, 
Peter Pletnyakov   12 & Sylvain Pellerin1

Numerous drivers such as farming practices, erosion, land-use change, and soil biogeochemical 
background, determine the global spatial distribution of phosphorus (P) in agricultural soils. Here, 
we revised an approach published earlier (called here GPASOIL-v0), in which several global datasets 
describing these drivers were combined with a process model for soil P dynamics to reconstruct the 
past and current distribution of P in cropland and grassland soils. The objective of the present update, 
called GPASOIL-v1, is to incorporate recent advances in process understanding about soil inorganic 
P dynamics, in datasets to describe the different drivers, and in regional soil P measurements for 
benchmarking. We trace the impact of the update on the reconstructed soil P. After the update we 
estimate a global averaged inorganic labile P of 187 kgP ha−1 for cropland and 91 kgP ha−1 for grassland 
in 2018 for the top 0–0.3 m soil layer, but these values are sensitive to the mineralization rates chosen 
for the organic P pools. Uncertainty in the driver estimates lead to coefficients of variation of 0.22 
and 0.54 for cropland and grassland, respectively. This work makes the methods for simulating the 
agricultural soil P maps more transparent and reproducible than previous estimates, and increases the 
confidence in the new estimates, while the evaluation against regional dataset still suggests rooms for 
further improvement.

Background & Summary
Soil phosphorus (P) availability limits crop yields in many regions of the World1,2, while anthropogenic appli-
cation of P in excess triggers aquatic eutrophication in other regions3. While P in unmanaged soils can be pre-
dicted to some degree from local soil properties and climate4–6, this approach cannot be used for agricultural 
systems because humans have altered the P cycle in these ecosystems. E.g. the change in soil P input/output 
related to farming practices has modified the spatial distribution of P in soils7–9 with long-lasting legacy effects 
of past management10. Nevertheless, an analysis of the relationships between crop productivity and soil P avail-
ability or between P losses and soil P on regional to global scale requires a spatially explicit agricultural soil P 
dataset. At the global scale, such a dataset has only recently been developed by Ringeval et al.11 and Zhang et al.12.

Both Ringeval et al.11 and Zhang et al.12 combined datasets describing the different drivers of the global 
spatial distribution of soil P with a process-based model of soil P dynamics to reconstruct the past and present 
distributions of P in agricultural soils. Hereafter, the term “drivers” encompasses: variables related to soil P input 
and output (farming practices, deposition, erosion, sludge), land-use change, variables that have an effect on soil 
P dynamics (soil properties, climate), and biogeochemical background (i.e. the initial soil P content at the time 
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of conversion to cropland). The soil P dynamics model was used to reconstruct how the different soil P pools 
characterized by different bio-availabilities evolved in time from the biogeochemical background following i) 
soil P input/output directly (e.g. farming practices) or indirectly (land-use change) derived from some drivers 
and ii) as function of some drivers that modulate the fluxes between soil P pools (e.g. climate).

Refs. 11,12 used similar datasets to describe the main drivers. In particular, both used the estimates 
by Bouwman et al.13 for soil P input/output corresponding to farming practices, and unmanaged soil P data 
by Yang et al.4 to approach the biogeochemical background. These dataset have some limitations: e.g. the soil P 
input/output in grassland provided by Bouwman et al.13 was poorly described with the plant uptake forced to be 
equal to a constant fraction of soil P input. In the work of Yang et al.4 how the total soil P is distributed among 
different soil pools was only a function of soil order while it is now known that the soil order is a poor predictor14. 
The representation of soil P pools and fluxes between these pools differed between Ringeval et al.11 and Zhang  
et al.12, reflecting the gaps in our understanding of the soil P dynamics and data to constrain process-based mod-
els. Zhang et al.12 simulated only two soil pools (one labile and one stable pool) with poor representation of soil 
P dynamics, whereas Ringeval et al.11 used a 6-pool P model based on Hedley fractionation method. Despite a 
more apparent mechanistic representation of soil P transformation, the model used byRingeval et al.11 was based 
on a very limited knowledge about soil P dynamics: e.g. the soil P buffering capacity was represented as function 
of soil order only and was poorly constrained by measurements15.

Because of the above-mentioned limitations, soil P maps simulated by both Ringeval et al.11 and Zhang  
et al.12 had low confidence and none of these studies really investigated the realism of the spatial distribution of 
the soil P simulated: Zhang et al.12 focused on the P plant uptake while Ringeval et al.11 assessed the contribution 
of each driver to the spatial variation of soil P. The simulated soil P maps were not evaluated and this was in partly 
explained by missing large-scale datasets of P measurements at that time. Since the initial release in 2017, the 
knowledge about soil P dynamics has improved, datasets representing some drivers of soil P have been updated, 
and data on measured soil labile P in agricultural soils started to be available, offering the opportunities to gen-
erate more reliable global soil P maps. In particular, the comparison between different measurements (isotopic 
exchange kinetics and Hedley fractionation) improves our understanding of the forms extracted16,17 and our abil-
ity to represent the fluxes between these pools18. Also, parameterizations of exchanges between inorganic P pools 
have been improved by considering the effects of soil properties on these fluxes18. Dataset used to describe some 
drivers has been also improved. In particular, both total soil P and its fractions within different pools have been 
improved by including more predictors and more sites to train the machine learning algorithms in these studies, 
improving our understanding of variables driving soil P distributions in unmanaged soils6. Finally, regional data-
sets on measured soil available P based on soil monitoring networks are now available (e.g. LUCAS database19).

Here we updated the approach described in Ringeval et al.11 with the aim to improve the global soil P dataset 
in five ways: i) use new theoretical understanding of inorganic soil P dynamics, ii) use new and better con-
strained datasets to describe the different drivers, iii) benchmark the new soil P maps with available availa-
ble global and regional estimates, iv) extend the period of simulations over time (simulations ends in 2005 in 
Ringeval et al.11), v) clarify the different assumptions used throughout all steps of our approach and v) make the 
whole approach (i.e. scripts to download the datasets, scripts to generate the input from these datasets, soil P 
dynamic model) available to the community. Points iv) and v) would make further updates easier.

The update of Ringeval et al.11 described in this article provides the simulated size of different soil P pools for 
the period 1900–2018, with a spatial resolution of 0.5° for both croplands and grasslands. We also provided esti-
mates of the uncertainty related to the description of the different drivers. Spatially gridded estimates of soil P 
pools will be useful to quantify the current limitation of agricultural production by P and to inform assessments 
of strategies aiming at reduced fertilizer input by making better use of P present in soils.

Method
General approach.  Similar to Ringeval et al.11, the approach used here modelled the global distribution of 
soil P in croplands and grasslands, with a 0.5° × 0.5° spatial resolution. No vertical discretization was considered 
as the approach considers only one soil layer, which is the top 0–0.3 m soil layer. For each grid-cell, soil P was 
distinguished into four land-cover type fractions: (i) cropland (crop), (ii) grassland (grass) defined as managed 
pasture + rangeland in Chini et al.20, (iii) non-agricultural vegetation (nonagri), and (iv) urban land (urban). 
While the soil P of the last two land-cover fractions were not explicitly simulated (see below), their consideration 
was necessary to account for the effect of the land-use and cover change on the cropland/grassland soil P. Land-
use and cover change and soil P input/output were prescribed at yearly time-step while soil P dynamics work at 
daily time-step. Simulations cover the 1900–2018 period.

Our modelling approach combined several global datasets describing the drivers of agricultural soil P with 
a soil P dynamics model to simulate the temporal evolution of the agricultural soil P from the beginning of the 
20th century to the present time period. Drivers are named with four capital letters hereafter. Starting from the 
soil biogeochemical background used as initial conditions for the year 1900 (BIOG), our modelling approach 
compute the temporal evolution of soil P pools for cropland and grassland by, i) computing annually the effect of 
land-use and land-cover change (LUCC), ii) considering the annual soil P input/output corresponding to differ-
ent drivers (chemical fertilizer, manure, plant uptake and plant residues, encompassed under the term “farming 
practices”, FARM; input from atmospheric deposition, DEPO; P losses through water erosion, LOSS, P input from 
sludges, SLUD), iii) simulating at daily time-step the soil P dynamics (i.e. how the different soil P pools exchanges 
together). Fluxes between soil P forms depends on two drivers: near-surface air temperature and soil temperature/
water content (CLIM), and soil properties (SPRO) In total, eight drivers were considered (Tables 1–8). The datasets 
used to represent the different drivers resulted from the combination of different measurements (satellites, on site 
measurements, etc.) and/or model simulations. All data sets were regridded to a half-degree resolution.

https://doi.org/10.1038/s41597-023-02751-6
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Driver name FARM (farming practices)

Description of its effect on the soil P Soil P input/output related to farming practices

Corresponding variables in our 
approach

Soil P input/output corresponding to: chemical fertilizer ( fPchem
out i lab→ − ), manure reaching cropland/grassland soils ( →fPmanu

out m with m in 
{i-lab, o-lab, o-sta}), crop/grass residues ( →fPresi

out m with m in {i-lab, o-lab, o-sta}), and plant uptake ( fPupta
i lab out− → ). Here, ‘residues’ refer 

to plant biomass that remains on/within the soil after the harvest (for cropland) or harvest/grazing (for grassland). It includes root 
biomass.

Dataset ref used in 
(data = GPASOIL-v0)

Chemical fertilizer and manure were taken from Bouwman et al.13. Residues and plant uptake were derived from P harvest/
withdrawal provided by Bouwman et al.13 following basic assumptions.

Issues related to the use of this dataset 
in GPASOIL-v0

The approach used in Bouwman et al.13 (based on IMAGE67,) excluded ~20% of cropland area (due to some boolean treatment about 
land-use). This lead to some inconsistency with LUCC in GPASOIL-v0. In Bouwman et al.13, the treatment in grassland was simple: 
P withdrawal was estimated as ~90% of the total applied fertilizer.
In GPASOIL-v0, we used few global numbers, without crop distinction, to derive uptake and residues from withdrawal/harvest (see 
Supp.Inf of Ringeval et al.11).

Representation in 
(data = GPASOIL-v1)

For both cropland and grassland, P in manure reaching the soil was derived from a combination between N in manure reaching 
grassland soil given by Xu et al.31, a global P:N ratio (0.20), and P manure produced at country-scale based on livestock category 
population and manure production rate9.
Grassland: P in chemical fertilizer was derived from N in chemical fertilizer applied to grassland given by Xu et al.31 and a global 
P:N ratio (0.22). P plant uptake was derived from the actual NPP (including above and belowground NPP) in grassland and some 
spatially constant parameters (P concentration, etc.). P in residues was derived from P plant uptake and (1-GI) with GI: grazing 
intensity given by Kastner et al.41 and corresponding to the ratio of the Human appropriation of net primary production through 
harvest and the actual NPP. The spatial distribution of NPP provided by Kastner et al.41 was used but global average NPP was made 
varying between the values of Kastner et al.41 and Wang et al.42.
Cropland: P in chemical fertilizer was provided by Lu and Tian34. The latter ref. 34 assumed that all chemical fertilizer is applied to 
cropland and here, we corrected the chemical fertilizer applied to cropland by subtracting the chemical fertilizer applied on grassland 
described above. P uptake and P in residues were computed as functions of yield and crop specific parameters. Crop-dependent, 
spatially explicit and temporal varying yields are get by combining spatially-explicit yield per crop for year 2000 by Monfreda  
et al.39 and country-averaged yield (but temporal-varying) given by FAOSTAT. The yield of FAOSTAT at country-scale is extended 
for years before 1961 by scaling the 1961 yield with the country-sale human population provided by HYDE 3.223. Yield is then 
combined with different crop dependent parameters (concentration of P in different organs -root, harvest, aboveground biomass 
excluding the harvest, root:shoot ratio and harvest index) and fraction of total residus remaining on/within soil (equal to 1/2 or 0, 
following Smil44).

Characteristics of the spatially explicit 
dataset used in (data = GPASOIL-v1)

Xu et al.31 provided for grassland, chemical N fertilizer for years between 1961 and 2016, and N in manure for years between 1860 
and 2016, both in kgN.km−2.yr−1, and at half-degree spatial resolution68 (https://doi.org/10.1594/PANGAEA.892940). Demay et al.9 
provided P manure produced at country-scale per livestock category for years between 1950 and 2017 (69https://doi.org/10.57745/
LEPJCS). Kastner et al.41 provided NPP (in gC m−2 yr−1) and GI (no unit) for grassland for some years (1910, 1930, 1950, 1960, 1970, 
1980, 1990, 2000, 2010) at 0.083° spatial resolution(70https://doi.org/10.5281/zenodo.7313791). Lu and Tian34 provided chemical P 
fertilizer applied on cropland for any years between 1900 and 2013, in gP m−2 yr−1, at half-degree spatial resolution, (71https://doi.
org/10.1594/PANGAEA.863323). Zhang et al.30 provided N in manure applied on cropland for any years between 1860 and 2014, 
in in kgN.km−2.yr−1 at half-degree spatial resolution (72https://doi.org/10.1594/PANGAEA.871980). Monfreda et al.39 provided 
crop-dependent and spatially explicit (half-degree resolution) yield for years ~2000 (Earthstat dataset, http://www.earthstat.org/
harvested-area-yield-175-crops/). FAOSTAT provided country-averaged and crop-dependent yield for any years over 1961–2019 
(FAOSTAT. License: CC BY-NC-SA 3.0 IGO. Extracted from: https://www.fao.org/faostat/en/#data/QCL and https://www.fao.org/
faostat/en/#definitions Data of Access: 20-01-2023.). Klein Goldewijk23 provided the country-sale human population (HYDE 3.273, 
https://doi.org/10.17026/dans-25g-gez3).

Table 1.  FARM driver and its representation in (data = GPASOIL-v0) and (data = GPASOIL-v1).

Driver name DEPO (P in atmospheric deposition)

Description of its effect on 
the soil P Soil P input resulting from deposition of atmospheric P

Corresponding variables 
in our approach P deposition falling within labile ( fPdepo

out i lab→ − ) and apatite ( → −fPdepo
out i prim) soil P pools

Dataset ref used in 
(data = GPASOIL-v0)

P deposition falling within labile and apatite soil P pools were derived from the Wang et al.49 dataset that 
provided the atmospheric P deposition resulting from mineral dust, primary biogenic aerosol particles, sea 
salt, natural combustion and anthropogenic combustion, averaged over different time-periods. Year-to-year 
variability of P deposition from anthropogenic combustion was computed for information about emissions. 
Following Mahowald et al.50, we considered that 10% of P deposition from dust and 50% of deposition from 
other sources falls within Pi-lab while rest falls within Pi-prim.

Issues related to the 
use of this dataset in 
GPASOIL-v0

None

Representation in 
(data = GPASOIL-v1)

P deposition falling within labile and apatite soil P pools were derived from the combination of the dataset 
of Wang et al.49 and the one provided by Wang et al.51. For year before 2007, the same approach as in 
GPASOIL-v0 was used while the dataset of Wang et al.51 was used to compute the year-to-year variability of P 
deposition from anthropogenic combustion after the year 2007. The estimates of Wang et al.51 were corrected to 
ensure equality with Wang et al.49 for the years in common (1997–2007). See Eqs. 54, 55 and Text S4.

Characteristics of 
the spatially explicit 
dataset used in 
(data = GPASOIL-v1)

Estimates corresponding to Wang et al.49,51 were provided by Rong Wang, pers.comm (2020).
The monthly estimates of Wang et al.49 were representative to different time-periods between 1960 and 2011, 
depending on the variables considered (dust deposition, etc.). Total deposition at monthly time-scale was 
provided for any years between 1997 and 2013 in Wang et al.51.
The different estimates of deposition are spatially explicit without land-use (cropland, grassland, other) 
distinction.
Emissions related to natural and anthropogenic combustion were provided at annual time-scale for any years 
between 1960 and 2007 for big World regions in Wang et al.49.

Table 2.  DEPO driver and its representation in (data = GPASOIL-v0) and (data = GPASOIL-v1).
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Independent of any driver, three other soil properties were used in our approach to perform change in unit, 
namely the bulk density of the fine earth fraction, the volumetric fraction of coarse fragments ( > 2 mm) and 
the soil depth. These three variables were either used to convert concentration (i.e. per kg of soil) into quantity 

Driver name SLUD (P in sludges)

Description of its effect on the soil P P in sludges from sewage treatment that are spread on cropland soils

Corresponding variables in our approach fPslud
out m→  with m in {i-lab, o-lab, o-sta}),

Dataset ref used in (data = GPASOIL-v0) Not considered in Ringeval et al.11

Issues related to the use of this dataset in GPASOIL-v0

Representation in (data = GPASOIL-v1)

→ −fPslud
out x tot was estimated by combining human P excretions with the fraction of sewage sludge that is treated 

and the P removal efficiency of treatments plants following van Puijenbroek et al.52 and Demay  
et al.9. Human excretions were computed by using excretion rates and human population. Computations were 
performed at country-scale then all crop within the same country receive the same P (in kgP ha−1).
For the composition of P in sludges, we used the same labile vs stable contribution as for manure.
See Eq. 56 and Text S5.

Characteristics of the spatially explicit dataset used in 
(data = GPASOIL-v1)

Human P excretion rates for big World regions, as well as fraction of sewage sludge that is treated, both at 
country scale, were provided by van Puijenbroek et al.52. Human P excretion rates were available for the years 
1970 and 2010 while the fraction of sewage sludge that is treated was available for years 1990, 2000, 2010.
Human population was provided by HYDE 3.223 and Area at country scale was computed from the dataset used 
in LUCC (Table 5). The corresponding between big World regions and iso country code was provided by the 
IMAGE framework region classification (https://models.pbl.nl/image/index.php/Region_classification_map).

Table 3.  SLUD driver and its representation in (data = GPASOIL-v0) and (data = GPASOIL-v1).

Driver name LUCC (land use and land cover change)

Description of its effect on 
the soil P Decrease/increase of agricultural soil P resulting from land conversion within the same grid-cell (see Eq. 18).

Corresponding variables 
in our approach

Fractions of cropland ( frac y crop g( , , ) ) and of grassland ( frac y grass g( , , ) ) for any year y and grid-cell g as well 
as transitions between the 4 land-use categories considered in our study (e.g. Δ y j g( , , )i  is the conversion from j 
to i with both i and j in {crop, grass, nonagri, urban}).

Dataset ref used in 
(data = GPASOIL-v0) Fractions and transitions were provided by the Land Use Harmonization dataset75

Issues related to the 
use of this dataset in 
GPASOIL-v0

Representation in 
(data = GPASOIL-v1)

Fractions and transitions were provided by Chini et al.20, the update of the Land Use Harmonization dataset (the 
so-called LUH2-GCB2019 dataset). We made a corresponding between our land-use categories and Chini et al.20 
categories.
See Eqs. 59–62

Characteristics of 
the spatially explicit 
dataset used in 
(data = GPASOIL-v1)

Chini et al.20 provided LUH2-GCB2019 (https://doi.org/10.3334/ORNLDAAC/185176), an update of the 
Land Use Harmonization dataset used in GPASOIL-v0. The LUH2-GCB2019 dataset provided fractions 
and transitions between crops (C3/C4, annual/perennial, C3-nitrogen fixing), grassland (managed pasture, 
rangeland), forest and urban land, at 0.25°x0.25° spatial resolution for any years between 850 and 2018.

Table 5.  LUCC driver and its representation in (data = GPASOIL-v0) and (data = GPASOIL-v1).

Driver name LOSS (P losses through soil erosion)

Description of its effect 
on the soil P Losses of P due to water erosion and runoff processes

Corresponding variables 
in our approach Losses of P for each soil P pool ( →fPloss

m out with m in {i-lab, o-lab, o-sta, i-prim, i-sec, x-occ}).

Dataset ref used in 
(data = GPASOIL-v0)

Losses were computed using the soil P content simulated in GPASOIL-v0, the sediment gross fluxes resulting from 
erosion provided by van Oost et al.74 and the weight of top 0–0.3 m soil computed from bulk density of the same 
horizon provided by Soilgrids database (ISRIC – World Soil Information, 2016)

Issues related to the 
use of this dataset in 
GPASOIL-v0

We did not consider temporal change in the sediment gross fluxes resulting from erosion (but we considered historical 
changes in agricultural land area, see LUCC)). Also, gross (and not net) erosion rates were considered. Finally, we 
considered that the erosion rates concerns exclusively the top soil layer (top 0–0.3 m).

Representation in 
(data = GPASOIL-v1)

The same approach as used in (data = GPASOIL-v0) was used. Sediment gross fluxes resulting from erosion with a 
cropland/grassland distinction were computed following the approach described in Borrelli et al.54 Losses through 
erosion of P in soil solution (Pi-solu) was set to 0.
We made the same assumptions as done in GPASOIL-v0: no temporal change in the gross rate of erosion, focus on 
gross (instead of net) erosion rate, effect of erosion exclusively on the top layer considered in our study.
See Eqs. 57, 58.

Characteristics of 
the spatially explicit 
dataset used in 
(data = GPASOIL-v1)

Dataset were provided by Pasquale Borrelli, pers.comm, (2020) and corresponded to the use of the approach described 
in Borrelli et al.54 here applied to the land-use dataset described in LUCC for year 2000 to simulate the gross soil losses 
(in (kg of soil) yr−1 ha−1) through erosion with a cropland/grassland distinction at 250mx250m resolution.
Bulk density and volumetric fraction of coarse fragment were provided by Soilgrids 2.021 at half-degree resolution.

Table 4.  LOSS driver and its representation in (data = GPASOIL-v0) and (data = GPASOIL-v1).
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per soil surface for both P or water, or to compute soil eroded in fraction of soil mass lost per year. In particular, 
soil P input/output were mainly given in the different dataset in kgP ha−1 yr−1 and soil P dynamics worked with 
P concentration in mgP (kg soil)−1. Given the scarcity of dataset about the thickness of the plough layer at the 
global scale, we considered a globally uniform thickness of 0.3 m as in Ringeval et al.11. This soil layer was also 
considered as encompassing a major proportion of crop roots. The soil bulk density at 0.5° latitude and longitude 
resolution from Soilgrids 2.021 was used to approach the density of cropland/grassland of each grid-cell given the 
unavailability of global datasets focusing on agricultural soils, even though it is known that soil treatment has an 
effect on soil physical properties22. Same reasoning applied to the fraction of coarse fragments, also provided by 

Driver name SPRO (soil properties)

Description of its effect on the soil P Soil properties involved in the computation of the soil P dynamics

Corresponding variables in our approach

Variables considered within the SPRO drivers vary between GPASOIL-v0 and 
GPASOIL-v1:
- in (model = GPASOIL-v0), SPRO encompasses parameters involved in the Langmuir 
equation used to describe the equilibrium between Pi-lab and Pi-sec  
(so-called KS and Smax parameters)
- in (model = GPASOIL-v1), SPRO encompasses soil properties involved in 
parameterizations for soil P dynamics: soil texture (sand, clay, silt percentages: ss, sc, si 
respectively, in %), soil water pH (pH, no unit), C is soil carbon concentration  
(in gC.(kg of soil)−1)

Dataset ref used in (data = GPASOIL-v0)
A coupled of values for (KS, Smax) was used for each soil order. These values were 
provided by Wang et al.15. The global distribution of soil orders was similar to the one 
used in Yang et al.4.

Issues related to the use of this dataset in 
GPASOIL-v0

Soil orders are likely a poor predictor of soil P buffering capacity in 
(model = GPASOIL-v0). Other properties (texture, pH, carbon) were not used in 
(data = GPASOIL-v0).

Representation in (data = GPASOIL-v1)

KS, Smax are not used any more in (model = GPASOIL-v1).
Soil texture, soil water pH, and soil carbon concentration for top 0.3 m were get 
from Soilgrids 2.021.
We assumed that that soil properties at half-degree resolution could be applied to the 
cropland/grassland (soils) fraction. Soil properties were involved in equations described 
in Table 10.

Characteristics of the spatially explicit dataset used 
in (data = GPASOIL-v1)

Soil texture, soil water pH, and soil carbon concentration for top 0.3 m were computed 
by averaging values for 0–0.05, 0.05–0.15 and 0.15–0.30 m soil layers provided by 
Soilgrids 2.021. The Soilgrids procedure allows to download the data at the resolution 
needed here (half degree spatial resolution).

Table 7.  SPRO driver and its representation in (data = GPASOIL-v0) and (data = GPASOIL-v1).

Driver name CLIM (near-surface air temperature, soil temperature and soil water content)

Description of its effect 
on the soil P

Few effects can be distinguished:
- Effect of soil temperature and relative soil water content on P weathering and P mineralization in both 
(model = GPASOIL-v0) and (model = GPASOIL-v1) (See Eqs. 9–11)
- Near-surface atmospheric temperature and soil water content involved in parameterizations of 
(model = GPASOIL-v1) (see Table 10)
- Soil water content used to translate Pi-sol into soil solution P concentration in (model = GPASOIL-v1) (see e.g. 
Equations 3 and 6)

Corresponding variables 
in our approach

Relative soil liquid water content (Wrel, in fraction of field capacity) or soil liquid water content (Wabs, in L(kg 
of soil)−1) soil temperature (Tsoil, in °C), Ta: near-surface atmospheric temperature (in °C). Wrel, Wabs, Tsoil are 
representative to the 0–0.3 m soil layer.

Dataset ref used in 
(data = GPASOIL-v0)

The variables were computed by averaging corresponding variables simulated by two Dynamic Global Vegetation 
Models (ISBA77 and ORCHIDEE24). The annual average of the climatology computed for the 1979–2010 period 
(i.e. no year-to-year variability) was used.

Issues related to the 
use of this dataset in 
GPASOIL-v0

Only two Dynamic Global Vegetation Models were considered. No temporal change was considered (the 
1970–2010 climatology was used instead).

Representation in 
(data = GPASOIL-v1)

We used the average among 9 simulations (combination between 4 land-surface models and 3 climate data used as 
input of the land-surface models for the historical period) performed for the CMIP-6 exercise. These simulations 
have been considered as they provide the variables at the basis of our computation of Wrel, Wabs and Tsoil. For each 
variable, we computed the annual averages over the 1850–2012 period. Variables used are representative to the top 
0–0.3 m soil layer. Only liquid content was considered to compute Wrel and Wabs. Ta is given by forcing files used as 
input of the land-surface models.

Characteristics of 
the spatially explicit 
dataset used in 
(data = GPASOIL-v1)

Original resolution and time-period considered varied among the 9 simulations considered.
The link (with doi) of each simulation is provided below:
CNRM-ESM2-1 x land-hist: https://doi.org/10.22033/ESGF/CMIP6.9599
CNRM-ESM2-1 x land-hist-cruNcep: https://doi.org/10.22033/ESGF/CMIP6.9600
CNRM-ESM2-1 x land-hist-princeton: https://doi.org/10.22033/ESGF/CMIP6.9601
CNRM-CM6-1 x land-hist: https://doi.org/10.22033/ESGF/CMIP6.4095
CNRM-CM6-1 x land-hist-cruNcep: https://doi.org/10.22033/ESGF/CMIP6.4100
CNRM-CM6-1 x land-hist-princeton: https://doi.org/10.22033/ESGF/CMIP6.4101
IPSL-CM6A-LR x land-hist: https://doi.org/10.22033/ESGF/CMIP6.5205
MIROC6 x land-hist-cruNcep: https://doi.org/10.22033/ESGF/CMIP6.5627
MIROC6 x land-hist-princeton: https://doi.org/10.22033/ESGF/CMIP6.5628

Table 6.  CLIM driver and its representation in (data = GPASOIL-v0) and (data = GPASOIL-v1).

https://doi.org/10.1038/s41597-023-02751-6
https://doi.org/10.22033/ESGF/CMIP6.9599
https://doi.org/10.22033/ESGF/CMIP6.9599
https://doi.org/10.22033/ESGF/CMIP6.9600
https://doi.org/10.22033/ESGF/CMIP6.9600
https://doi.org/10.22033/ESGF/CMIP6.9601
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Soilgrids 2.0. The uncertainty associated to the bulk density and fraction of coarse fragments was not considered 
in our study as we restricted the uncertainty analysis to the one of the drivers. In the present study, all P pools 
were finally expressed in kgP ha−1 for top 0–0.3 m soil layer. Large-scale soil P pools are computed by using 
cropland and grassland fraction (see LUCC driver below) and grid-cell land area (computed from regriding the 
land fraction provided by HYDE 3.223, https://doi.org/10.17026/dans-25g-gez3).

The new estimates of the soil P distribution in cropland and grasslands are called GPASOIL-v1 and we used 
the name GPASOIL-v0 to describe the estimates calculated in the previous study of Ringeval et al.11. Estimates 
result from a coupling between dataset describing drivers (called “data” in the following) and a soil P dynamics 
model (called “model” hereafter), and v0 or v1 can be attributed to each component (data or model) as each one 
has been updated from the study of Ringeval et al.11 to the current one.

Soil P dynamics model.  Pools and fluxes design.  The soil P pools considered in (model = GPASOIL-v1) 
were named with the following nomenclature: Pa-b with a in {i,o,x} (i for inorganic, o for organic and x for inor-
ganic + organifc (i + o)); and b referring to different types of soil P pools. In total, 7 pools were considered follow-
ing the merging of Hedley fractions (Table 9, Fig. 1b): Pi-sol (inorganic P in soil solution), Pi-lab (labile inorganic P), 
Pi-sec (moderately labile inorganic P), Pi-prim (primary inorganic P), Po-lab (labile organic P), Po-sta (stable organic P), 
Px-occ (occluded P). Px-tot is the sum of all pools considered.

Hereafter, the following nomenclature was used to name the flux mediated by the process “proc” from pool m1 
to m2: fPproc

m m1 2→ . The superscripts m1 and m2 correspond to soil P pools in case of soil P dynamics or could be 
used to describe soil P input/output (« out » for outside is used in that case). The name “proc” was used to describe 
the process that lead to the flux considered and either referred to a soil process (“occl” for occlusion, “deoccl” for 
deocclusion, “sorp” for sorption, “desorp” for desorption, “weat” for weathering, “mine” for mineralization), or to 
a soil P input/output (“chem” for chemical fertilizer, “manu” for manure, “resi” for plant residues, “upta” for plant 
uptake, “loss” for losses through water erosion, “depo” for atmospheric deposition, “slud” for sludges from waste 
treatment). As examples, f Pmine

o sta i lab− → −  corresponded to the mineralization of Po-sta to Pi-lab while → −fPchem
out i lab 

corresponded to soil P input of chemical fertilizer to Pi-lab. fPlucc was used to name the effect of land-use change on 
soil P (section “Effect of land-use and land-cover change (LUCC) on cropland/grassland soil P”).

Pools name used in 
(model = GPASOIL-v0)

Pools definition used in 
(model = GPASOIL-v0)

Hedley fractions considered on 
sites used in Ringeval et al.11

Pools name used in 
(model = GPASOIL-v1)

Pools definition used in 
(model = GPASOIL-v1) 
(following He et al.14)

Corresponding with Hedley 
fraction used in He et al.14

PILAB Labile inorganic P [H2O Pi/Resin Pi+] Bicarbonate Pi
Pi-solu Inorganic P in soil solution H2O Pi/Resin 

Pi + Bicarbonate PiPi-lab Labile inorganic P

PSEC
Inorganic P bound on 
secondary minerals Hydroxide Pi [+Sonic Pi] Pi-sec Moderately inorganic P Hydroxide Pi

POLAB Labile organic P [H2O Po + Resin Po+] Bicarbonate 
Po Po-lab Labile organic P Bicarbonate Po

POSTA Stable organic P Hydroxide Po [+Sonic Po + HCl Po] Po-sta Moderately organic P Hydroxide Po

PAPA Apatite HCl Pi (HCl diluated or not) Pi-prim Primary inorganic P HCl Pi (HCl diluated only)

POCC Occluded inorganic P Residual P [+Hot HCl] Px-occ
Occluded P 
(inorganic + organic)

Residual P [+Hot HCl 
P + Sonic P]

Table 9.  Corresponding between pools name and Hedley fractions in (model = GPASOIL-v0) and 
(model = GPASOIL-v1). Squared brackets in columns 3 and 6 are used for Hedley fractions which are not 
systematically quantified. Columns 2 and 3 were adapted from the Table 2 of Yang and Post79. Please, note that 
all occluded P was considered as inorganic P in Ringeval et al.11 while this was not stated in Yang and Post79.

Driver name BIOG (natural soil biogeochemical background)

Description of its effect on 
the soil P

P inherited from natural soils at the time of conversion to agriculture (Eq. 20). P in natural soils was also used 
to approach P in agricultural soils at the beginning of the simulation (initial conditions, Eqs. 22, 23) and soil P 
pools at steady-state used to compute the parameter describing the exchanges between pools (Eq. 17).

Corresponding variables 
in our approach

P content of natural soils for any soil P pools considered, i.e. −Pi sol
NA , Pi lab

NA
− , Po lab

NA
− , −Po sta

NA , −Pi prim
NA , Pi sec

NA
− , −Pi occ

NA , in 
kgP ha−1 for top 0–0.3 m.

Dataset ref used in 
(data = GPASOIL-v0)

Natural soils P pools for top 0–0.3 m were approached by estimates of current P in unmanaged soils for top 
0–0.5 m provided by Yang et al.4. Pi-sol was not considered in GPASOIL-v0.

Issues related to the 
use of this dataset in 
GPASOIL-v0

Soil orders used to compute how total P is held in different fractions in Yang et al.4 is likely a poor predictor of 
soil P pools. In our approach, we assumed that P concentration provided for top 0–0.5 m was representative to 
the considered top 0–0.3 m soil layer.

Representation in 
(data = GPASOIL-v1)

We used the dataset of He et al.14 that provides the current soil P distribution for −Pi lab
NA , Pi sec

NA
− , −Pi prim

NA , Px occ
NA
− , 

Po sta
NA
− , −Po sta

NA . The values we used are representative to the top 0 - 0.3 m soil layer. −Pi sol
NA  is derived from Pc,∞ that 

was prescribed to 0.1 mgP L−1 (but sensitivity to this value was tested).

Characteristics of 
the spatially explicit 
dataset used in 
(data = GPASOIL-v1)

He et al.14 provided the current soil P pools distribution (in mgP (kg of soil)−1) for different soil horizons at half-
degree spatial resolution for natural ecosystems (78, https://doi.org/10.6084/m9.figshare.16988029.v2).

Table 8.  BIOG driver and its representation in (data = GPASOIL-v0) and (data = GPASOIL-v1).

https://doi.org/10.1038/s41597-023-02751-6
https://doi.org/10.17026/dans-25g-gez3
https://doi.org/10.6084/m9.figshare.16988029.v2
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In (model = GPASOIL-v1), the equations describing soil inorganic P dynamics between Pi-sec, Pi-lab, Px-occ, 
Pi-sol were given by Wang et al.18. Weathering and mineralization were simulated as in (model = GPASOIL-v0) 
but other mineralization rates values were here tested (see section “Parameter estimates”). In the present section, 
fP was expressed in mgP (kg soil)−1 day−1, soil P pools (Pi-sol, Pi-sec, etc.) in mgP (kg soil)−1 and soil water content 
(Wabs) in L (kg of soil)−1 to make parameters unit consistent to the units used in Wang et al.18 (Table 10). The 
different unit conversions were done by using the bulk density (in kg m−3), volumetric fraction of coarse frag-
ments (no unit) and spatially constant soil depth (0.3 m). Fluxes and pools varied as functions of year (y), 
land-cover (lu, either equal to crop or grass) and space (g, for grid-cell) (i.e. fP = fP(y,lu,g)). Parameters involved 
in Eqs. 1–8 (e.g. − → −ki sec x occ and b) varied as a function of grid-cell only and Wabs as a function of year and 
grid-cell; but for the sake of readability, we omit these in the below equations.

Parameters Name in Wang et al.18 unit Equation r²

∞Pc, C∞ mgP L−1
18 =∞

− . + . − − .P 10c
exp CX

,
[ 1 7425 1 7782(1 ( 1 6653 ))] 0.54

This study = .∞P 0 1c,

b b dimensionless
18 = . − . − . + . + .− −b exp O f f s(0 532 0 13 37 49 0 81 0 003 )x i sol i lab s 0.43

This study = − . − . + . + .− −b exp f f s( 0 628 36 702 1 102 0 0024 )i sol i lab s 0.23

− → −ki lab i sol kWL day−1
18 = − . + + . + . − . − . − .− → −

− − − −k f f f C P s4 82 209 14 64 9 26 0 008 0 0003 0 018i lab i sol
i sol x occ i sec i tot\prim i 0.28

This study Same as18 but use of − ∞Pi tot\prim,  instead of −Pi tot\prim

ki sol i sec− → − kSW

mgP (kg soil)−1 
day−1 (mg 
P/L)−b

18 k exp f P C T P(0 002 4 0 0 0008 0 012 0 108 0 0002 )i sol i sec
i sec o tot a i tot\prim= . + . + . + . + . − .− → −
− − − 0.64

This study Same as18 but use of Po tot,− ∞ and Pi tot\prim,− ∞ instead of Po-tot and Pi tot\prim− , respectively

− → −ki sec x occ kOS day−1
18 = . + . − . + . − . − . + .− → − −

− −
− − − −k e f f e pH e Ox e s e C1 6 0 0001 0 0001 1 3 9 0 4 48 1 1i sec x occ

x occ i sec c
5 5 6 7 7 0.90

This study = . + . − . + . − . + .− → − − −
−

−
−

− − −k e e f e f e pH e s e C3 68 9 60 1 47 1 22 4 07 5 16i sec x occ
x occ i sec c

5 5 4 5 7 8 0.90

Table 10.  Original parametrizations provided by Wang et al.18 and modified parametrizations used in this 
study after i) exclusion of oxalate concentrations from explanatory variablex and ii) setting k parameters as 
constant in time. All parameterizations are built from a stepwise multivariate linear regression against the 
database used in Wang et al.18. r² provided in the last column characterize either the original parametrizations 
(and thus they are equal to values given in Table 2 of Wang et al.18) or parametrizations after excluding oxalate 
from explanatory variables (this study). The parameters k were kept constant in time through i) the use of a 
constant-in-time value for fm for any soil pool m and, ii) the use of − ∞Po tot ,  and − ∞Pi tot\prim,  in the 
parametrizations instead of Po tot−  and Pi tot\prim− , respectively. Note: C is soil carbon concentration in gC (kg of 
soil)−1, Ox is oxalate metal oxide (Al and Fe) concentration in mmol(kg of soil)−1, Cx is the ratio of total soil C 
and oxalate metal oxide concentrations in g/mmol (Cx = 0.001 C/Ox), ss, sc and si are sand, clay and silt 
percentages, respectively, Ta is the mean annual near-surface air temperature in °C, pH is soil pH measured in 
water (no unit), Po-tot is the total soil organic P in mgP (kg of soil)−1 and −Pi tot\prim is the total inorganic P minus 
primary P in in mgP (kg of soil)−1, fm denotes the ratio (no unit) at steady-state of pool m and − ∞Pi tot\prim, . 
Subscript ∞ denotes pools at the steady-state.

Fig. 1  Difference in design between soil P pool dynamics model used in this study (model = GPASOIL-v1, 
panel (b)) and used in Ringeval et al.11 (model = GPASOIL-v0, panel (a)). Inorganic pools are in blue, organic 
ones are in orange and grey pools correspond to pools which encompass both inorganic and organic P forms. 
Double arrows means that an equilibrium is considered. Nomenclature used to name the pools changed 
between (model = GPASOIL-v0) and (model = GPASOIL-v1).

https://doi.org/10.1038/s41597-023-02751-6
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As in Wang et al.18, occlusion/deocclusion are given by Eqs. 1, 2 and sorption/desorption between Pi-sec and 
Pi-sol are computed with Eqs. 3, 4:

fP k P (1)occl
i sec x occ i sec x occ

i sec= .− → − − → −
−

fP k P (2)deoccl
x occ i sec x occ i sec

x occ= .− → − − → −
−

= .− → − − → −
−fP k P W( / ) (3)sorp

i sol i sec i sol i sec
i sol

b
abs

= .− → − − → −
−fP k P (4)desorp

i sec i sol i sec i sol
i sec

where Pi-sol/Wabs corresponds to the P concentration in the soil solution (in mgP L−1), k (in day−1) and b (unit-
less) are parameters. Sorption follows a Freundlich equation.

In Wang et al.18, sorption/desorption fluxes between Pi-sol and Pi-lab are computed as follows:

= .− → − − → −
−fP k P (5)desorp

i lab i sol i lab i sol
i lab

=− → − − → −
−fP k P W( / ) (6)sorp

i sol i lab i sol i lab
i sol

b

To simplify the application of the18 model at the global scale in the current study, an equilibrium between Pi-sol and 
Pi-lab is assumed at daily time-step, following Wang et al.15. Thus, k P k P W( / )i lab i sol

i lab
i sol i lab

i sol
b

abs=− → −
−

− → −
−  i.e.:

P k
k

P W( / )
(7)i lab

i sol i lab

i lab i sol i sol
b

abs=−

− → −

− → − −

Numerical resolution of Eq. 7 was done by substituting Pi-sol,lab = Pi-sol + Pi-lab in Eq. 7 and rearranging to get:

+ − =− → −
−

− → −
−

− → −
−k P k W P k W P( ) ( ) ( ) 0 (8)i sol i lab

i sol
b i lab i sol b

i sol
i lab i sol b

i sol lababs abs ,

where the unique unknown is Pi-sol. Equation 8 was used to redistribute Pi-sol,lab between Pi-sol and Pi-lab by assum-
ing a steady-state between Pi-sol and Pi-lab. Equation 8 was solved using scipy.optimize.root solver in python3.6.

The Wang et al.18 model excludes inorganic primary P and organic pools, and their exchanges with other 
inorganic pools. To model weathering and mineralization in (model = GPASOIL-v1), the same equations as in 
(model = GPASOIL-v0) were used. The weathering is computed as follows:

= ∗ ∗ ∗− → − − → −
−fP k g T g W P( ) ( ) (9)weat

i prim i lab i prim i lab
soil rel i prim1 2

where g1 and g2 (unitless) described the sensitivity to soil temperature (Tsoil, in °C) and relative soil water content 
(Wrel, unitless), respectively. As detailed in Ringeval et al.11, g1(T) is described with a Q10 of 2.4 and a reference 
temperature of 15 °C and g2(Wrel) = Wrel. The relative soil water content is defined by:

W W W/rel fcabs=  with Wfc representing the field water capacity (in L (kg of soil)−1). Dataset used to get values 
of Wabs, Wfc, Tsoil are described in the CLIM driver.

Fluxes from organic to inorganic pools (mainly assimilated to mineralization) are given by:

= ∗ ∗ ∗− → − − → −
−fP k h T h W P( ) ( ) (10)mine

o sta i lab o sta i lab
soil rel o sta1 2

= ∗ ∗ ∗− → − − → −
−fP k h T h W P( ) ( ) (11)mine

o lab i lab o lab i lab
soil rel o lab1 2

where h1 and h2 represent the sensitivity to soil temperature and soil water content and − → −ko sta i lab and 
− → −ko lab i lab are turnover rates for stable and labile pools (in day−1), respectively. The same functions as the ones 

used in the ORCHIDEE24 dynamic global vegetation model to characterize the carbon mineralization were 
prescribed to h1(Tsoil)  and h2(Wrel)  (i.e.  Q10 =  2 and reference temperature =  30 °C for h1; 
h W W W( ) 1 1( ) 2 4 0 29rel rel rel2

2= − . + . − . ).
At the 1st day of each year, soil P input/output (chemical fertilizer, manure, plant residues, plant uptake, 

atmospheric deposition, sludges, losses by water erosion) were added/removed to/from the different soil P pools. 
Each soil input/output had a given composition that defines which pools were enriched or depleted, as provided 
later. The only exception to this rule was Pi-sol which was neither enriched nor depleted by soil P input/output in 
the 1st day. Any P fluxes that should have reached or leave Pi-sol was set to occur with the Pi-lab pool instead. For 
instance, while it is well known that plant only takes up P in soil solution, our modeling approach did not allow 
to simulate daily plant growth and related P uptake from P in solution. Instead, our methodological choice was 
to remove annual plant uptake from Pi-lab at the 1st day of the year, then to make Pi-lab and other soil pools interact 
for each following day of the rest of the year. Within each time-step (day), the following order of processes was 
considered: exchanges between pools/forms were first computed, then pools were updated according to these 
changes and finally, the equilibrium between Pi-sol and Pi-lab was computed.

https://doi.org/10.1038/s41597-023-02751-6
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To avoid over depletion of a given soil P pool, i.e. the net output flux at the model time step exceeding the 
pool size, we restricted this flux to the pool size. The effect of this restriction will be evaluated in the section « 
Technical validation ». After removing − →fPupta

i lab out from Pi-lab and before computing the equilibrium between 
Pi-sol and Pi-lab, if (Pi-sol + Pi-lab) was negative, (Pi-sol + Pi-lab) was set to 0 and the uptake not satisfied by the soil P 
pools simulated was saved to a variable called fPupns. This variable corresponded to the part of the uptake which 
was prescribed to the soil P dynamics model but that the model was not able to sustain. In that case, − →fPupta

i lab out 
was corrected to the maximum uptake that was determined by the size of (Pi-sol + Pi-lab).

Parameter estimates.  Equations 1–8 are based on Wang et al.18. To estimate the flux parameters b, ki lab i sol− → − , 
− → −ki sol i sec, and ki sec x occ− → − , Wang et al.18 proceed in two steps by first calibrating these parameters against 

isotopic exchange kinetics experiments from 147 sites. Then, they regressed such optimized parameters against 
pedo-climatic variables. They found that b, ki lab i sol− → − , − → −ki sol i sec, ki sec x occ− → −  correlate with soil P fractions of 
different inorganic pools (the term “fraction” is used here to define the ratio between a given pool and the sum 
of all pools considered in Wang et al.18, see the variables called f in Eqs. 12–14 and definition in Eq. 15), soil 
organic carbon and oxalate extractable metal oxide concentrations. Parametrizations found in Wang et al.18 are 
given in Table 10. Here, in order to estimate these parameters at the global scale at which oxalate extractable 
metal oxide concentrations is not available, we re-compute the regressions after excluding oxide concentrations 
from explanatory variables (Table 10).

Wang et al.18 derived other parameters (ki sol i lab− → − , ki sec i sol− → − , kx occ i sec− → − ) from relationships with b, 
− → −ki lab i sol, ki sol i sec− → − , and ki sec x occ− → − . These relationships were also used in our study:

k
k

f W

b P f( ) (12)

i sol i lab

i lab i sol
i lab

c
b

i sol

abs

,
1

=
− → −

− → −
−

∞
−

−

k
k

f W

b P f( ) (13)

i sol i sec

i sec i sol
i sec

c
b

i sol

abs

,
1

=
− → −

− → −
−

∞
−

−

=
− → −

− → −
−

−

k
k

f

f (14)

x occ i sec

i sec x occ
i sec

x occ

where ∞Pc ,  is the concentration of P in soil solution at steady-state, overlined Wabs means temporal average of 
Wabs, fm denotes the ratio (no unit) at steady-state of pool m and the sum of inorganic pools considered in Wang 
et al.18 called here Pi-tot\prim, e.g. for m = i-sec,

= =
+ + +−

− ∞

− ∞

− ∞

− ∞ − ∞ − ∞ − ∞

f
P

P
P

P P P P (15)
i sec

i sec

i tot

i sec

i sec i sol x occ i lab

;

\prim;

;

; ; ; ;

with subscript ∞ denotes pools at the steady-state. Note that Wang et al.18 made distinctions between measured 
(f*) and modeled (f) fractions but this distinction does not make sense in this study where fractions are only 
simulated. Wang et al.18 also considered Wabs equal to 10 L (kg of soil)−1 representative to water content of iso-
topic dilution while we used here the averaged over the whole simulation (1900–2018) of Wabs. The parameter 

∞Pc ,  that describes the concentration of P in soil solution at steady-state depends only on oxalate in Wang et al.18 
and we prescribed here an arbitrary constant value:

= .∞
−P 0 1 mgPL (16)c ,

1

which is equal to the median value of Helfenstein et al.25. The sensitivity to the value chosen for Pc ,∞ was 
assessed in the “Technical validation” section. Dataset for calculating soil parameters using the relationships in 
Table 10 are given in the SPRO driver description (Table 7).

The rate parameters (different k) and parameter b are only grid-cell dependent and do not differ between 
cropland and grassland. Following parameterizations found in Wang et al.18, these parameters could theoreti-
cally vary in time with temporal variations of the different soil P fractions at equilibrium (f), organic P (Po-tot) 
and the sum of total inorganic pools considered in Wang et al.18 (i.e. −Pi tot\prim) (see Table 10). We choose here to 
keep them constant through i) the use of time-invariant value for ∞Pm ,  (and thus for fm) for any soil pool m and, 
ii) the use of − ∞Po tot ,  and Pi tot\prim,− ∞ in Table 10 instead of Po tot−  and Pi tot\prim− , respectively. Pm ,∞ is assumed to 
have the current value of unmanaged soil P pools Pm

NA given by He et al.14 for the same grid-cell g, as follows:

=∞P g P g( ) ( ) (17)m m
NA

,

in a similar way to the computation of initial conditions (see the section about LUCC).
To summarize, the main differences between the original Wang et al.18 model and the model used here for 

inorganic soil P dynamics are the following:
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- we assumed an equilibrium between Pi-sol and Pi-lab (Eq. 8) instead of (Eqs. 5-6)
- our parametrization excluded oxalate as explanatory variables (thus simplified equations for b, ki lab i sol− → − , 

ki sol i sec− → − , and ki sec x occ− → − , as well as a constant in space ∞Pc , ; Table 10) and we considered that all k parame-
ters as constant in time.

The weathering rate ( − → −ki prim i lab
) was set to 2.7e-7 day−1 following Buendia et al.26 as in (model = GPASOIL-v0). 

Regarding mineralization rates, ko sta i lab− → −  = 2.7e−5day−1 and − → −ko lab i lab = 2.7e−4day−1 were prescribed for 
organic stable and organic labile pools, i.e. a residence time of 100 and 10 years, respectively, as in 
(model = GPASOIL-v0). Given the uncertainty related to such rates27, another values were tested: 
ko sta i lab− → −  = 1.8e−4day−1 and − → −ko lab i lab = 1.4e−3day−1; i.e. a residence time of respectively 15 and 2 yr. Such 
smaller residence time of those two parameters allow the simulated soil P pool for grassland to become stable dur-
ing the 1st half of the 20th century (see the “Technical validation” section). (model = GPASOIL-v1.0) was used to 
name the model with − → −ko sta i lab = 2.7e−5day−1 and ko lab i lab− → −  = 2.7e−4day−1 while (model = GPASOIL-v1.1) 
was used for the model with ko sta i lab− → −  = 1.8e−4day−1 and − → −ko lab i lab = 1.4e−3day−1 (Table 11).

Summary of the main differences with (model =  GPASOIL-v0).  Soil P pools considered in 
(model = GPASOIL-v0) were listed in Table 9 and both pools and fluxes considered were plotted in Fig. 1a. 
Main differences with (model = GPASOIL-v1) were represented in Fig. 1 and listed hereafter:

	(i).	 (model = GPASOIL-v1) considered an additional inorganic P in soil solution (Pi-sol) that exchanges with 
both Pi-lab and Pi-sec. Pi-sol is an intermediary pool between Pi-sec and Pi-lab in Wang et al.18, and thus is key to 
represent processes of sorption/desorption. Pi-sol would also allow a better coupling with P uptake model in 
further studies.

	(ii).	 a Freundlich equation was used to describe the fluxes leaving Pi-sol to either Pi-lab or Pi-sec (vs. a Langmuir 
equilibrium between PISEC and PILAB in (model = GPASOIL-v0)). Freundlich equations were assumed to be 
better (see the introduction of Wang et al.18).

	(iii).	in (model = GPASOIL-v0), all parameters describing soil P fluxes – except those involve in the Langmuir 
equilibrium, which vary as function of soil orders- were constant in space (Text S1). In (model = GPA-
SOIL-v1), parameters involved in the soil inorganic P dynamics varied in space following Wang et al.18.

	(iv).	 the flux from Px-occ to Pi-sec was omitted in (model = GPASOIL-v0) but is resolved in 
(model = GPASOIL-v1)

	(v).	 (model = GPASOIL-v0) was based on yearly time-step, while (model = GPASOIL-v1) was based on daily 
one, and

	(vi).	 while soil organic P dynamics was similar between the two model versions, one alternative couple of 
residence time were tested in (model = GPASOIL-v1) (same residence time as in model = GPASOIL-v0 for 
GPASOIL-v1.0 while another one for GPASOIL-v1.1, Table 11).

Effect of land-use and land-cover change (LUCC) on cropland/grassland soil P.  Within a given 
grid-cell, the change in the different land-cover fractions from one year to the other modified the soil P of crop-
land (or grassland), if there were some gross conversions from other land-cover to cropland (grassland respec-
tively). Thus, the effect of LUCC on cropland soil P pools for year y and grid-cell g (called P y crop g( , , )m  with 
subscript m referring to a given soil P pool) was simulated using Eq. 18 as follows:

∑

∑

∗ = −
− Δ −

∗ −
+ Δ −

∗ −

∈

∈

frac y crop g P y crop g frac y crop g
y crop g

P y crop g
y j g

P y j g

( , , ) ( , , ) [ ( 1, , )
( 1, , )]

( 1, , )
( ( 1, , )

( 1, , )) (18)

m

i lu crop i

m

j lu crop crop

m

\{ }

\{ }

with frac(y,crop,g) was the fraction of the grid-cell g covered by cropland, Δi(y,j,g) was the change in cover area 
from land-use j to land-use i, lu is the list of land-use considered (i.e. lu = {crop, grass, nonagri, urban}), lu\{n} 

Name of the soil P estimates data model

GPASOIL-v011 GPASOIL-v0 GPASOIL-v0

Not named in the manuscript GPASOIL-v1 GPASOIL-v0

GPASOIL-v1.0 GPASOIL-v1 GPASOIL-v1

GPASOIL-v1.1 GPASOIL-v1 GPASOIL-v1.1 corresponds to GPASOIL-v1 
with increased mineralization rates

Table 11.  Name of the soil P estimates used in this study. The soil P estimates results from a coupling between 
dataset describing drivers (“data”) and a soil P dynamics model (“model”), and different combinations (data x 
model) were tested in the manuscript. “v0” refers to Ringeval et al.11 while “v1” refers to the update presented in 
the current draft.
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means the list of land-use lu after removing {n}. A similar equation where replacing crop by grass described the 
effect of LUCC on grassland soil P pools. The increase/decrease in a given soil pool Pm of a given land-cover (crop-
land or grassland) through LUCC was called fPlucc and was positive when Pm increases from one year to the other.

The definition of frac was the following:

frac y lu g Area y lu g land g( , , ) ( , , ) / ( ) (19)=

with Area for the area of the grid-cell covered by lu and land the total land area in the grid-cell g.
The soil P content of nonagri land-cover fraction was not explicitly simulated and was defined as follows:

P y nonagri g P g( , , ) ( ) (20)m m
NA=

where P g( )m
NA  is the current soil P pool m of natural (unmanaged) soils and grid-cell g. P g( )m

NA  was provided 
by He et al.14 for m within {Pi-lab, Pi-sec, Pi-prim, Po-lab, Po-sta, Px-occ}. −P g( )i sol

NA  was not provided by He et al.14 and for 
this pool, we used the following equation:

= .− ∞P g P W g( ) ( ) (21)i sol
NA

c , abs

with Pc ,∞ defined in (Eq. 16) and Wabs the soil water content, as defined earlier.
Through Eq. 20, we assumed that the P inherited from natural soils at the conversion to agriculture (the 

so-called biogeochemical background, BIOG) could be represented by prescribing the current P in unmanaged 
soils to all soils converted to agricultural soils over the last ~120 years. As explained in Ringeval et al.11, this 
could be limiting, in particular in regions where shifting cultivation occurred, leading to modification of the P 
content of soils covered by natural vegetation. We also neglected soil P input corresponding to forest biomass 
left on soil at the time of conversion28. All these simplifications had to be taken unless we explicitly simulated the 
change of soil P in non-agricultural areas, which would require the use of global vegetation models that rely on 
their own assumptions (e.g. Sun et al.29).

In addition, P in natural soils was also used as initial conditions, i.e.:

P y crop g P g( , , ) ( ) (22)m m
NA

0 =

=P y grass g P g( , , ) ( ) (23)m m
NA

0

with y0 corresponds to the 1st year of the simulation, chosen here equal to 1900.
The soil P content of urban land-cover fraction was not explicitly simulated and was defined by:

=P y urban g( , , ) 0 (24)m

Assumption of neglected soil P pools for urban land-cover was likely wrong especially for urban green areas 
but this assumption had no effect on cropland/grassland soil P as conversion from urban areas to agricultural 
areas was extremely rare.

Drivers of agricultural soil P distribution: datasets and computation.  As explained earlier, the term 
“drivers” encompasses variables related to soil P input and output (farming practices - FARM, atmospheric dep-
osition -DEPO, sludges - SLUD, losses through water erosion - LOSS), land-use change (LUCC), variables that 
have an effect on soil P dynamics (soil properties - SPRO, climate - CLIM), and biogeochemical background 
(BIOG). The different drivers and their representations were summarized in Tables 1–8. The datasets used in this 
study are called (data = GPASOIL-v1) while (data = GPASOIL-v0) is used to name the datasets used in Ringeval 
et al.11. Tables 1–8 provide the difference between (data = GPASOIL-v0) and (data = GPASOIL-v1) for each 
driver. BIOG and SPRO were constant in time while other drivers varied in time. Drivers whose the computation 
required more information than the one given in Tables 1–8 were described below.
FARM.  P in manure (for both cropland and grassland)Two estimates of P in manure applied to cropland soil 
and two estimates for grassland soil were used to assess the uncertainty associated with this soil input (Section 
“Error estimate…” and Supplementary Table S1). For each land-use category (cropland or grassland), the first 
estimate relied on a half-degree resolution dataset for N in manure reaching the soil (Zhang et al.30 for cropland, 
fNmanu Zhang

out x tot
,

→ − , Eq. 25, and Xu et al.31 for grassland, → −fNmanu Xu
out x tot

, , Eq. 26). A spatially constant P:N ratio of 0.20 (kgP 
kgN−1) was used to convert N fluxes to P fluxes of manure.

= . ∗→ −fP y crop g fN y crop g( , , ) 0 20 ( , , ) (25)manu
out x tot

manu Zhang,1 ,

= . ∗→ −fP y grass g fN y grass g( , , ) 0 20 ( , , ) (26)manu
out x tot

manu Xu,1 ,

→ −fNmanu Xu
out x tot

,  correspond to the sum of N in what was called deposition by grazing animals and application of 
manure by Xu et al.31.

The second estimate was computed thanks to Eqs. 27, 28 and relied on the P in manure produced by the 
livestock at the country-scale given by Demay et al.9, which combined data on of livestock population and P 
excretion rates per livestock category, without any distinction between cropland and grassland soils:

https://doi.org/10.1038/s41597-023-02751-6


1 2Scientific Data |           (2024) 11:17  | https://doi.org/10.1038/s41597-023-02751-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

fP y crop g fP y crop g
fP crop grass country g

fP crop grass country g
( , , ) ( , , )

( , ( ))

( , ( )) (27)
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out x tot
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out x tot manu Demay

manu
out x tot,2 ,1

,

,1
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+

+
→ − → −

→ −

fP y grass g fP y grass g
fP crop grass country g

fP crop grass country g
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manu
out x tot

manu
out x tot manu Demay

manu
out x tot,2 ,1

,

,1

= ∗
+

+
→ − → −

→ −

with the overbar there corresponds to a temporal average over the 1950–2017 period (i.e. the years in com-
mon for Demay et al.9 and fPmanu

out x tot
,1

→ − ), country(g) is the country where the grid-cell g can be found, fPmanu Demay
out x tot

,
→ −  

is the P manure produced at country scale provided by Demay et al.9 and +→ −fP crop grass country g( , ( ))manu
out x tot

,1  
is the country average of variables computed thanks to Eqs. 25, 26 without any distinction crop vs grass. For a 
given country, fPmanu

out x tot
,2

→ −  has the same relative spatial distribution among grid-cells as → −fPmanu
out x tot

,1  but its spatial 
variabilities between countries is different. The ratio of 0.20 used in Eqs. 25, 26 was given by Sun et al.29 and 
corresponds to a P:N ratio averaged among ruminant manure (mean P:N value of 0.165 between value of 0.15 
for cattle and 0.18 for goat and sheep32) and monogastric manure (mean P:N value of 0.26 between value of 0.24 
for chicken and 0.28 for swine32), weighted by the global amount of manure for each livestock super-category 
(ruminants: 14.4 TgN yr−1 and monogastrics: 10.1 TgN yr−1) given by FAOSTAT for the year 2000. The use of a 
spatially and temporal invariant P:N ratio for manure was needed given the lack of gridded data about P manure 
applied on cropland and grassland soil. It was however a simplistic assumption as N and P were partly decoupled 
due to N losses in manure through NH3 volatilization. While applied to the same data of manure application 
in Sun et al.29 as used here, the ratio of Lun et al.32 characterized manure excretion (i.e. before volatilization). 
Also, the P:N values used to compute the value of 0.20 was representative to a given country (USA)32 while such 
ratio could change as function of the country and farming practices, following its relationship with animal nutri-
tion33. Finally, the use of the same ratio for both cropland and grassland was also an approximation as the pro-
portion of monogastric vs ruminant likely differs between cropland and grassland.
P in chemical fertilizer (for both cropland and grassland)Given the lack of global dataset about P fertilizer 
applied to grassland, a spatially constant P:N ratio of 0.22 for chemical fertilizer was used to derive P in chemical 
fertilizer for grassland ( → −fP y grass g( , , )chem

out i lab ) from N in chemical fertilizer applied to grassland 
( fN y grass g( , , )chem Xu, ) given by Xu et al.31:

fP y grass g fN y grass g( , , ) 0 22 ( , , ) (29)chem
out i lab

chem Xu,= . ∗→ −

The ratio of 0.22 corresponds to the ratio of global P chemical fertilizer for managed grassland in 2002–2010 (0.4 
TgP yr−1 in Lun et al.32) and the global N chemical fertilizer for grassland for same years (1.8 TgN yr−1 in Xu et al.31).  
This ratio was computed and used in Sun et al.29.

P in chemical fertilizer for cropland ( → −fP y crop g( , , )chem
out i lab ) was derived from Lu and Tian34, which 

assumed that all chemical fertilizer was applied to cropland (i.e. grassland did not receive any chemical ferti-
lizer). Here, we corrected the chemical fertilizer applied to cropland by subtracting the chemical fertilizer 
applied on grassland given by Eq. 29 from Lu and Tian34 estimates, i.e.:

for any grid-cell g and year y:

fP y crop g frac y crop g fP y crop g

frac y crop g fP y grass g
frac y grass g

( , , ) 1/ ( , , ) ( ( , , )

( , , ) ( , , )
( , , )) (30)

chem
out i lab

chem LuTian

chem
out i lab

,= ∗

∗ −
∗

→ −

→ −

with frac is the grid-cell fraction occupied by cropland or grassland, and fPchem LuTian,  was taken from Lu and 
Tian34 (in kgP ha−1 yr−1). This correction lead to very small change (at the global scale, fPchem

out i lab→ −  over 2008–
2018 is 18.1 Tg.yr−1 for cropland vs 0.5 Tg.yr−1 for grassland).
P uptake and P residues for grasslandP uptake ( − →fPupta

i lab out) and P in plant residues ( → −fPresi
out i lab) in grassland 

were derived from the actual NPP, the part of NPP which is human-appropriated through grazing/mowing (the 
so-called grazing intensity, GI), as well as from some spatially constant parameters as follows:

(31)

fP y grass g
dry

P lifespan
L

NPP y grass g

P lifespan
L

NPP y grass g

( , , ) 1 1 (
100

( , , )

100
( , , ))

upta
i lab out above above

above

below below
below

%,

%,

γ
= ∗ ∗ ∗ ∗

+ ∗ ∗

− →

= − ∗→ − − →fP y grass g GI y grass g fP y grass g( , , ) (1 ( , , )) ( , , ) (32)resi
out i lab

upta
i lab out

where γ is the carbon content of dry matter (in kgC (kgDM)−1), dry is the ratio between dry-matter biomass and 
fresh-matter biomass (kgDM (kgFM)−1), P% is the P concentration of grass biomass (in gP (100gFM)−1), lifespan 
is the life duration of plant organs (in year), L is the length of the growing season (in years), NPP is the annual 
NPP (expressed here in kgC ha−1 yr−1), GI is the so-called grazing intensity, corresponding to the part of NPP 
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which is grazed/mowed (no unit). A distinction aboveground vs belowground was done for P%, lifespan, and NPP. 
Contrary to estimates based on carbon stock (such as used for cropland below), NPP-based estimates should 
consider a recycling through biomass turnover35, that is why we rely here on leaf lifespan (lifespanabove, in yr)  
and root lifespan (lifespanroot, in yr) derived from observations divided by the length of the growing season (L).

Lifespan for root show large variations among climatic zones and root diameter (fine vs coarse)36. Here, we 
used a lifespanbelow of 0.7 yr, close to the value provided by Zhang and Wang37 for graminoids. The parameter 
lifespanabove was set to 0.8 yr slightly below the leaf longevity used in absence of stress in LPJ-GUESS for C3-C4 
grasses (1 yr in Smith et al.38). We set the length of the growing season (L) equal to 1 yr. γ is set to 0.45 kgC 
(kgDM)−1, as commonly used (see e.g Monfreda et al.39). The parameter dry is set to 0.20 kgDM (kgFM)−1 which 
is the value of dry fraction of economic yield given by Monfreda et al.39 for the crop category « alfalfa ».

Terms involved in Eq. 31 are prone to uncertainty, especially NPP40 and P concentrations. Here we used the 
spatial distribution of the actual NPPtot (defined as NPPtot = NPPabove + NPPbelow) given by Kastner et al.41 as they 
also provided the spatial distribution of GI used in the current study to estimate the P in residues. Kastner et al.41  
provided different estimates and we used here one of them (the so-defined run number 1_3_2_1_1_1 in the 
Readme file of Kastner et al.41). In the chosen run, LPJ-GUESS without nitrogen limitation is used to approach 
NPPtot and its global average reaches ~460 gC m−2 yr−1, well above the value found in Wang et al.42 for temper-
ate/C3 grassland (273 gC m−2 yr−1) but well below global value derived from fields (979 ± 78 gC m−2 yr−1) found 
in Sun et al.40. Thus, we used for each grid-cell g, two estimates for NPPtot:

NPP y grass g NPP y g( , , ) ( , ) (33)tot Kastner,1 =

= ∗NPP y grass g NPP y g
NPP

NPP
( , , ) ( , )

(34)
tot Kastner

Sun

Kastner
,2

with NPPSun and NPPKastner equal to 979 and 460 gC m−2 yr−1, respectively. Globally averaged GI is 0.12. NPPbelow 
and NPPabove are computed as 0.54*NPPtot and 0.46*NPPtot, respectively, as found in Sun et al.40.

Lun et al.43 provided a value of 1.5e−1 gP (100gFM)−1 for the P concentration of the economic yield for the 
crop category « other crops » encompassing « forage and silage (maize, grasses nes, alfalfa, clover,…) », which is 
close to the value provided by Smil44 for the harvest of the crop category « Forages » (2.0e−1 gP (100gFM)−1) but 
much higher than the P concentration found in GOLUM42 (and taken from Zechmeister-Boltenstern et al.45) 
or found in Spohn et al.46. Wang et al.42 provided a molar P:C ratio for foliage of 1/753 for temperate C3 grass 
and 1/1728 for tropical C4 grass (Table S1 of Wang et al.42), i.e. a C3-C4 averaged molar P:C ratio of 1/1241, 
very close to the molar P:C ratio of 1/1260 given by Spohn et al.46 for senescent leaves of grassland. These values 
correspond to a P concentration of 2.5e−2 gP (100gFM)−1, following the below equation:

P dry
M P
M C

P100
( )
( ) (35)

above molar above%, ,γ= ∗ ∗ ∗ ∗

with Pmolar,above the P:C molar ratio (no unit), P% the P concentration in gP (100gFM)−1, M(P) and M(C) the 
atomic mass of P and C. In our study, we used this value (2.5e−2 gP (100gFM)−1) as lower boundary and the Lun 
et al.43 value (1.5e−1 gP (100gFM)−1) as upper boundary, thus a mean value of 8.8e−2 gP (100gFM)−1.

Finally, we assumed the following relationship between P%,above and P%,below, based on the order of magnitude 
of leaf:root ratio of molar P:C ratio used in45 for C3 or C4 grassland:

P P1
2 (36)below above%, %,=

P uptake and P residues for croplandP uptake at grid-cell scale for the cropland fraction ( − →fP y crop g( , , )uptake
i lab out ) 

was computed as the sum of the uptake by different crops weighted by the harvested area of each crop:

∑=
∑

. ∗− →

∈
∈
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Area y c g fP y c g( , , ) 1
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P in plant residues ( fPresid
out x tot→ − ) was computed as:

fP y crop g
Area y c g

Area y c g fP y c g( , , ) 1
( , , )

( ( , , ) ( , , ))
(38)

resi
out x tot

c list
c list resi

out x tot

crop
crop

∑=
∑

. ∗→ −

∈
∈

→ −

with c a crop within the list of crop considered in Monfreda et al.39 (called here listcrop) and Area(y,c,g) the area 
covered by the crop c (in ha). Among 172 crops listed in listcrop, 14 were not considered as we did not find any 
corresponding crop in FAOSTAT. It is particularly the case for some crops of the group « forage » in Monfreda 
et al.39 (alfalfa, beets for fodder, clover, rye grass for forage and silage, etc.) but not for all, as we made some cor-
responding between non-forage and forage crop in FAOSTAT. E.g. we used the “maize” crop in FAOSTAT to get 
some information needed to be combined with the crop “maize for forage” of Monfreda et al.39. The correspond-
ing between non-forage and forage crop was disputable but it concerned here only the relative change in yield 
and area as compared to the year 2000 (Eqs. 43, 46). We also excluded carob as carob area in Spain shows very 
weird pattern in FAOSTAT (from ~130 000 ha on average over 1961–1989 to 450 ha on average over 1990–2017).
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For each crop, P uptake and P residues are computed as follows:
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Yield y c g
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dry c
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P c
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( )
1
( )

1

( )
(39)

uptake
i lab out

root
harvest

root

abov harvest
harvest

abov harvest

harvest

%,

%, \
\

%,

= .








. .

+ . .





−





+








− →

= .








. .

+ . . .





−













→ −

�
� (40)

fP y c g Yield y c g P c
dry c

dry c
RSR c
HI c

frac c P c
dry c

dry c HI c

( , , ) ( , , )
100

( )
( )

( )
( )

( )

( ) ( )
( )

( )
1
( )

1

resid
out x tot

root
harvest

root

resid abov harvest
harvest

abov harvest

%,

%,

with P%,m the P concentration (in gP (100gFM)−1) for the organ m with m being {root, abov\harvest, harvest} 
where « abov\harvest » defines the aboveground biomass excluding the harvest (also called total residues 
in Smil44), drym the dry proportion of organ m expressed in fresh matter (in gDM gFM−1), fracresid the fraction of 
the aboveground biomass excluding the harvest that remains on the soil (the rest being exported from the field), 
Yield the economic yield (expressed in kgFM ha−1), RSR the root:shoot ratio (no unit), HI the harvest index (no 
unit). Text S2 shows how we get these equations as well as how we get corresponding equations for crops whose 
the harvested part being root. Following Bentsen et al.47, we assumed that at harvest, the different organs have 
the same dry proportion (i.e. drygrain = dryabov\harvest = dryroot). For all crops but root crops, we considered P%,abov\

harvest equal to the P concentration of aboveground residues given by Lun et al.43 (and completed for few crop 
categories by Smil44). P%,harvest is provided by Lun et al.43. RSR is derived from the aboveground fraction (fracabove) 
given in Monfreda et al.39 (RSR = 1/fracabove −1) and HI is directly given by Monfreda et al.39. fracresid is equal to 
0 for forage crop (group « forage » in Monfreda et al.39) and equal to 1/2 for other crops, following Smil44. We did 
not find any database available providing the P concentration of roots for different crop categories. Instead we 
assumed, following Ye et al.48 (focusing on rice), that for any crop c:

P c P c( ) 0 75 ( ) (41)root abov harvest%, %, \= . ∗

The specificities of root crop computation are given in Text S2.
The spatially explicit yield (Yield y c g( , , )  in kgFM ha−1) for the crop category c is computed as follows:

= .Yield y c g Yield c g
Yield y c country g
Yield c country g

( , , ) (2000, , )
( , , ( ))

(2000, , ( )) (42)
Monfreda

FAO bis

FAO

,

with YieldMonfreda the spatially explicit (half-degree resolution) distribution of yield given by Monfreda et al.39 
for years 2000 (and expressed as weight of economic yield, i.e. with standardized water content), YieldFAO the 
country-scale FAO yield and YieldFAO,bis defined as follows:

= > =Yield y c country g Yield y c country g( , , ( )) ( , , ( )) if y 1961 (43)FAO bis FAO,

= ∗ <Yield y c country g Yield country g c
pop y country g

pop country g
( , , ( )) (1961, ( ), )

( , ( ))
(1961, ( ))

if y 1961
(44)

FAO bis FAO,

with pop the country-scale population defined by HYDE 3.223. With Eq. 42, we combined the spatially explicit 
yield distribution of Monfreda et al.39 (but only one value for year 2000) with the temporal varying FAOSTAT 
yield (but at country-scale). For each crop, the relative intra-country distribution of yield given by Monfreda  
et al.39 for year 2000 was kept constant in time. With Eq. 44, we scaled the country-scale yield to the 
country-scaled human population before 1961, as it was assumed in Bouwman et al.13. As country spatial 
boundaries can change in time, we made some computations to allow consistency between each grid-cell and its 
belonging to a country whose the boundaries can change in time (Text S3).

The harvested area (Area y c g( , , )  in ha) for the crop category c for any grid-cell g and any year y is computed 
as follows:

= .Area y c g area c g
Area y c country g
Area c country g

( , , ) (2000, , )
( , , ( ))

(2000, , ( )) (45)
Monfreda

FAO bis

FAO

,

with AreaMonfreda the spatially explicit distribution of harvested area given by Monfreda et al.39 for years 2000, 
AreaFAO the country-scale FAO harvested area and AreaFAO,bis defined as follows:
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Area y c country g Area y c country g( , , ( )) ( , , ( )) if y 1961 (46)FAO bis FAO, = > =

and

= <Area y c country g Area c country g( , , ( )) (1961, , ( )) if y 1961 (47)FAO bis FAO,

Composition of manure and residues for cropland and grasslandThe composition (inorganic labile, organic 
labile, organic stable) of manure and residues were considered constant in space and among cropland/grassland:

fP y lu g frac fP y lu g( , , ) ( , , ) (48)manu
out i lab

i lab manu manu
out x tot

,= ∗→ −
−

→ −

= ∗→ −
−

→ −fP y lu g frac fP y lu g( , , ) ( , , ) (49)manu
out o lab

o lab manu manu
out x tot

,

= − − ∗→ −
− −

→ −fP y lu g frac frac fP y lu g( , , ) (1 ) ( , , ) (50)manu
out o sta

i lab manu o lab manu manu
out x tot

, ,

= ∗→ −
−

→ −fP y lu g frac fP y lu g( , , ) ( , , ) (51)resi
out i lab

i lab resi resi
out x tot

,

= ∗→ −
−

→ −fP y lu g frac fP y lu g( , , ) ( , , ) (52)resi
out o lab

o lab resi resi
out x tot

,

= − − ∗→ −
− −

→ −fP y lu g frac frac fP y lu g( , , ) (1 ) ( , , ) (53)resi
out o sta

i lab resi o lab resi resi
out x tot

, ,

with lu in {crop,grass}, y the year and g the grid-cell considered, fracm,l corresponding to the fraction of 
fPl

out x tot→ −  reaching the pool m. Following  Ringeval et al.11, we prescribed: frac 0 8i lab manu, = .− , 
= .−frac 0 1o lab manu, , = .−frac 0 4i lab resid,  and = .−frac 0 4o lab resid, . We considered an uncertainty associated to 

the composition of residues. To do so, we use a random value between frac 50%i lab resi, −−  and 
+−frac 50%i lab resi,  as well as as between frac 50%o lab resi, −−  and frac 50%o lab resi, +−  (see the section about 

error estimates).

DEPO.  Different classes of atmospheric deposition of P are often considered based on the sources of P in the 
atmosphere: mineral dust, sea salt, primary biogenic aerosol particles (PBAP), natural combustion and anthro-
pogenic combustion49. We considered that P deposition input enriches both the inorganic labile pool 
( → −fPdepo

out i lab) and the primary inorganic pool ( → −fP y lu g( , , )depo
out i prim ), as follows:

= ∗ + ∗

+ + +

→ −
− −fP y lu g frac D y g frac D y g

D y g D y g D y g
( , , ) ( , ) ( ( , )

( , ) ( , ) ( , )) (54)
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, ,
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, ,= − ∗ + −

∗ +
+ +

→ −
− −

with Ddust, Dseasalt, DPBAP, Dnatcomb and Danthcomb are atmospheric P deposition fluxes (in kgP ha−1 yr−1) of mineral 
dust, sea salt, PBAP, natural combustion and anthropogenic combustion, respectively. fraclab,dust and fraclab,other 
are labile fractions of atmospheric deposition of P (no unit) for respectively dust and all other sources (sea salt, 
PBAP, natural and anthropogenic combustion). fraclab,dust was chosen to be equal to 0.1 while fraclab,other was 
chosen equal to 0.550.

For any year y of the simulation and for any grid-cell g, we computed D y g( , )dust , D y g( , )seasalt , D y g( , )PBAP , 
D y g( , )natcomb  and D y g( , )anthcomb  based on variables provided by Wang et al.49,51. Wang et al.49 provided, for any 
grid-cell g, D g(2000 2011, )dust

A − , D g(2000 2011, )seasalt
A − , D g(2000, )PBAP

A , −D g(1960 2007, )totcomb
A  and 

for any World regions reg, E y reg(1960 2007, )anthcomb
A ≤ ≤  and ≤ ≤E y reg(1960 2007, )natcomb

A  while Wang 
et al.51 provided, for any grid-cell g, D y g(1997 2013, )all

B ≤ ≤ , with D: atmospheric deposition of P, E: P emis-
sions to the atmosphere, the upper letter corresponding to the version of the dataset of deposition (A: Wang  
et al.49 and B: Wang et al.51), the line over years means that only the data for an averaged time-period is available 
while a ≤ y ≤ b means that data are available for each year between a and b, totcomb means (natcomb + anth-
comb) while all means: (dust + (seasalt + PBAP + natcomb + (anthcomb).

To summarize our computation, the strategy was to consider Ddust, Dseaslat, DPBAP, Dnatcomb as static in time, and 
temporal average given by Wang et al.49 were used for these variables. Dnatcomb (respectively Danthcomb) were derived 
from Dtotcomb and the ratio between natcomb and totcomb (resp. anthcomb and totcomb) in emissions. 
D y g( , )anthcomb  was considered varying in time and its interannual variability was estimated from the interannual 
variability of emissions from anthropogenic combustion. For years after 2007, Wang et al.51 were used and cor-
rected to ensure equality with Wang et al.49 for the years in common (1997–2007). Equations are given in Text S4.
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SLUD.  P in sludges from sewage treatment that reaches cropland soils P ( → −fPslu
out x tot in kgP ha−1 year−1) is 

estimated by combining human P excretions with the fraction of sewage sludge that is treated and the P removal 
efficiency of treatments plants following van Puijenbroek et al.52 and Demay et al.9:

∑= ∗

∗ ∗

→ −

=

fP y crop g frac y country g type NR type

human y reg country g pop y country g
Area y crop country g

( , , ) ( ( , ( ), ) ( ))

( , ( ( ))) ( , ( ))
/ ( , , ( )) (56)

slud
out x tot

type
treat

excr

1,2,3

with humanexcr the total P in human excretion (in kgP capita−1 year−1) for big World regions, fractreat is 
country-scale fraction of total population (no unit) with access to different types of wastewater treatment instal-
lations (types 1, 2 or 3), each one being characterized by a different removal fraction of P (NR, no unit with 
NR = 0.10, 0.45, 0.90 for respectively wastewater treatment installations type 1, 2, 3), pop the country-scale 
human population (in inhabitants), Area the country-scale cropland area (in ha).

NR, humanexcr, fractreatment are provided by van Puijenbroek et al.52, pop is provided by HYDE 3.223 and Area 
at country scale is computed from the dataset used in LUCC. The variable humanexcr is available for the years 
1970 and 2010. The variable fractreat is available for years 1990, 2000, 2010 in van Puijenbroek et al.52 and we 
computed it for the year 1970 (see Text S5 for further technical details). Then, linear regressions are used to 
derive humanexcr and fractreat for any year between 1970 and 2010. Values for year 1970 (resp. 2010) were used 
for any years before (resp. after) 1970 (resp. 2010). The corresponding between big World regions and coun-
tries was provided by the IMAGE framework region classification (https://models.pbl.nl/image/index.php/
Region_classification_map).

The Eq. 56 relies on the following assumptions:
- P in sludges is solely sourced from human food consumption (thereby excluding P release from detergents)
- all sludges produced are used in agriculture. This is a strong assumption as a few countries have specific 

rules banning the use of sludge in agriculture (e.g. Switzerland incinerated sludges53,) but this assumption was 
required as we did not find any database that compiled this information per country at the global scale

- all sludges used in agriculture are spread on croplands (not on grasslands).
For the composition of P in sludges, we used the same labile vs. stable contribution as for manure without 

considering any uncertainty related to the composition (Supplementary Table S1).

LOSS.  The annual lateral flux of P lost from soil erosion by water (in kgP ha−1 yr−1) was computed by combin-
ing the fraction of soil mass of the top 0–0.3 m layer lost each year through erosion (fracloss, in yr−1) with each 
soil P pools (kgP ha−1):

fP y lu g P y lu g frac y lu g( , , ) ( , , ) ( , , ) (57)loss
m out

m loss= ∗→

with m in {i-lab, o-lab, o-sta, i-prim, i-sec, i-occ}, lu in {crop, grass}, and Pm the soil P content of pool m simu-
lated by our approach.

fracloss was computed by combining the gross soil losses by water erosion with a cropland/grassland distinc-
tion (loss, in (kg of soil) ha−1 yr−1), the soil bulk density of the fine earth fraction (bdod) and the volumetric 
fraction of coarse fragment (cfvo) to estimate the soil mass of the top 0–0.3 m layer:

=
∗ − ∗ Δ ∗ +

frac y lu g
loss lu g

bdod g cfvo g z
( , , )

(2000, , )
( ) (1 ( )) 10 (58)

loss 4

with bdod the bulk density for the top 0–0.3 m soil layer (in (kg of fine soil) m−3), cfvo is the volumetric fraction 
of coarse fragment (without unit), Δz = 0.3 m and 10+4 a converting factor in m² ha−1. The variable loss was 
computed following the approach described in Borrelli et al.54 but here applied to the land-use dataset described 
for year 2000 in LUCC. The geo-statistical approach proposed by Borrelli et al.54 allowed for an accurate spatial 
definition of the land uses (native resolution at 250 m cell size at the equator aggregated to 0.5° latitude × 0.5° 
longitude) and the consideration of the effects of the different regional cropping systems.

As in Ringeval et al.11, Eq. 58 is based on the following assumptions. First, we assumed that the soil losses 
of Borrelli et al.54 corresponded to a loss of topsoil (i.e. 0–0.3 m soil layer). Second, the estimates of losses for 
year 2000 (in (kg of soil) ha−1 yr−1) were considered representative of erosion rates for the whole century. Last, 
the estimates from Borrelli et al.54 correspond to a gross erosion rate and not to the net flux, which results from 
both mobilization and processes, such as deposition, storage and burial. However, we considered that these later 
processes were not relevant to the system represented here, either because they largely occur in non-agricultural 
fractions of the grid-cell (e.g. deposition on river banks) or because they concerned soil horizons below 0.3 m 
(burial).

LUCC.  The following land-use categories are considered in our approach: cropland (crop), grassland (grass), 
non-agricultural vegetation (nonagri), and urban (urban). For each year y and grid-cell g, we needed the frac-
tions of cropland ( frac y crop g( , , ) ) and of grassland ( frac y grass g( , , ) ) as well as the transitions between the 
above mentioned 4 land-use categories (i.e. Δ y j g( , , )i ) for the conversion from j to i with both i and j in {crop, 
grass, nonagri, urban}). These variables were estimated based on Chini et al.20 after we made the corresponding 
between our land-use categories (left hand side) and the ones considered in Chini et al.20 (right hand side):
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cropland c ann c nfx c per c ann c per3 3 3 4 4 (59)= + + + +

grassland pastr range (60)= +

= + + +nonagri primf primn secdf secdn (61)

=urban urban (62)

with the following meaning for categories in Chini et al.20: c3ann: C3 annual crops, c3nfx: C3 nitrogen-fixing 
crops, c3per: C3 perennial crops, c4ann: C4 annual crops, c4per: C4 perennial crops, past: managed pasture, 
range: rangeland, primf: forested primary land, primn: non-forested primary land, secdf: potentially forested 
secondary land, secdn: potentially non-forested secondary land, urban: urban land.

CLIM.  We used the simulations performed by land-surface models for the CMIP6 exercise55 to get informa-
tion about the soil liquid water content (Wrel, in fraction of the field capacity and Wabs, in L(kg of soil)−1) and 
the soil temperature (Tsoil, in °C) for the top soil layer considered in our approach (0–0.3 m) over the historical 
period. All CMIP-6 simulations providing the following variables at the basis of our computation of Wrel, Wabs 
and Tsoil have been used: mrsll (liquid water content of soil layers, in kg.m-2), mrsofc or fldcapacity (field capacity, 
in kg m−2), tsl (soil temperature, in °C). The choice of mrsofc or fldcapacity to approach the field capacity of a 
given land-surface model depends if the field capacity varies with depth in this land-surface model. Finally, the 
average among 9 simulations (combination between 4 land-surface models: CNRM-ESM2-1, CNRM-CM6-1, 
IPSL-CM6A-LR, MIROC6; and 3 climate data used as input of the land-surface models for the historical period: 
land-hist, land-hist-cruNcep, land-hist-princeton; see Table 6 for the reference of each simulation) has been 
computed and used. The period 1850–2012 was common to the 9 simulations. For years after 2012, to prevent 
any bias due to the lack of some simulations, we used the 1993–2012 climatology each year.

The annual average of each variable (Wabs, Wrel and Tsoil) was used in our approach. The influences of Tsoil 
and Wrel on weathering and mineralization were modelled using different functions (h1 and g1 for sensitivity 
to Tsoil, h2 and g2 for sensitivity to Wrel) in both (model = GPASOIL-v0) and (model = GPASOIL-v1). Wabs was 
used in (model = GPASOIL-v1) in some parametrizations (Eqs. 12, 13) and to translate Pi-sol into soil solution P 
concentration (Eqs. 3, 7). In addition, the near-surface atmospheric temperature needed in one parametrization 
of (model = GPASOIL-v1) (Ta in Table 10) was taken from climate data sets used as input of the land-surface 
models quoted above.

Error estimate from uncertainty associated with the datasets to describe the different  
drivers.  While we recognized the existence of different sources of uncertainty (dataset, model structure, para-
metrization56), we mainly focus here on how the uncertainty related to the representation of the different drivers 
propagated to the simulation of current cropland/grassland soil P pools. Nevertheless, the uncertainty associated 
to SPRO has an effect on the model parameterizations. The uncertainty associated to mineralization rates (model 
parameter) was investigated separately.

To investigate the propagation of the uncertainty associated with the driver datasets, we performed 100 
simulations by using a random value for each variable related to a given driver (see the list of variables in the 
3nd line of Tables 1–8) with all grid-cells considered as independent. For each driver, how the random value was 
defined was described in Supplementary Table S1 and summarized here. The uncertainty associated with the 
driver LUCC was not considered given the difficulty to properly quantify it by keeping consistency between the 
different variables involved in LUCC (fraction and transitions between the different land-use). The coefficient of 
variation computed over the 100 simulations was used hereafter as uncertainty estimate.

For a given driver, when two estimates are considered (called hereafter E1 and E2), we choose to use a normal 
distribution with 4σ between E1 and E2, which means that ~96% of the random values chosen will fall between 
the two estimates. This means that we considered E1 and E2 as lower/upper boundaries and we considered the 
range they defines as encompassing most values possible. Instead of a normal distribution, a uniform distribu-
tion was considered for variable that we considered very uncertain (P in manure for cropland and grassland, 
residues composition) as we considered each estimate (E1 or E2) as reasonable as the other estimate. For a few 
variables related to some drivers for which only one estimate was available (called hereafter E) and no uncer-
tainty was provided (i.e. P in chemical fertilizer for grassland, P uptake for cropland, residues composition, P in 
sludge), we derived E1 and E2 as (1 − x)*E and (1 + x)*E with x either equal to 30% or 50% depending on how 
we consider the driver uncertain, i.e. a standard-deviation equal to 15% or 25% of the mean, respectively.

Random values can lead to unmeaning values for few grid-cells. To prevent this, we set the minimum value 
allowed for soil input/output to zero. For variables related to other drivers (BIOG, CLIM, SPRO), we pre-
scribed the minimum/maximum values by using the global spatial minimum/maximum of the mean value 
(Supplementary Table S1). For temporal varying drivers, we consider the uncertainty related to the different 
time-steps as independent.

In the following, we focused on the simulation performed with the mean value for each driver instead of the 
mean among the 100 simulations performed to assess the uncertainty. Both are close except for grid-cells with 
very small soil P pools. In these grid-cells, if the combination of random soil input/output lead to negative values 
of Pi-lab, Pi-lab is set to 0 and thus, the mean of the 100 simulations was artificially increased, leading to values 
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larger than the simulation performed with mean drivers. As consequence, the coefficient of variation (instead of 
the standard deviation) among the 100 simulations was used to assess the uncertainty in soil P pools.

One additional set of 100 simulations was performed to estimate the role played by the uncertainty in BIOG 
on the uncertainty of Pi-lab. In this set, we used the mean value for all variables related to BIOG and considered 
uncertainty for all other drivers. Difference between the CV computed with this set of 100 simulations and the 
one computed in the set where all drivers are uncertain allows to distinguish the role played by BIOG.

Data Records
One tgz file called GPASOIL-v1_output.tgz was made available on recherche.data.gouv.fr57 and contains the 
soil P pools simulated with (data = v1) and (model = v1.1), as described earlier, in a netcdf format. These soil 
P pools correspond to GPASOIL-v1.1 (cf. Table 11). To assess the uncertainty related to mineralization rates, 
we also provided the GPASOIL-v1.0 soil P pools, i.e. the pools simulated with (data = v1) and (model = v1.0). 
Concerning the coordinate systems, all variables are referenced to the World Geodetic System (WGS84). The cell 
size is 0.5 decimal degrees. Fluxes of P corresponding to soil P input/output and to soil P dynamics are also given 
in the same file. Output are provided for the period 1900–2018 at annual time-step for both cropland and grass-
land. Fluxes were expressed in kgP ha−1 yr−1 and pools were expressed in kgP ha−1, and are both representative 
to the top soil layer 0–0.3 m. Two files are provided: one corresponding to the simulation with mean estimate for 
each driver and another one corresponding to the coefficient of variation to assess the effect of the uncertainty in 
driver estimate on the simulated soil P pools. README_output_upload.txt describes the netcdf files. An addi-
tional netcdf file with the land area was also provided to allow users to compute global averages of soil P pools.

Technical Validation
Our technical validation evaluated first each component of our approach, namely i) the driver estimates based 
on published datasets and ii) the model of soil P dynamic. Then it focused on how the update of each component 
(dataset, model) modified the soil P maps simulated from GPASOIL-v0 to GPASOIL-v1. This is part of the tech-
nical validation as it allows us to trace the impact of the update of each component on the reconstructed soil P. 
In this section, different combinations (data x model) were used (Table 11). Then, we discussed about how our 
best estimates (GPASOIL-v1.1) compared to previous published modelling products Zhang et al.12 (McDowell 
et al.58 and GPASOIL-v0). Finally, we compared the spatial variability simulated by GPASOIL-v1.1 to the one of 
published regional datasets on measured soil P.

Evaluation of the computation of some selected drivers.  The estimate of the drivers considered 
in our approach (BIOG, FARM, etc. see Tables 1–8) was based on published datasets. While the estimate was 
straightforward from published datasets for some drivers (e.g. BIOG), some additional computations were 
required for others, in particular for P uptake (with strong differences in the computation between cropland and 
grassland), P in manure and P deposition. In the current section, we checked that our own computation per-
formed well, i.e. that we succeed in applying the equations given in the section named “Drivers of agricultural soil 
P distribution: datasets and computation”. If possible, we compared some intermediary variables (e.g. yield per 
crop category, which is an intermediary variable of the computation of P uptake for cropland) or final P-related 
variables (e.g. P in manure) to other independent datasets.

In Fig. 2, we compared our estimates of P in biomass grazed/mowed from grassland to the estimate computed 
by Demay et al.9. P in biomass grazed/mowed from grassland was defined as the difference ( )fP grassupta

i lab out −− →  
fP grass( )resi

out x tot→ − , or following Eq. 32 as ∗ − →GI fP grass( )upta
i lab out . The two estimates used to assess the uncer-

tainty (GI fP grass( )upta
i lab out

,1∗ − → , GI fP grass( )upta
i lab out

,2∗ − → ) and their mean (GI fP grass( )upta mean
i lab out

,∗ − → ) were plotted 
in Fig. 2. P in biomass grazed/mowed from grassland in Demay et al.9 (called P harvest from grassland in this latter 
reference) was computed at country scale based on forage P demand of livestock (Eq. S4 of Demay et al.9). We 
found that the independent estimate of Demay et al.9 was very close to the mean of our estimates (black curve in 
Fig. 2).

P uptake for cropland was based on the spatially explicit temporal yield per cropland that we estimated using 
Eq. 42. Figure S1 shows how the Eq. 42 provided temporal estimates of yield for maize at grid-cell scale (Yield 
in kgFM ha−1, line 2 of Fig. S1) by combining YieldMonfreda, the spatially explicit yield given by Monfreda et al.39 
for circa the year 2000 (line 4) with YieldFAO, the country-scale annual FAO yield (line 3). Within each country, 
the relative spatial variability was kept constant for any year and equal to one of YieldMonfreda. Figure S1 focuses 
on the temporal averages over three time-periods (1982–1992, 1993–2003, 2004–2014) as it allows to compare 
our estimates with estimates of Iizumi and Sakai59 (line 1) available over the 1982–2014 time-period. Overall, a 
relatively good agreement is found despite some discrepancies between our estimate and59, explained by some  
mismatch in country-scale variability (e.g. USA) or global distribution of the crop area (e.g. India) 
between Monfreda et al.39 and Iizumi and Sakai59. Note that Iizumi and Sakai59 assumed no temporal change 
in harvested area and focused only on few crops, that is why we only used this dataset for comparison in the 
current study.

Figure S2 focuses on the temporal variation at country scale of Yield and Area, the spatially explicit and 
crop-specific yield and harvested area, respectively. Yield and Area are computed thanks to Eqs. 42, 45. As Fig. S1, 
Figure S2 focuses on maize (c = maize in Eqs. 42, 45). We compared Yield to the dataset of Monfreda et al.59  
and Area to the dataset used to characterize LUCC20 for the broad crop category encompassing maize in LUCC 
(namely “c4ann” in Chini et al.20). LUCC is used in our study but not within the computation of the cropland P 
uptake and thus is independent to its computation. Figure S2 shows that our procedure allows both Area and 
Yield to match Monfreda et al.39 at country-scale for the year 2000 and to mimic the year-to-year variability 
of FAOSTAT (left columns of Fig. S2). When we put together all crops belonging to the category « c4ann » of 
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LUCC, we found that the simulated year-to-year variability of area differ to the one given by LUCC (except for 
Brazil) but that the order of magnitude of area per country relatively matches the one of LUCC. Crop composi-
tion of total P uptake is given in Fig. S3.

In our approach, P in manure applied to cropland and grassland soils was estimated following two different 
methods. While the 1st estimate was based on half-degree resolution dataset for N in manure and N:P ratios, the 
2nd estimate was based on country-scale estimates of Demay et al.9 with the same inner-country spatial distribu-
tion and temporal variability as the 1st estimate. Figure 3 shows the estimate 1 and estimate 2 for few countries 
and at the global scale. Demay et al.9 did not distinguished cropland from grassland and we plotted in Fig. 3 the 
sum of P in manure for the two land-covers. By construction, the country-averages of estimate 2 and Demay 
et al.9 over 1950–2017 are equal, and the temporal variability of estimate 2 is similar to the one of estimate 1. 

Fig. 2  Comparison at country-scale between P in biomass grazed/mowed from grassland estimated in this 
study and estimates provided by Demay et al.9. P in biomass grazed/mowed from grassland is defined as 
GI*fPuptake in our study. Two estimates used in our study are plotted (subscript 1 in green, subscript 2 in 
blue) as well as the mean of these two estimates (subscript ‘mean’ in black). P in biomass grazed/mowed from 
grassland in Demay et al.9 (called P harvest from grassland in this reference) is plotted in orange and is an 
independent estimates. All fluxes are expressed in kgP (ha of grassland)−1. Estimate 1 (respectively estimate 2) 
corresponds to the min (resp the max) value for all grid-cells within the country considered. “World” (panel (g)) 
corresponds to the sum of all countries considered in both our estimates and Demay et al.9 and thus excludes 
few countries not available in Demay et al.9. The number in the left-top corner of each panel corresponds to the 
root mean square error (kgP (ha of grassland)−1) between orange and black curves for years in common.
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Figure 3 shows that estimates 1 and 2 greatly differed, with, e.g. 1.4 kgP/ha for estimate 1 vs 3.9 for estimate 2, 
over 1961–2017 at global scale (Fig. 3g). On Fig. 3, we also compared our estimates to the following independent 
country-scale computation (fPmanu,indirect, in kgP (ha of cropland + grassland)−1) based on a livestock budget:

+ = +
∗

∗

∗
+

+

−

− →

fP y crop grass country Area y crop grass country
GI y grass country

fP y grass country
Area y grass country
grain y country
miner y country
product y country

( , , ) 1/ ( , , )
[ ( , , )

( , , )
( , , )

( , )
( , )

( , )] (63)

manu indirect

upta mean
i lab out

feed

feed

animal

,

,

with ∗ ∗− →GI y grass country fP y grass country Area y grass country( , , ) ( , , ) ( , , )upta mean
i lab out

,  the P in biomass with-
draw from grassland (either mowed or grazed) to feed the livestock (in kgP), gainfeed and minerfeed the grain and 
mineral used to feed livestock, respectively, and productanimal the P in animal products (P in milk, egg and 
slaughtered animals). The variables gainfeed, minerfeed and productanimal are expressed in kgP. The country-scale 
data required to compute grainfeed, minerafeed and productanimal were provided by FAOSTAT and Demay et al.9. 
Parameters needed to compute productanimal (average carcass weight, carcass yield over live weight, P content of 
animal live weight, P concentration of egg and milk) were found in Senthilkumar et al.60. We found that 
fPmanu indirect,  was close to our mean estimate in both temporal average value (2.6 kgP ha−1 for our mean estimate 
over 1961–2018 at global scale vs 2.2 for fPmanu indirect, ) and temporal correlation (e.g. pearson correlation of 1.0, 
p < 0.05). Interestingly, the year-to-year variability of our estimates and the one of Demay et al.9 show some 
consistent patterns for China, India and Russia but less for other countries.

Figure S4a shows that our procedure to compute P deposition allowed to get a consistent global P deposition 
from anthropogenic combustion over the whole time-period.

Application of the Wang et al. soil P inorganic dynamics parametrizations at the global 
scale.  (model = GPASOIL-v1) was based on Wang et al.18 parametrization for soil inorganic P dynamics. 
Parameters used in our approach follow the relationships with pedo-climatic variables found in Wang et al.18 with 
some modifications (all k parameters constant in time, oxalate excluded from parametrization leading to both 
simplified equation for k parameters and ∞Pc ,  constant in space). Soil P fractions used in the relationships to 
compute the different parameters were given by the initial conditions chosen for the soil P pools (i.e. Pc ,∞ = 0.1 
mgP L−1 for Pi-sol and P of unmanaged soil P given by He et al.14 for other pools). Figure 4 shows that the spatial 
distribution of parameters involved in (model = GPASOIL-v1) fall well within the range provided by Wang et al.18 
(blue boxplot vs. the range in red in Fig. 4). Nevertheless, we found that the numerical values of some parameters 
would sometimes require shorter time-step than daily one used here (blue boxplot vs. magenta box in Fig. 4). 
Indeed, magenta box in Fig. 4 shows the upper value behind which the net flux is larger than the pool it leaves at 
daily time-step. The issue was particularly true for ki sol i sec− → −  whose the global median in (model = GPASOIL-v1) 
(12.6 mgP (kg soil)−1 day−1 (mg P/L)−b) is well above the value consistent with a daily time-step ( W P( )C

b
abs ,

1
∞

−  
has a median value of 0.05 mgP (kg soil)−1 day−1 (mg P/L)−b) (Fig. 4). As an equilibrium was assumed between 
Pi-sol and Pi-sec, this issue does not exist for neither − → −ki sol i lab nor ki lab i sol− → − . To solve this issue, a shorter 
time-step should be chosen, but the time-step needed (e.g. ~5 minutes based on median values given above) is not 
consistent with global application. Our strategy was to not put any constraints on the parameters themselves nor 
on each gross flux but we prevent a net flux to be larger than the pool from which this net flux leaves.

Figure S5 shows the sensitivity to the time-steps chosen (1-day or 6-hours time-steps) on a given grid-cell. In 
such sensitivity tests, the flux parameters were modified by multiplying them by the ratios of the different 
time-steps. The effect is particularly visible on time-steps with positive soil P budget (Figs. S5, S6) for which the 
inconsistency between a long time-step (1 day) and ki sol i sec− → −  reduces the net flux from Pi-sol to Pi-sec, letting the 
soil P input within Pi-lab. The effect of the time-step chosen could be significant at grid-cell scale (e.g. + 17% 
larger Pi-lab for 1-day time-step than for 6-hours time-step in 2010, panels (b) and (c) of Fig. S5) or regionally 
(−15% lower Pi-lab in China for 1-day time-step than for 2-days time-step, Fig. S6a) but remains small at the 
global scale (few percent of difference in the global average of both Pi-sec and Pi-lab between 1-day time-step vs 
2-days time-step, Fig. S6).

Effect of the update of each component (data and model) from GPASOIL-v0 on Pi-lab sim-
ulated in 2018.  Effect of the update of the dataset to describe the drivers (from (data = GPASOIL-v0; 
model = GPASOIL-v0) to (data = GPASOIL-v1; model = GPASOIL-v0)).  Here we focus on the effect of using 
new datasets to describe the different drivers with using the same model as the one of Ringeval et al.11 (i.e. 
model = GPASOIL-v0). Figure S7 shows first that (data = GPASOIL-v1) modified the simulations of Pi-lab and 
Px-tot for both cropland and grassland (comparison between 1st and last line of Fig. S7). In particular, Pi-lab of 
grassland is strongly reduced with (data = GPASOIL-v1) (20 kgP ha−1 at the global scale in 2005) as compared to 
(data = GPASOIL-v0) (208 kgP ha−1). Sensitivity tests (Fig. S7) show that BIOG explains the most the difference 
between (data = GPASOIL-v1) and (data = GPASOIL-v0) for Px-tot. Conversely, FARM is the main driver of the 
difference between (data = GPASOIL-v1) and (data = GPASOIL-v0) for Pi-lab of grassland, and a combination of 
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BIOG and FARM explains the difference for Pi-lab of cropland. The key roles played by BIOG and FARM in the 
spatial distribution of simulated soil P pools were already demonstrated in Ringeval et al.11.

The biggest difference in FARM between (data = GPASOIL-v0) and (data = GPASOIL-v1) for grassland con-
cerns the P uptake which is much larger in (data = GPASOIL-v1) than in (data = GPASOIL-v0) (Fig. S8). In 
(data = GPASOIL-v0), the plant uptake of grassland was constrained to be equal to ~90% of the total P input13.

The spatial extent of simulated Pi-lab is larger in (data = GPASOIL-v1) (~36000 grid-cells and 1481 millions of 
ha for cropland; ~41000 grid-cells and 3237 millions of ha for grassland) than in (data = GPASOIL-v0) (~15000 
grid-cells and 1048 millions of ha for cropland; ~20000 grid-cells and 2215 millions of ha for grassland). This is 
explained by a Boolean treatment of cropland in Bouwman et al.13 (with grid-cells with small cropland fraction 
not considered) and resulting to exclusion of around 1/3 of the real cropland area in GPASOIL-v0.

Fig. 3  Comparison at country-scale between the two estimates of P in manure applied on cropland + grassland 
used in our approach ( → −fPmanu

out x tot
,1  in and fPmanu

out x tot
,2

→ − ). Temporal country-scale average of Demay et al.9 (red 
curve) is used to scale the country-scale average of fPmanu

out x tot
,2

→ −  while the year-to-year variability of → −fPmanu
out x tot

,2  
follows the one of → −fPmanu

out x tot
,1 . The mean of our two estimates (subscript ‘mean’) is plotted in black. Independent 

estimate based on a livestock budget ( fPmanu indirect, ) is also plotted in orange. All fluxes are expressed in kgP (ha 
of cropland + grassland)−1. Estimate 1 (respectively estimate 2) corresponds to the min (respectively the max) 
value for all grid-cells within the country considered. “World” in this figure corresponds to the sum of all 
countries considered in both our estimates and Demay et al.9 and thus excludes few countries not available 
in Demay et al.9. The number in the left-top corner of each panel corresponds to the root mean square error (in 
kgP (ha of cropland + grassland)−1) between orange and black curves for years in common.
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Fig. 4  Half-degree grid-cell distribution of each flux parameter involved in (model = GPASOIL-v1). Each panel 
corresponds to one parameter. In each panel, the red bar gives the min - max range of values for this parameter 
provided by Wang et al.18 (mainly from Fig. S2 of Wang et al.18), the magenta bar corresponds to the values required 
to make the output flux from a pool smaller than the size of this pool, the blue bar corresponds to the grid-cell 
distribution of this parameter in the current study and green bars correspond to the distribution of variables used to 
compute this parameter in the current study. The values required to make the output flux from a pool smaller than 
the size of this pool are given in magenta. For instance, the gross flux from Pi-sec to Pi-sol (called fPdesorp

i sec i sol− → − ) is 
computed with Eq. 4: fP k Pdesorp

i sec i sol i sec i sol
i sec= .− → − − → −
− . The inequality <− → −

−fP Pdesorp
i sec i sol

i sec at daily time-step is 
equivalent to k 1i sec i sol <− → −  (with ki sec i sol− → −  in day−1) and thus we compared the distribution of ki sec i sol− → −  to 1 
in the panel (d). Similarly, the gross flux from Pi-sol to Pi-sec (called − → −fPsorp

i sol i sec) is computed as follows: 
fP k P W( / )sorp

i sol i sec i sol i sec
i sol

b
abs= .− → − − → −

− . Thus, the inequality fP Psorp
i sol i sec

i sol<− → −
−  at daily time-step is 

equivalent to <− → −
∞

−k W P( )i sol i sec
C

b
abs ,

1  with ki sol i sec− → −  expressed in mgP (kg soil)−1 day−1 (mg P/L)−b. Thus, 
we compared the distribution of − → −ki sol i sec to ∞

−W P( )C
b

abs ,
1  in the panel (c) Green bars correspond to the 

distribution of variables used to compute each parameter. For instance, panel (a) focuses on ki lab i sol− → − . The 
equation to compute this parameter is: = − . + + . + . −− → −

− − −k f f f4 82 209 14 64 9 26i lab i sol
i sol x occ i sec  

C P s0 008 0 0003 0 018i tot\prim, i. − . − .− ∞ , (cf. Table 10), thus the blue bar corresponds to the distribution of 
− → −ki lab i sol and green bars corresponds to the distribution of −4.82 (1st green bar), + −f209 i sol (2

nd green bar), 
f14 64 x occ+ . −  (3rd green bar), etc. This shows the contribution of each variable to the value of the parameter. The 

parameter b is without unit, − → −ki sec x occ, − → −kx occ i sec, − → −ki lab i sol and − → −ki sec i sol are in day−1, ki sol i sec− → −  and 
− → −ki sol i lab are in mgP (kg soil)−1 day−1 (mg P/L)−b. − → −kx occ i sec, − → −ki sol i sec and − → −ki sec i sol are log transform to 

express them as a sum of another variables.
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Effect of the update of soil P dynamic model (from (data = GPASOIL-v1; model = GPASOIL-v0) to 
(data = GPASOIL-v1; model = GPASOIL-v1)).  Here, we prescribed (data = GPASOIL-v0) for the whole sec-
tion and assessed the effect of using (model = GPASOIL-v1) instead of (model = GPASOIL-v0) (Figs. 5, 6  
for cropland and grassland, respectively). Overall, for cropland, compared to (model = GPASOIL-v0), 
(model = GPASOIL-v1) tends to increase vs. decrease Pi-lab in grid-cells where values were very low vs. 
very high, respectively, making the spatial soil P distribution more homogeneous (Fig. S9). For grassland, 
(model = GPASOIL-v1) tends to increase Pi-lab almost everywhere as compared to (model = GPASOIL-v0) (38 
vs 23 kgP ha−1, respectively) (Fig. 6). Note that, while Pi-lab is not defined equally in (model = GPASOIL-v0) and 
(model = GPASOIL-v1) (as Pi-sol is only distinguished from Pi-lab in (model = GPASOIL-v1)), the comparison 

Fig. 6  Same as Fig. 5 but applied to grassland.

Fig. 5  Effect of using (model = GPASOIL-v1) instead of (model = GPASOIL-v0) on simulated soil P pools 
for cropland. First line shows the simulation with (model = GPASOIL-v0) while the second line shows 
(model = GPASOIL-v1). All simulations have been performed with (data = GPASOIL-v1). The last line 
shows the difference (model = GPASOIL-v1) - (model = GPASOIL-v0). All plots are in kgP ha−1. The effect of 
changing the soil P dynamic model is provided for different soil P pools (Pi-lab, Pi-sec, Px-occ) and on the variable 
fupns, which corresponds to the P uptake prescribed by the data but that the soil P pools simulated by the model 
are not able to satisfy. Soil P pools plotted correspond to the year 2018 while fPupns corresponds to the annual 
average over 1900–2018.

https://doi.org/10.1038/s41597-023-02751-6


2 4Scientific Data |           (2024) 11:17  | https://doi.org/10.1038/s41597-023-02751-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

between the two models can nevertheless focus on Pi-lab as the maximum value for the ratio Pi-sol/Pi-lab reaches 
only 0.2% in (model = GPASOIL-v1). We found that (model = GPASOIL-v1) allows soil P pools simulated to be 
more consistent with the P plant uptake prescribed (last column of Figs. 5, 6), especially for grassland (Fig. 6).

Soil exchanges with Px-occ play a key-role in the difference between (model = GPASOIL-v0) and 
(model = GPASOIL-v1). This in particularly true for grassland for which, the model compensates negative soil 
P budget by P taken from Px-occ (3rd column of Fig. 6) while de-occlusion is not allowed in (model = GPASOIL-v0). 
The amount of P transferred from Px-occ to other pools (Pi-sec then Pi-lab) in (model = GPASOIL-v1) depends on 
the mineralization rates of organic pools (Po-lab and Po-sta) used in the model. Sensitivity tests showed that the 
Px-occ for global grassland decreased much less in time if we increased the mineralization rates (i.e. decrease the 
organic residence times) (Fig. 7). Our soil P dynamic model for organic P is too simplistic (no biochemical min-
eralization, no link with carbon, no microbial pools27) and building a more realistic model based on measure-
ments would require a specific study. As it is likely that the temporal variations of global grassland soil P were 
small during the 1st half of the 20th century, we chose mineralization rates that allow to approach this global 
pattern in our simulations, i.e. − → −ko sta i lab = 1.8e−4day−1 and ko lab i lab− → −  = 1.4e−3day−1 (i.e. a residence time of 
15 yr and 2 yr, respectively) (Fig. 7). Such configuration is called GPASOIL-v.1.1. Even with increased minerali-
zation, a decrease of Px-occ over time remained, partly attributed to losses through erosion and to transfers to 
sustain the prescribed P uptake (Fig. 7c). The effect on the global average of the change in mineralization rate is 
large (from 149 kgP ha−1 for cropland and 38 for grassland with GPASOIL-v1.0 to 187 for cropland and 91 for 
grassland with GPASOIL-v1.1).

We also found that the global averaged soil P pools were sensitive to the value of ∞Pc ,  chosen. The choice of 
∞Pc ,  has a small effect on the global average for common values of ∞Pc ,  (global averages of cropland Pi-lab of 149 

kgP ha−1 for default value of ∞Pc ,  (0.1 mgP L−1) vs 174 and 148 for kgP ha−1 for Pc ,∞ equal to the 1st and 3rd quar-
tile of ∞Pc ,  found in Helfenstein et al.25, respectively; 2nd and 3rd line of Fig. S10) but a large effect for lowest val-
ues of ∞Pc ,  such as values that could be found in Andosols or Ferralsols (global averaged Pi-lab of 239 kgP ha−1 for 

∞Pc ,  = 0.005 mgP L−1, 1st line of Fig. S10). This suggest that more work is needed to constrain further spatial 
variation of ∞Pc ,  (see the “Usages Notes” section).

Best simulations, uncertainty associated and comparison to previous estimates.  In the follow-
ing, we focused on the GPASOIL-v1.1 simulations as we considered them as our best estimates. Figure 8 shows 
the spatial distribution of the soil P budget (soil P input - output) for Pi-lab. Figure 9 shows the input/output for 
Pi-lab (including soil P input/output and fluxes resulting from soil P dynamics) and soil P pools simulated for 
GPASOIL-v1.1 for both cropland and grassland for few countries and at the global scale. It underlines the trans-
fer from Pi-lab to Pi-sec (through Pi-sol) for countries as France (in 1970s) or China (in the current time period) in 
cropland, when soil P input are larger than soil P output. Flux from Pi-sec to Pi-lab was simulated for cropland in 
Russia or for many countries in grassland. Such flux also occurred for France in the current time-period in crop-
land but with a smaller magnitude (average of 0.9 kgP ha−1 yr−1 over 2010–2018 in cropland for France), which 
corresponds to transfer from P inherited from past fertilizer applications to current plant uptake.

Figure 10 shows the comparison, for the top 0–0.3 m soil layer, between GPASOIL-v1.1 and other published 
modelling products available: GPASOIL-v0, Zhang et al.12, and McDowell et al.58. In parallel to the studies based 
on process-based model of soil P dynamics mentioned in the introduction11,12, we also included a comparison 
against a global dataset of soil plant available P based on a statistical model trained on a database of measured 

Fig. 7  Effect of increased mineralization rates on soil P pools simulated for grassland at the global scale. In 
panel (a), km1 = 2.7e−5day−1 and km2 = 2.7e−4day−1 for respectively Po-sta and Po-lab (i.e. residence time of 100 yr 
and 10 yr, respectively) following (model = GPASOIL-v0). In panel (b), km1 = 1.8e−4day−1 and km2 = 1.4e−3day−1 
(i.e. a residence time of 15 yr and 2 yr, respectively). In panel (c), same mineralization rates as in panel (b) are 
used but in addition, losses by erosion are set to zero.
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soil P concentration58. McDowell et al.58 did not focus on agricultural soils but their dataset encompassed these 
soils, and we filtered them in the scope of our comparison. GPASOIL-v1.1, GPASOIL-v0 and Zhang et al.12 pro-
vide soil P pools for top 0–0.3 m in kgP ha−1 for cropland (and grassland) while McDowell et al.58 provide soil 
P concentration for top 0–0.2 m in mgP (kg of soil)−1 for any land-use categories at 1 km² resolution. We used 
the land-use information used in McDowell et al.58 to filter their estimate and computed soil P for cropland and 
grassland only, before regriding them to half-degree regular resolution. McDowell et al.58 provide soil P pools 
for cropland, rangeland, improved grassland, forest and non-productive areas. According to our definition of 
grassland, we gathered ‘improved grassland’ and ‘rangeland’ classes of McDowell et al.58 to compare to our 
grassland soil P pools estimates. Then, we convert soil P concentration in kgP ha−1 for top 0–0.3 m by using the 
bulk density used in our study and by assuming that the P concentration provided by McDowell et al.58 is also 
representative to 0–0.3 m.

Global average of Pi-lab decreased for both cropland and grassland from GPASOIL-v0 to GPASOIL-v1.1. The 
relative decrease was even larger for grassland (from 208 to 91 kgP ha−1) than for cropland (from 253 to 187 
kgP ha−1). Pi-lab reached 238 kgP ha−1 in Zhang et al.12 for cropland, and 62 and 32 kgP ha−1 in McDowell et al.58 
for cropland and grassland, respectively. Pi-lab provided by McDowell et al.58 is difficult to compare to other esti-
mates used here as it is based on Olsen P extraction vs. pool design based on Hedley fractionation used in other 
studies. For cropland, we simulated larger P in South America in GPASOIL-v1.1 than in GPASOIL-v0, a lower P 

Fig. 8  Spatial distribution of the soil P budget (soil P input - output) for Pi-lab for both cropland and grassland. 
Only plant P uptake allowed by the soil P pools simulated was considered in this budget and thus the soil P 
budget plotted is representative to GPASOIL-v1.1.

Fig. 9  Temporal evolution of soil Pi-lab input/output and simulated soil P pools for several (group of) countries 
and for both cropland and grassland. Simulations used correspond to GPASOIL-v1.1. In left columns, only flux 
corresponding to soil P dynamics (weathering, mineralization, net flux from Pi-sec) are simulated while others 
are prescribed through (data = GPASOIL-v1).
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content in Africa in GPASOIL-v1.1 than in GPASOIL-v0 while some patterns remains stable in the two versions 
(high soil P in India and China, low P content in West Europe and Russia).

Differences in the global averaged soil P between GPASOIL-v1.1 and McDowell et al.58 are likely to be caused 
by the shallower depth used in McDowell et al.58 and the different P fractions measured (Olsen P) or estimated 
(Pi-lab). The effect of difference in soil depth considered is not straightforward, depending on the farming prac-
tices (tillage, fertilization, etc.61). However, we do know the likely effect of the Olsen-P vs Pi-lab. Labile inorganic 
P from Hedley is close to the Colwell P test used in Australia; both use a 16 hours soil extraction with 0.5 M 

−HCO3 . There are equations to estimate Colwell P from Olsen-P while these equations differ according to soil P 
sorption capacity (e.g., Colwell-P is 2.869 × Olsen-P - 2.93 for non-calcareous soils and 1.376 × Olsen-P + 8.80 
for calcareous soils)62. After converting the values derived from McDowell et al.58 for (more common) 
non-calcareous soils, we get 165 and 81 kgP ha−1, for cropland and grassland respectively; meaning that the 
global values calculated in McDowell et al.58 are within the same range as Pi-lab simulated here.

As the biogeochemical background was found to be a major driver of the spatial distribution of Px-tot
11, and 

because the same biogeochemical background was considered for both cropland and grassland, Px-tot was similar 
between cropland and grassland for GPASOIL-v1.1. The same reasoning could be applied to GPASOIL-v0. Px-tot 
for cropland shows also some similarities between Zhang et al.12 and GPASOIL-v0 as both relied on the same 
dataset to approach the initial soil P content4. Differences in Px-tot between GPASOIL-v0 and GPASOIL-v1.1 
were linked to differences in Px-tot of unmanaged soil used in each study (Yang et al.4 for v0 vs. He et al.14 for v1).

The coefficients of variation for GPASOIL-v1.1 for Pi-lab and Px-tot were plotted in Fig. 11 for both cropland 
and grassland. These coefficients were due to uncertainty in drivers estimates only. Uncertainty was larger for 
Pi-lab than for Px-tot as the uncertainty in BIOG explained exclusively the uncertainty in Px-tot while all drivers 
contributed to the uncertainty in Pi-lab. Uncertainty of Px-tot was similar for both cropland and grassland (global 
averaged coefficient of variation of 0.17) while much larger for grassland (0.54) than for cropland (0.22) for Pi-lab. 
This was explained by the large uncertainty in plant uptake due to uncertainty in both grassland NPP and P con-
centration of grass. Using mean values for variables related to FARM (instead of random ones) makes the global 
averaged coefficients of variation of Pi-lab to decrease up to 0.14 for cropland and 0.24 for grassland, underlying 
the large contribution of FARM uncertainty in uncertainty of simulated Pi-lab.

Evaluation of the simulated soil P pools at different scales (country, continental/watershed, 
global scale).  The evaluation of predicted soil P is challenging due to lack of data compiling Hedley P meas-
urements from cropland/grassland soils at the global scale. Different chemical extraction protocols are used 
worldwide with difficulties to find correspondence among different extractions. In addition, some chemical 
extraction in cropland/grassland soils at long-term field sites can be found in the literature but these sites usually 
encompass different P treatments (varying within their amount/rate/nature of fertilizer) with difficulties to link 
with farming practices occurring in the region/grid-cell including the sites. Here we relied on 3 regional datasets 
based on soil monitoring networks that carried out measurements on soil samples: RMQS over France63, LUCAS 

Fig. 10  Comparison between previous estimates (McDowell et al.58, Zhang et al., GPASOIL-v0) and our best 
estimates (GPASOIL-v1.1) for Pi-lab and Px-tot for cropland and grassland when available. Grassland were not 
simulated in Zhang et al.12 (and while Sattari et al.82, based on the same approach, focused on grassland, they 
did not provide nor discuss the distribution in grasslands). McDowell et al.58 provided Olsen P concentration 
for top 0–0.2 m at 1 km2 resolution for any land-use categories. We used the land-use information used in 
their study to filter their estimates and computed soil P for cropland and grassland only before changing the 
projection and regriding to half-degree resolution. Soil P concentration was converted in kgP ha−1 for top 
0–0.3 m by using the bulk density used in our study and by assuming that the P concentration is representative 
to 0-0.3 m top soil layer. Note that Pi-lab of McDowell et al.58 is based on Olsen P extraction while pools design in 
other estimates plotted in this Figure is based on Hedley fractionation. McDowell et al.58 did not provide Px-tot.
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over Europe19, and STS over USA/Canada64. They differ in the chemical extraction used, the spatial extent and 
resolution, and the distinction (or not) between cropland and grassland. Characteristics of each dataset is given 
in Table 12.

For both RMQS and LUCAS, we averaged all sites within each 0.5 grid-cell separately for cropland and grass-
land, by considering land-uses types of each dataset (Table 12). For both RMQS and LUCAS, a detection limit 
for P-Olsen measurement was given in the dataset description (5 mgP (kg of soil)−1 for RMQS, 10 mgP (kg of 
soil)−1 for LUCAS) but we did not exclude the sites below this threshold to prevent bias in our grid-cell averages. 
All dataset (RMQS, LUCAS, STS) provided soil P in terms of concentration and we converted them in kgP ha−1 
by using the half-degree grid-cell bulk density and volumetric fraction of coarse fragments used previously in 
our study and by considering the P concentration given in each dataset representative to the top 0–0.3 m. The 
soil P content at half-degree resolution in kgP ha−1 from the 3 datasets were provided in Figs. S11–S13.

As the datasets and our simulation did not rely on the same chemical extraction (pools representative to Hedley 
extraction in our simulation vs Olsen P for RMQS and LUCAS vs Bray and Kurtz P1 Equivalent for STS, Table 12), 
we focused our evaluation on the comparison of the relative spatial distribution. To do so, we first mapped our 
simulation and each dataset by using deciles (Figs. 12–14). As the number of grid-cells considered vary between 
our GPASOIL-v0 and GPASOIL-v1.1, we masked the grid-cells in the dataset that are excluded from our simula-
tions (Figs. 12–14). Spearman correlation was computed on the absolute value (i.e. not in decile but in kgP ha−1) 
and provided in Table 13. In the scope to compare our simulation to STS, we computed first state/province scale 
values from our simulation before computing relative distribution with decile. We excluded from the comparison 
the states/provinces for which our simulation does not provide 75% of the land in farm for the considered state/
province. The treatment of our simulation to compare it to STS was plotted in Fig. S14. The year used in our simu-
lation for the comparison to the different datasets was the exact year of the dataset for GPASOIL-v1.1 (2002–2009 
average for RMQS, 2015 for LUCAS, 2015 for STS) and 2005 for GPASOIL-v0 (as it is the only one year available 
in this latter). The comparison distinguished cropland and grassland when possible (RMQS and LUCAS).

Fig. 11  Coefficients of variation (CV) for Pi-lab and Px-tot for both cropland and grassland. CV was computed 
by using mean and standard-deviation among 100 simulations performed to assess how the uncertainty in 
the driver estimates has an effect on the soil P pools simulated. In the 100 simulations used for this plot, the 
uncertainty of all drivers was considered.

Name RMQS LUCAS STS

Reference Jolivet et al.63 Jones et al.19 TFI64

Website Data can be download from: https://doi.
org/10.15454/QSXKGA

Data can be downloaded after a request at 
ESDA website80: https://esdac.jrc.ec.europa.
eu/content/lucas2015-topsoil-data

http://soiltest.tfi.org.

Spatial extent France Europe Canada and USA

Years of sampling 1st compaign of measurement (2002–2009) 2015
Different years were available in STS but we used 
the last year in common to GPASOIL-v1.1 and STS 
(i.e. 2015).

Soil layer
Value of the 1st soil layer considered was used (this 
soil layer is not necessary exactly equal to 0–30 cm 
but very close to it)

0–0.2 m
Value for the top 0–0.3 m was computed by using the 
P concentration available for each soil layer within 
this horizon in STS.

Chemical extraction for P Olsen P Olsen P (information given in Tóth et al.81)
All measures were done using different P extraction 
method and then all data were converted to Bray 
and Kurtz P1 Equivalent.

Land-cover used to 
approach cropland and 
grassland

The categories “cropland” and “fruits” for the land-
cover “occupation1” were used for our land-cover 
cropland. The category “grassland” was used for our 
land-cover “grassland”.

Categories “cropland” and “grassland” for 
the “main group of Land Cover” (LC0) were 
considered

Values are provided at county/province without 
distinction between cropland and grassland

Unit gP2O5 (kg of soil)−1 mgP (kg of soil)−1 mgP (kg of soil)−1

Treatments performed for 
comparison to our dataset

- change in projection
- average of all sites within 0.5 grid-cell (with 
average done separately for cropland and grassland)
- conversion in kgP ha−1 by using the 0.5 resolution 
bulk density and volumetric fraction of coarse 
fragments used in our approach

- average of all sites within 0.5 grid-cell (with 
average done separately for cropland and 
grassland)
- conversion in kgP ha−1 by using the 0.5 
resolution bulk density and volumetric 
fraction of coarse fragments used in our 
approach

- depth average to compute 0–0.3 m value
- conversion in kgP ha−1 by using the country-scale 
value of bulk density that we computed from the 0.5 
resolution bulk density and volumetric fraction of 
coarse fragments used in our approach

Table 12.  Information about the regional dataset used to evaluate the soil P distribution simulated in our study 
(GPASOIL-v1.1).
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Overall, we found that GPASOIL-v1.1 had higher correlation than GPASOIL-v0 for grassland over France 
when using RMQS (+0.32 for GPASOIL-v1.1 vs non-significant correlation for GPASOIL-v0), for cropland over 
Europe (+0.18 for GPASOIL-v1.1 vs non-significant correlation for GPASOIL-v0, both by using LUCAS) and 
for Canada/USA (no distinction between cropland and grassland) (+0.32 for GPASOIL-v1.1 vs non-significant 
correlation for GPASOIL-v0). In particular, GPASOIL-v1.1 was able to catch the higher soil P content in grass-
land of West of France (Fig. 12). However, a similar agreement was not found between GPASOIL-v1.1 and 
LUCAS after extracting French sites from LUCAS (Table 13 and Fig. S15). This can be explained by a rela-
tively low spearman correlation between RMQS and LUCAS over France for grassland (0.47; p-value = 0.00). 
GPASOIL-v1.1 was also able to catch the high soil P content in states/provinces of the north centre and south 
centre of the USA and Canada.

The update from GPASOIL-v0 to GPASOIL-v1.1 did not improve the correlation with datasets neither for 
cropland in France nor for grassland in Europe (Table 13). In particular, GPASOIL-v1.1 simulated a low soil 

Fig. 12  Comparison between RMQS and either McDowell et al.58, Zhang et al.12, GPASOIL-v0 or 
GPASOIL-v1.1. RMQS compiled Olsen P with a cropland vs grassland distinction over France. The comparison 
focuses on the distribution in deciles as the simulations and RMQS were not based on same chemical extraction. 
All RMQS sites within half-degree grid-cell were averaged, with a distinction between cropland and grassland. 
Years used for the modelling approach to perform the comparison are given in Table 13. As the number of grid-
cells vary between the modelling approach of McDowell et al.58, Zhang et al.12, GPASOIL-v0 or GPASOIL-v1.1, 
we masked the RMQS dataset according to the mask of each modelling approach output. Note that both RMQS 
and McDowell et al.58 are based on Olsen P.
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P content in cropland of north of France contrary to what was found in RMQS. A low soil P content was also 
found in the north of France in GPASOIL-v0 (Fig. 12). In GPASOIL-v1.1, this pattern was explained by a large P 
uptake of root crops (sugar beet, potatoes) in that region. Overall, the soil P pools simulated in north of Europe 
are sensitive to root crop parameters related to uptake and residues. GPASOIL-v1.1 has some difficulties to 
catch the increasing soil P along a south-east to north-west gradient found in both cropland and grassland at the 
European scale in LUCAS (Fig. 13). In particular, the spearman correlation between LUCAS and GPASOIL-v1.1 
was significantly negative for grassland (−0.13, p-value = 0.00, Table 13). GPASOIL-v1.1 had also difficulties to 
reproduce low soil P in East and West of Canada (Fig. 14).

Correlations between McDowell et al.58 and regional soil P datasets are higher than correlations found with 
GPASOIL-v1.1 for both RMQS and LUCAS, but not for STS. The high correlations between McDowell et al.58 
and LUCAS is explained by the fact that LUCAS was one the data source used to train the statistical model 
in McDowell et al.58. Also, the fact that both RMQS and McDowell et al.58 are based on Olsen P can contribute to 
explain the high correlation between them. Difficulties of McDowell et al.58 to match STS (that did not provide 

Fig. 13  Comparison between LUCAS and either McDowell et al.58, Zhang et al.12, GPASOIL-v0 or 
GPASOIL-v1.1. LUCAS compiled Olsen P with a cropland vs grassland distinction over Europe. The 
comparison focuses on the distribution in deciles as the simulations and LUCAS were not based on same 
chemical extraction. All LUCAS sites within half-degree grid-cell were averaged, with a distinction between 
cropland and grassland. Years used for the modelling approach to perform the comparison are given in 
Table 13. As the number of grid-cells vary between the modelling approach of McDowell et al.58, Zhang et al.12, 
GPASOIL-v0 or GPASOIL-v1.1, we masked LUCAS according to the mask of each modelling approach output. 
Note that LUCAS was part of the data source used in McDowell et al.58 to train their statistical model.
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Fig. 14  Comparison between STS and either McDowell et al.58, GPASOIL-v0 or GPASOIL-v1.1. State/
province averages were performed on simulations to allow the comparison to STS. The comparison focuses on 
the distribution in deciles as the simulations and STS were not based on the same chemical extraction. Note 
that McDowell et al.58, GPASOIL-v0, GPASOIL-v1.1 are not representative to the same year (Table 13). We 
excluded from the comparison the states/provinces for which our simulation does not provide 75% of the land 
in farm for the considered states/province.

Dataset used for the 
comparison

Spatial extent 
and years of 
sampling

Modeling 
approach

Years used in the modeling 
approach to compare with the 
dataset

Spearman correlation over 
cropland

Spearman 
correlation over 
grassland

Spearman 
correlation over 
cropland + grassland

RMQS France 
2002–2009

McDowell et al.58 2009 +0.33 (p-value = 0.00) +0.36 
(p-value = 0.00)

Zhang et al.12 2010 −0.09 (p-value = 0.27)

GPASOIL-v0 2005 +0.03 (p-value = 0.77) −0.11 
(p-value = 0.27)

GPASOIL-v1.1 2002–2009 +0.01 (p-value = 0.94) +0.32 
(p-value = 0.00)

LUCAS France 2015

McDowell et al.58 2009 +0.39 (p-value = 0.00) +0.56 
(p-value = 0.00)

Zhang et al.12 2010 +0.01 (p-value = 0.92)

GPASOIL-v0 2005 +0.04 (p-value = 0.68) −0.22 
(p-value = 0.02)

GPASOIL-v1.1 2015 −0.01 (p-value = 0.89) +0.07 
(p-value = 0.34)

LUCAS Europe 2015

McDowell et al.58 2009 +0.56 (p-value = 0.00) +0.58 
(p-value = 0.00)

Zhang et al.12 2010 −0.07 (p-value = 0.03)

GPASOIL-v0 2005 +0.05 (p-value = 0.11) −0.10 
(p-value = 0.01)

GPASOIL-v1.1 2015 +0.18 (p-value = 0.00) −0.13 
(p-value = 0.00)

STS Canada and 
USA 2015

McDowell et al.58 2009 −0.20 (p-value = 0.35)

GPASOIL-v0 2005 −0.23 (p-value = 0.35)

GPASOIL-v1.1 2015 +0.32 (p-value = 0.03)

Table 13.  Spearman correlations computed between the different dataset (RMQS, LUCAS, STS) and Pi-lab simulated 
by McDowell et al.58, Zhang et al.12, GPASOIL-v0 or GPASOIL-v1.1. Bold front is used for p-value ≤ 0.05.

https://doi.org/10.1038/s41597-023-02751-6


3 1Scientific Data |           (2024) 11:17  | https://doi.org/10.1038/s41597-023-02751-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

separate values for cropland vs grassland) could be partly explained by the fact that we considered all “range-
land” pixels in McDowell et al.58 as grassland, contributing to unrealistic contribution of rangeland soil P pools 
to agricultural pools at states/provinces scale.

At that stage, it is difficult to understand if the mismatch between GPASOIL-v1.1 and the different soil P data-
set was explained by misrepresentation of some drivers (in particular FARM or SPRO), incorrect soil P dynamics 
modeling or uncertainties related to the use of the different dataset for the comparison (see next Section).

Usages Notes
The soil P pools available in the GPASOIL-v1.1 dataset are model estimates and not free from error due to 
imperfect modeling (e.g. soil organic P dynamics), inaccurate/uncertainties in inputs (e.g. use of dataset about 
N for manure to derive P in manure, bulk density not representative to agricultural soils, etc.), limitation in the 
estimate of some drivers (e.g. difficulty to represent P uptake in grassland), misreporting in agricultural cen-
sus statistics at the basis of few input (e.g. crop P uptake), and constant in space information (e.g. soil plough 
layer). Only few sources of uncertainty are considered in our approach (uncertainty related to the datasets 
describing the drivers to provide the coefficients of variation, uncertainty related to the mineralization rates for 
GPASOIL-v1.0 and GPASOIL-v1.1).

Caution is particularly required if the user wants to focus on a restricted geographical area (e.g. ≤ continent) 
of the estimates.

The variables used as input of the soil P dynamic model (the so-called drivers) provided with the soil P pools 
simulated thanks to our approach should not be used separately to the soil P pools and the users should instead 
use original dataset if he.she wants to focus on a given driver.

It is worth noting that GPASOIL-v1.1 does not exactly match the spatial distribution given by regional soil P 
dataset. This mismatch can be explained by misrepresentation of some drivers (in particular FARM or SPRO), 
incorrect soil P dynamics modeling or uncertainties related to the use of the different dataset for the comparison. 
About the misrepresentation of some drivers, we made use of the fact that both RMQS and LUCAS provide, in addi-
tion to soil P used in the evaluation of our simulations, information about pH, soil organic carbon, and soil texture, 
i.e. soil properties that are involved in our soil P dynamics parameterization (SPRO driver). Figure S16 shows the 
comparison for these soil properties between Soilgrids 2.0 (used in our approach), RMQS and LUCAS. Some spatial 
patterns are not consistent between Soilgrids 2.0, RMQS and LUCAS (e.g. pH). Also, the comparison lets suggest 
that we would need to distinguish cropland vs grassland for soil parameters involved in the soil P dynamics model.

To improve our understanding of the mismatch between GPASOIL-v1.1 and soil P dataset, it could also be 
particularly interesting to investigate if the correlation between GPASOIL-v1.1 and LUCAS would be improved 
in case of simulations over Europe where both soil P input/output and soil dynamics parameterization were 
improved. European simulation of GPASOIL-v1.1 could be forced by soil P input/output of Panagos et al.65. How 
the correlation with LUCAS evolved in sensitivity tests where some crop-specific parameters related to uptake 
and residues (in particular for root crops) are made varying should also be studied. Soil P dynamics could be 
improved for European simulations as LUCAS provide information about soil oxides, which can allow to use 
initial parameterizations of Wang et al.18 (instead of modified ones as descried in Table 10) and in particular 
spatially varying concentration of P in soil solution at steady-state (Pc ,∞). Also, it could be interesting to evaluate 
if the soil P dynamic model, even without being fed by oxide concentrations, can match the known global distri-
bution of soil phosphorus retention potential66. Finally, the extension of dataset such as LUCAS or RMQS with 
Hedley fractionation measurements would also allow a more straightforward comparison to modelling studies.

Code availability
The scripts of the modelling approach described in this paper was made available at recherche.data.gouv.fr57. 
Our code is available within the GPASOIL_scripts.tgz file along the tgz file that contain the GPASOIL-v1.0 and 
GPASOIL-v1.1 soil P pools.

GPASOIL_scripts.tgz contains the whole file tree and associated scripts that were used to generate 
GPASOIL-v1_output.tgz. The directory GPASOIL/ contains few sub-directories:

- GrabData_and_PrepDriver/ that contains all scripts (bash and python) used to generate the input of the soil 
P dynamic model. These input correspond to the different drivers described in the current manuscript. The input 
files generated (in netcdf format) are within the directory output_prepDriver/ and are here provided. The proce-
dures to download the original dataset (if this dataset is available on the web) used to generate the input files and 
information are given for each driver in specific README.txt files.

- main/ contains the soil P dynamic model. Different version are provided: (model = v0), (model = v1.0) 
and (model = v1.1). The 2nd one (i.e. (model = v1.0)) was used to generate GPASOILv1.0 while the latter (i.e. 
(model = v1.1)) was used to generate GPASOILv1.1

- evaluation/ contains the script to compare the model output to regional databases. The databases are not provided. 
General information about the procedure to get the regional databases are provided in a specific README.txt file.

- output_main/ is the directory that receives the different soil P maps simulated.
A container generated with Singularity 3 was also provided and allows users to run the different scripts on 

a server or local computer without issue of incompatibility about Ubuntu distribution or Python packages. 
Modeling and analysis were performed in using Python (Python Software Foundation. Python Language 
Reference, version 3.6.10., available at http://www.python.org, last access: January 2020).
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