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Abstract

Unsupervised texture anomaly detection has been a concerning topic in a vast
amount of industrial processes. Patterned textures inspection, particularly in the
context of fabric defect detection, is indeed a widely encountered use case. This
task involves handling a diverse spectrum of colors and textile types, encompass-
ing a wide range of fabrics. Given the extensive variability in colors, textures,
and defect types, fabric defect detection poses a complex and challenging prob-
lem in the field of patterned textures inspection. In this article, we propose
a knowledge distillation-based approach tailored specifically for addressing the
challenge of unsupervised anomaly detection in textures resembling fabrics. Our
method aims to redefine the recently introduced reverse distillation approach,
which advocates for an encoder-decoder design to mitigate classifier bias and to
prevent the student from reconstructing anomalies. In this study, we present a
new reverse distillation technique for the specific task of fabric defect detection.
Our approach involves a meticulous design selection that strategically high-
lights high-level features. To demonstrate the capabilities of our approach both
in terms of performance and inference speed, we conducted a series of experi-
ments on multiple texture datasets, including MVTEC AD, AITEX, and TILDA,
alongside conducting experiments on a dataset acquired from a textile manufac-
turing facility. The main contributions of this paper are the following: a robust
texture anomaly detector utilizing a reverse knowledge-distillation technique suit-
able for both anomaly detection and domain generalization and a novel dataset
encompassing a diverse range of fabrics and defects.

Keywords: unsupervised, anomaly, texture, pattern, domain-generalized, fabric,
knowledge distillation
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1 Introduction

Fabric defect detection has been a really worrisome problem for the textile industry as
the quality of the garment is a priority for the customer. Due to the absence of superior
alternatives, inspection is currently carried out mainly by humans, which represents a
significant labor cost and does not guarantee flawless detection due to visual fatigue
and distraction. Currently, the accuracy of humans in detecting defects is around 60%
and decreases for visually difficult fabrics such as striped fabrics. Several constraints
are relevant to consider when dealing with this problem: industrial processes are well
oiled and cannot suffer from stoppage or slowing of any type, the variety of defects/-
fabric type is colossal and evolving over time with new collections, defects can be tiny
and therefore require an industrial camera with high resolution. As a result, we should
aim for a method that does not require defective samples in the training, while offer-
ing generalization capability and a fast inference time. Recently, a predominant trend
in unsupervised anomaly detection methods has emerged. It involves the utilization
of features extracted from pre-trained networks to learn descriptive representations of
the analyzed objects or textures [1–8, 8–12] with several approaches such as normaliz-
ing flow[13], memory bank and knowledge distillation [14]. Our approach is based on
a knowledge distillation approach, primarily due to its advantages in terms of infer-
ence speed and its well-established capability in detecting defects on various types
of textures [12]. Within the framework of knowledge distillation, knowledge transfer
occurs between a teacher-student pair during the training. In the context of unsuper-
vised anomaly detection, where the student model is trained solely on normal samples,
the student model generates disparate representations compared to the teacher model
when confronted with an anomalous sample. Our approach draws inspiration from
the reverse distillation architecture [10]. This architecture follows a student-teacher
paradigm, where the teacher model serves as the encoder and the student model as the
decoder. By employing this architecture, we aim to leverage the knowledge and guid-
ance provided by the teacher model to enhance the reconstruction capabilities of the
student model in the context of anomaly detection. By design, this architecture empha-
sizes the deeper selected layers and therefore neglects the shallower reconstructed
layers. In the domain of texture defect detection, the utmost significance lies in the
high-level attributes, as the contextual information has less significance [12]. Since
we aim at detecting defects on fabrics-like textures, we want to keep shallower infor-
mation and to that extent we introduced residual connections between the teacher
and the student along with custom attention layers. Another crucial component of
the reverse distillation approach is the embedding bottleneck, which is responsible for
gathering features from specific layers of the teacher model and creating a feature map
that serves as input for the student model. In our bottleneck embedding architecture,
we strive to design a texture-specific approach that selects the most representative
features from the teacher model without altering the descriptive capabilities. To that
extent, we carefully designed a bottleneck based mainly on 1×1 convolutions along
with a custom attention block and an SSPCAB layer [15]. In industrial deployment,
interrupting the production chain for training a model on a specific type of texture
is not feasible. Hence, we propose a slight modification of our model to introduce a
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domain-generalized model capable of detecting defects in any plain fabric. The pri-
mary idea behind this approach is to enable defect detection while a more precise and
specific model is being trained. By adopting this strategy, we can ensure that the pro-
duction chain remains operational, albeit with a concession in terms of precision. Our
approach offers outstanding results for defect detection on plain textures, along with
a fast inference time and domain generalization capabilities compared to the other
state-of-the-art methods.

The primary contributions of this paper are outlined as follows:

• A robust texture anomaly detector utilizing a reverse knowledge-distillation tech-
nique. This approach enhances the model ability to detect anomalies in fabric-like
textures with improved accuracy and reliability. A slight modification of this
approach is also proposed for domain generalization purposes.

• Introduction of a novel dataset encompassing a diverse range of fabrics and defects.
This dataset provides a valuable resource for training and evaluating fabric anomaly
detection models, facilitating research and advancements in the textile domain.

Following the introduction, the subsequent section of this paper is dedicated to
reviewing existing literature concerning both feature extraction and deep learning
approaches for unsupervised anomaly detection. Subsequently, we present our novel
reverse distillation approach with a precise description of the model. The following two
sections focus on introducing a new dataset and conducting experiments to evaluate
the effectiveness of our method. The final section provides a conclusion for the paper.

2 Related work

To handle the problem of texture defect detection, we first have to extract the main
characteristics that describe the texture. As mentioned in [16], we can distinguish
seven categories of approaches to handle this problem namely statistical approaches,
structural approaches, transform-based approaches, model-based approaches, graph-
based approaches, learning-based approaches and entropy-based approaches. Each of
these approaches offers different advantages and drawbacks and some of them offer
competitive results while being really fast with recent computing ressources such as
GLCM [17] and local binary pattern [18] [19].
More recently, deep learning based feature extraction brought outstanding results
for extracting the most important features characterizing a texture. An example of
supervised training approaches consists of training a deep texture classifier and then
extracting the last layer to obtain informative features. [20]
Autoencoder-based approaches are the most common unsupervised approaches to
extract features [21] but still suffer from high generalization capabilities which can
prevent accurate defect detection.

To tackle the problem of defect detection in the industrial case, gathering every
defect of a given object or texture is a laborious task and can lead to poor perfor-
mances if every type of defect was not considered[22]. Certain methods still utilize
supervised training methods like mobile-unet [23] which integrates classification and
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segmentation techniques, or the utilization of SSD-based approaches [24]. Unsuper-
vised anomaly detection deals with the problem of detecting defects on an object or a
texture without any prior on the type of possible defects. Consequently, many methods
emerged proposing different types of algorithms such as autoencoders [25] and vari-
ational autoencoder variants [26] [27]. Another common way of detecting anomalies
is Generative Adversarial Networks (GAN),introduced by [28], adapted to unsuper-
vised anomaly detection such as Ano-GAN [29], G2D [30] and OCR-GAN [31]. More
recently, approaches using a classifier pretrained on natural images as feature extrac-
tor made their way in industrial anomaly detection, offering outstanding performance.
These methods, such as normalizing flow, knowledge distillation and memory banks,
use selected layers output features to obtain descriptive feature maps. Then, a training
is conducted based on the prior that this feature maps describe the most important
characteristics of the given object. The normalizing flow approach consists of a flow
training based on relevant features of good samples from a pretrained network such as
AlexNet [1], Resnet [2], efficient-net [3] and even vision transformers [32] [33] trained
on imageNet. Different strategies were used to enhance performances, such as a 2D
flow [4] or a cross-scale flow [5]. The use of a memory bank has the advantage of offer-
ing a description over the whole class to compare and detect if there is an anomaly [6]
[7].
Distilling the knowledge from a teacher to a student [14] was recently adapted for
unsupervised anomaly detection [8] [9]. This concept involves training a student net-
work on good samples using the output features of a teacher network that has already
been pre-trained for classification purposes. In the test phase, the student network
will be capable of replicating the output features of the teacher network when pro-
vided with good samples, but when confronted with anomalous samples, the student
will not be able to extract descriptive features and therefore a relevant anomaly score
can be computed.

Several methods used this principle with different strategies such as a multi-layer
feature selection [9], a reverse distillation approach [10], a coupled-hypersphere-based
feature adaptation [11] and a mixed-teacher approach [12].

3 Residual Reverse distillation using specifically
selected embeddings

This part is dedicated to the use of reverse distillation to detect defects in textures.
To this extent, we divided this chapter in four subsections: the reverse distillation
approach along with the residual connections, the description of the bottleneck embed-
ding that transforms the teacher’s output into input for the student model, the loss
and score calculation strategy and the adaptation for domain generalization.

3.1 Residual reverse distillation

Approach: The idea of reverse distillation was introduced in [10] with the purpose of
proposing an encoder-decoder version of the knowledge distillation paradigm applied
to unsupervised anomaly detection. An important problem of unsupervised anomaly
detection is the generalization capability, which is problematic since our purpose is to
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be specific to a texture for detecting any kind of defect. To tackle this specific problem,
we propose a residual reverse distillation with a reconstructed embedding emphasizing
high-level features. The main idea is to extract the most relevant features describing
the texture using a limited encoding and residual connections, allowing a selective and
descriptive embedding for input to the decoder student.
Problem definition: Given a training dataset of images without anomaly
D = [I1, I2, ..., In], our goal is to extract the information of the L bottom layers. For an
image Ik ∈ Rw∗h∗c where w is the width, h the height, c the number of channels and
l the lth bottom layer, the teacher outputs features F l

t (Ik) ∈ Rwl∗hl∗cl . The decoder
output features are defined as FL−l

s (Ik) ∈ Rwl∗hl∗cl . During the training phase, the
student model is trained to reproduce the teacher features on good samples. In testing,
when inferring an anomaly, the teacher and the student will output significantly differ-
ent features and thus will give us an anomaly score. In the anomaly detection setting,
normal samples follow the same distribution in both Ft and Fs. Out-of-distribution
samples are considered anomalies.

Our reverse distillation backbone draws inspiration from the one outlined in
reverse distillation [10], differing in terms of layer selection, selective embedding, and
residual connections. Given the texture specific architecture described in [12], we have
decided to put an emphasis on the first layers of the network, since they describe
high-level features that are primordial in patterned textures. To this purpose, we
employed adaptive loss functions to assign varying significance to individual layers,
not to mention that with identical loss factors for every layer, we determine that
the loss is more impacted by deeper layers with random weight initialization in the
student. Also, we include the initial ResNet layer before the first residual block to
guarantee a high-level representation of the texture.
The goal of the teacher encoder T in the reverse distillation paradigm is to extract
thorough representations so that the decoder student S can reconstruct the different
selected teacher’s features. As in previous work [10] [11], we used ResNet pretrained
on ImageNet as our backbone for T. As in any knowledge distillation training, the
teacher T is frozen to avoid converging to a trivial solution for T and S. In [10],
they used the same exact number of layer for the student and the teacher to match
the intermediate representation. We demonstrate that a shallower student with less
residual blocks between each dimension is capable of offering a good representation,
which also prevents the student to generalize in case of defective sample and therefore
increase our defect detection capability in textures.

As part of its inherent design, the traditional reverse distillation approach high-
lights the deeper selected layers, owing to their dimensional proximity with the
embedding representation. As mentioned earlier, for textures anomaly detection, shal-
lower layers are more descriptive and less subject to misinterpretation. In this respect,
we had some residual connections between the teacher and the student to try to com-
pensate of the loss of information caused by the embedding. However, adding a direct
connection between the equivalent layers of the student and the teacher would most
likely result in identity or zero-weights depending on the selected method of connec-
tion. To counteract this issue, we choose to connect the teacher layer l to the student
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layer L− l− 1 with a convolution layer and a pooling layer as well as a self-attention
layer, shown in figure 1.

Fig. 1: Attention module used for residual connection

With the purpose of enriching the feature representation and modulating the fea-
ture importance, we introduce a custom attention block, described in figure 1, which
is similar to a spatial attention but uniquely relies on 1×1 convolutions. The inclu-
sion of this layer enables the introduction of non-linearity, leading to improved model
performance with minimal additional computational expense.

The complete architecture is shown in figure 2

Fig. 2: Reverse residual distillation architecture.
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3.2 Bottleneck Embedding

One of the main contributions of the reverse distillation paradigm is the embedding
representation. In other knowledge-distillation anomaly detector models, the main
drawback was the student capacity which could eventually generalize to anomalous
defects. MixedTeacher [12] proposed a smaller student to counteract this problem and
manage to increase anomaly detection on textures by a huge factor compared to the
original STPM model [9]. Our approach goes even further with the selective embed-
ding encoding approach that prevents the student from any unnecessary parameters.
This approach is specifically outlined for texture defect detection; however, for object
defect detection, the size of the embedded minimal representation could potentially
vary. This issue revolves around striking a balance between the model’s capacity and
its capability to accurately reconstruct correct elements, all the while ensuring it
remains incapable of reconstructing defective elements.

First, to aggregate the features from the selected teacher’s layers, we used convolution
of size 1 kernel as described in figure 3 to get all the features at the size of the last
layer divided by 2 to prevent the prevalence of the last layer over the others. The
obtained feature map is our bottleneck input and the bottleneck embedding will then
learn to reconstruct this representation before giving to the student decoder.
To increase model performance, we have decided to include a SSPCAB layer [15]
as the first layer of our bottleneck network since this specific type of layer shows
increased performance for a wide variety of unsupervised anomaly detector. To make
sure the local information was preserved, we decided to keep a relatively shallow
encoding embedding. Each layer is constituted of a convolutionnal layer with a kernel
size of 1 and a stride of 1 followed by a ReLu and a BatchNorm layer [34] except for
the last which have a stride of 2 to fit the decoder input. Employing convolutional
operations with a filter size of 1 confers the benefit of computational efficiency,
alongside the capacity to introduce non-linearities and trainable parameters.

3.3 Loss and Anomaly Score Calculation

Mathematically, given the problem definition parameter, the pixel-loss function along
the channel axis is defined as:

M l(Ik)ij =
1

2
∥norm(F l

t (Ik)ij)− norm(FL−l
s (Ik)ij)∥ (1)

with M l ∈ RHl∗Wl ,the layer l loss function as :

lossl(Ik) =
1

wlhl

wl∑
i=1

hl∑
j=1

M l(Ik)ij (2)

and the global loss is written as:

loss(Ik) =

l∑
αlloss

l(Ik) (3)
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Fig. 3: Feature fusion and bottleneck architecture

with αl the loss factor for the layer l.
At the testing stage, we want an anomaly score and an anomaly localization. To

begin with, let’s address the anomaly localization problem. The paradigm of knowledge
distillation for anomaly detection and localization stipulates that, in case of anomalous
sample, the teacher is able to represent the defect while the student lacks generalization
capability as it has learnt to generate features only for defect-free samples. This means
that the student and the teacher features will be different and this will reflect on the
anomaly map calculated in equation 1. To account for the anomaly maps of all the
features, we regroup all these features maps with upsampling in a single localization
map denoted Lmap:

Lmap =

l∑
i=1

UpSample(M l) (4)

A Gaussian filter is then used on Lmap to smooth the defect localization.
For the image anomaly score or defect detection, to avoid the prevalence of huge
defects over small defects, we decided not to use the mean of the anomaly map but the
max value instead based on the paradigm that a non-defective anomaly map will have
no significant out-of-distribution value especially after the application of the Gaussian
filter.

3.4 Reverse distillation for domain generalization

Domain generalization in deep learning refers to the task of training a model on data
from multiple source domains, and then generalizing this model to perform well on a
new target domain. The goal of domain generalization is to improve the generalization
performance of deep learning models, especially in situations where the test data comes
from a different distribution than the training data. In the specific domain of fabric
defect detection, our objective is to develop an anomaly detection system capable of
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identifying defects in all types of textiles. However, it is important to note that our
design and testing procedures are specifically tailored for homogeneous textures and
may not be directly applicable to fabric designs that exhibit more intricate patterns
or variations. As demonstrated in FABLE [35], the knowledge distillation architecture
has outstanding domain-generalized performance for homogeneous textures.
The domain generalization approach for fabric anomaly detection can be viewed as a
strategy that provides additional training samples to the model. By incorporating a
diverse range of fabric samples during training, the model becomes more adept at rec-
ognizing fabric-specific characteristics, such as thread patterns and lattice structures.
This broader exposure helps the model generalize better across different fabric types,
enhancing its ability to detect anomalies across a variety of textile materials. Indeed,
while the idea of learning inherent textile patterns is appealing, achieving effective
fabric anomaly detection is a complex task. There are various challenges associated
with the intricacies of fabric textures, including variations in weave patterns, colors,
textures, and defect types. Additionally, factors such as lighting conditions, scale, and
resolution can impact the detection accuracy. Developing a robust and accurate fabric
anomaly detection model requires careful consideration of these complexities and the
implementation of sophisticated techniques to account for them.
As previously discussed, simpler patterns like thread and lattices are often captured by
the shallower layers of the model architecture. This observation motivated the inclu-
sion of a residual connection, which places emphasis on these particular layers. By
doing so, the model can effectively capture and learn these fundamental fabric pat-
terns, thereby enhancing its ability to detect anomalies associated with thread and
lattice structures.
On the contrary, in the case of domain generalization, we believe that all deeper layers
are a key to understanding the intricacies of such a descriptive problem. Consequently,
we have made the decision to eliminate the residual connection mentioned in Section
3.1.1, as we consider it to be less relevant in this context.

4 Industrial textile dataset

In this part, we introduce the industrial fabrics dataset containing 2150 images with 6
types/colors of textile. We constitute two nomenclature for both domain-generalized
and classic unsupervised anomaly detection training. We decide to use the same
folder architecture as MVTEC AD dataset [36].

To constitute the dataset, we placed 2 cameras from different brand in front of a
visiting machine with strong and nearly uniform light source.

4.1 Industry constraints

Industrial deployments are subject to certain constraints pertaining to the positioning
of cameras and the intensity of light sources to prevent any disruption to the machine
operator’s activities. Our aim was to carefully choose an ideal pairing of light intensity
and shutter duration to guarantee the capture of images that are sharp and clearly
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defined. However, due to variations in fabric color and the velocity of the visiting
machine, our chosen light source did not consistently provide adequate brightness.
As a result, certain images within the dataset exhibit a slight degree of blurriness,
contributing to the creation of a more demanding and authentic dataset. This reflects
the fact that achieving flawless conditions, even in an industrial setting, is frequently
unachievable.

4.2 Variety of defects

As previously stated, defects within the textile industry exhibit a wide range of varia-
tions. Furthermore, our dataset will continue to expand as we accumulate additional
instances of defects through the ongoing use of our cameras. In addition, it is worth
noting that certain anomalies present in our database may consist of dust particles
that have settled on the textile, which may not typically be classified as defects in
most textile industries. However, due to our inability to definitively determine whether
these anomalies are genuine defects or simply dust, we have chosen to include them
in the dataset. Figure 4 showcases examples of such anomalies.

Fig. 4: Images extracted from our proposed dataset with defect that could be dust

4.3 Dataset description

The dataset is composed of patches of size 256x256 extracted from 2 industrial cam-
eras of resolution 3088x2076 and 2464x2056 respectively. The defects included in the
dataset are not artificially generated but rather originate from real-world instances
within the textile industry. However, we added some non-defect from the industry
like writing on the fabric or the sewing attaching two pieces of fabric. These added
”defects” aim to diversify the dataset and provide a broader range of defect types
for training and analysis purposes. The dataset contains 6 classes with between 199
and 588 images for training and 30 and 114 for testing. The precise distribution is
presented in table 1. It is important to acknowledge that the dataset poses a poten-
tial long-tail distribution challenge, especially for domain generalization training, but
remains suitable for “classic” unsupervised anomaly detection where distinct models
are trained for each class. An overview of the dataset can be seen in figure 5.

10



Fig. 5: Images of our proposed datasets, (upper) defect-free images, (lower)
defective images. Some images are a bit blurry due to motion blur. Other kind of

defective samples are presented in the experiment part.

Category total train testGood testDefective
type1cam1 386 272 28 86
type2cam2 257 199 19 39
type3cam1 689 588 54 47
type4cam2 229 199 19 11
type5cam2 298 199 19 80
type6cam2 291 199 19 73

total 2150 1656 158 336

Table 1: Industrial textile dataset distribution

4.4 Existing datasets

In order to provide contextualization and to position our dataset within the broader
landscape of existing datasets, it is essential to present other relevant datasets that
specifically address the problem of texture anomaly detection.
One of the widely used industrial unsupervised anomaly detection datasets is the
MVTEC AD dataset[36], which comprises 10 objects and 5 textures. While 4 of these
textures align well with the problem of textile anomaly detection, one texture is signif-
icantly different. Other datasets, such as TILDA [37], Aitex [38] and DAGM [39] , offer
grayscale fabrics-like datasets for anomaly detection purposes. In addition, datasets
like BTech [40], NEU-CLS [41], KolektorSDD [42], Magnetic Tile Dataset [43] and
RSDDs [44] provide supplementary datasets for surface defect detection, which are
not specific to textiles.
Our dataset strives to offer color images of fabrics captured under authentic condi-
tions, showcasing a wide range of real defects. With an emphasis on diversity, our
dataset encompasses an extensive array of defect types, ensuring its applicability in
addressing various anomaly detection challenges within the textile industry.
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Category CFA PatchCore[6] FastFlow[4] Reverse distillation[10] MixedTeacher[12] Ours
carpet 97.3 98.7 99.4 98.9 99.8 100
tile 99.4 98.7 100 99.3 100 99.7
wood 99.7 99.2 99.2 99.2 99.6 99.8
leather 100 100 99.9 100 100 100
Mean 99.1 99.1 99.6 99.3 99.8 99.9

Table 2: Anomaly detection results with AUROC on MVTEC fabric-like textures

Category PatchCore[6] FastFlow[4] Reverse distillation[10] MixedTeacher[12] Ours
carpet 98.9 99.1 98.9 99.0 98.8
tile 95.6 96.6 95.6 95.9 93.7
wood 95 94.1 95.3 94.9 92.4
leather 99.3 99.6 99.4 99.6 98.7
Mean 97.2 97.3 97.3 97.4 95.9

Table 3: Anomaly localization results with AUROC on MVTEC fabric-like textures

5 Experiments

This part showcases performances of our knowledge distillation approach both in terms
of AUROC score and inference time since these are the most concerning application
requirements in anomaly detection.
We have also added a coverage measure to determine the actual benefit of this approach
in real case scenario.
Training and inference were done on an RTX 3080ti. To ensure efficient inference for
industrial applications, we employ ResNet18 and ResNet34 as the backbone archi-
tectures for our anomaly detection system. The teacher model, which serves as the
reference model, is a ResNet34 trained on the ImageNet dataset. In contrast, the
student model consists of a ResNet18 backbone. It is worth noting that the student
model is structured in a backward manner, as explained in the part 3. We used ADAM
optimizer[45], a learning rate of 0.005 with scheduler to reduce the learning rate when
hitting a plateau during the training. The training was done for 100 epochs with a
batch size of 4. We resized all the images to a size of 256x256 keeping respectively
70% and 30% for training and validation. We kept the checkpoint with the lowest
validation loss and introduce early stopping.

5.1 State of the art AUROC comparison

To evaluate our architecture, we use several datasets including MVTEC AD textures
[36], TILDA [37] dataset, AITEX dataset [38] and our dataset presented in section 4.
For MVTEC AD, we selected the four fabric-like textures and compared our results to
the other state-of-the-art methods. The results are presented in table 2 for anomaly
detection and table 3 for anomaly localization.

For the TILDA dataset, we restructured the data to conform to the MVTEC
nomenclature. To ensure a fair comparison with state-of-the-art methods, the anoma-
lib library [46] was employed. The results are shown in table 4. Examples of input
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Fig. 6: Input image and anomaly map in the 4 fabric-like MVTEC AD textures

Tilda fabric1 fabric2 fabric3 fabric4 fabric5 fabric6 fabric7 fabric8 mean
reverseDistillation[10] 94.8 88.2 91.4 59.6 67.4 78.7 78.6 84.5 80.4

ours 96.9 95.8 92.5 75.0 87.2 88.6 70.7 61.9 83.6

Table 4: Anomaly detection results with AUROC on Tilda textures

images and results can be seen in figure 7

Fig. 7: Input image and anomaly map in all 8 TILDA textile. As expected, the
model is too restrictive to handle textures with patterns like flowers

For the aitex dataset, we separate each 4096x256 images into 16 patches of size
256x256 and used the MVTEC AD nomenclature. The results of our experiment are
presented in table 5. Examples of input images and their corresponding results are
visually depicted in figure 8

Subsequently, we conduct assessments on the dataset for which our model has been
meticulously tailored. This dataset is derived from an authentic industrial process,
aligning with our model’s primary objective of optimizing performance specifically for
this designated task. Results are depicted in table 6 and images and anomaly maps are
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Aitex fabric1 fabric2 fabric3 fabric4 mean
reverseDistillation [10] 92.7 96.5 77.3 97.7 91.0

ours 97.8 99.2 89.1 100 96.5

Table 5: Anomaly detection results with AUROC on Aitex textures

Fig. 8: Input image and anomaly map in all 4 Aitex textile

shown in figure 9. Our results on the dataset are exceptionally accurate as our model
was specifically designed and optimized for it. However, we continue to record images
using the camera and actively strive to gather a larger and more diverse dataset. By
expanding the dataset, we aim to introduce greater challenges and complexities, which
will further enhance the robustness and generalization capabilities of our model.

Fig. 9: Input image and anomaly map in industrial textile database. We showcase
speed-blurry image on purpose to demonstrate our capability to deal with such

quality differences

The domain generalization results are presented in table 7
Results interpretation : Results on the TILDA dataset demonstrates that our

approach offers outstanding results on plain fabrics and simple patterns such as check-
ered or striped. The approach is therefore limited for more complex patterns that
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ITD type1cam1 type2cam2 type3cam1 type4cam2 type5cam2 type6cam2 mean
reverseDistillation [10] 100 100 98.3 100 100 100 99.7

ours 100 100 100 100 100 100 100

Table 6: Anomaly detection results with AUROC on Industrial textile dataset

Category Epi-FRC+ [47] EISNet+[48] DGTSAD [49] Fable [35] Ours
carpet 91.6 98.2 94.3 98.5 99.3
tile 95.1 85.1 99.4 96.5 98.8
wood 94.1 97.9 96.2 99.9 99.7
leather 100 100 100 99.1 99.9
Mean 95.2 95.3 97.5 98.5 99.4

Table 7: Domain generalization comparison

Batch size Inference time FPS
16 : time per patch 0.7ms 1450
32 : time per patch 0.5ms 2000

whole image (96 patches) 45ms 22

Table 8: Inference speed

require more contextual information and a higher receptive field. That consideration
establishes the limitation of such a restrictive architecture that emphasizes mostly
high-level features along with 1×1 convolutions that do not increase the receptive
field. Nonetheless, the results on MVTEC AD, AITEX and our dataset show that our
model outperforms state-of-the-art approaches for “simple” textures.

5.2 Inference speed comparison

When designing the architecture, one of the primary concerns was the inference speed.
Our approach of knowledge distillation offers the advantage of fast inference due to
the utilization of ”smaller” networks such as ResNet18 and ResNet34. Despite their
reduced size, these networks can still deliver state-of-the-art performance, as demon-
strated in the previous part. The efficacy of both the bottleneck embedding component
and the residual connection component is significantly reliant upon the utilization of
1×1 convolutions, which exert minimal influence on the overall computational veloc-
ity. This combination allows for efficient and accelerated anomaly detection inference
while maintaining high detection accuracy.
The added embedding and residual connections are even lighter and therefore our
method offer fast inference time.
In our specific scenario, we process high resolution images of size 3000x2000 and
therefore, we will have to divide this image in smaller patches of size 256x256. The
corresponding number of patches is 96 patches. To report industrial plausible infer-
ence time, we processed in batch of size 32 and reported the inference time for the
whole image processing (3 batches) as shown in table 8.
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Category Coverage Coverage +/- 0.02 Coverage +/- 0.05
carpet 100 97 91
tile 91 81 71
wood 99 96 91
leather 100 100 100
Mean 97.5 93.5 88.3

Table 9: Coverage measure with fixed precision and recall at 100
percent. The +/- indicates the score tolerance to consider that 2
samples are ambiguous. Base coverage is with score tolerance 0

5.3 Coverage Measure

Applications of this nature are primarily designed to assist humans in the task of
detecting defects in the visiting machine. By leveraging automated anomaly detection
methods, the goal is to provide support and assistance to human operators in their
inspection and quality control tasks. These applications aim to improve the efficiency
and accuracy of defect detection processes, enabling operators to identify and address
anomalies more effectively. Consequently, we have made the decision to incorporate a
metric that accurately reflects the practical impact of our method on assisting indus-
trial processes. This metric will serve as an objective measure to assess the effectiveness
and efficiency of our approach in real-world scenarios.
The coverage metric quantifies the level of confidence exhibited by the model while
maintaining a fixed precision and recall. For example, setting a target of 80 percent
coverage with a precision of 95 percent would imply that the model will classify 80
percent of defects with a precision of 95 percent, while external assistance would be
required for the remaining 20 percent.
In an industrial scenario, the tolerance for false negatives is typically extremely
low, indicating that the detection of all defects is essential. Therefore, a recall of
100 percent, ensuring that no defects are missed, is a critical requirement for fab-
ric defect detection. Additionally, to prioritize precision and avoid false positives, we
have decided to set the precision at 100 percent as well. This means that all identi-
fied defects are guaranteed to be genuine, providing a high level of confidence in the
accuracy of the defect detection system. In conjunction with the outcomes related to
inference speed and domain generalization performance, these results collectively sup-
port the potential applicability of our approach within a real-world industrial setting,
potentially involving collaboration with a human operator.
The table 9 showcases coverage value for the tested MVTEC textures.

6 Conclusion

In summary, we have introduced a novel unsupervised anomaly detection approach uti-
lizing knowledge distillation principles, with a specific emphasis on reverse distillation.
By using thoughtful layer selection and incorporating residual connections, we have
achieved exceptional outcomes on the MVTEC anomaly detection dataset, surpassing
the performance of previous state-of-the-art methods specifically for these targeted
classes. In order to address the challenge of fabric anomaly detection, we conducted
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extensive testing of our model using a diverse fabric defect database. Our findings val-
idate the superior performance of our unsupervised fabric defect detection approach.
However, the architectural design of our approach is specifically tailored for the prob-
lem of plain fabric defect detection and is limited when dealing with big patterns
such as drawings. Due to the lack of existing databases tailored to our specific fabric
anomaly detection problem, which involves high-resolution color images captured by
industrial cameras in real-world scenarios, we have taken the initiative to create a novel
dataset. It comprises 2150 images of diverse fabric types, encompassing several com-
monly encountered defect types prevalent in the fabric industry. Presently, this dataset
is limited in terms of the pool of defects gathered since in a fabric factory some defects
are rarer than others. It will, therefore, undergo regular updates to incorporate addi-
tional classes and to introduce new types of defects. This continuous expansion aims to
enhance the dataset diversity and ensure its relevance to evolving fabric anomaly detec-
tion research and industry requirements. This dataset will be freely available for the
scientific community.(https://github.com/SimonThomine/IndustrialTextileDataset)
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