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Abstract
Machine-learning (ML) techniques has bloomed

in recent years, especially in fluid mechanics appli-
cations. In this paper, we trained, validated and
compared two types of ML-based models to aug-
ment Reynolds-averaged Navier-Stokes (RANS) sim-
ulations. The methodology was tested in a series of
flows around bumps, characterized by different lev-
els of flow separation and curvatures. The ML-based
models were trained in three configurations present-
ing attached flow, small and moderate separation and
tested in two configurations presenting incipient and
large separation. The output quantity of the machine-
learning model is the turbulent eddy viscosity as done
in Volpiani et al. (2022). The new models based
on artificial neural networks (NN) and random forest
(RF) improved the results if compared to the baseline
Spalart-Allmaras model, in terms of velocity field and
skin-friction profiles. We noted that NN has better
extrapolation properties than RF, but the skin-friction
distribution can present small oscillations when using
this specific NN-based model. These oscillations can
be reduced if the RF model is employed. One of the
major advantages of RF is that raw quantities can be
given as input features, avoiding normalization issues
(such as division by zero) and allowing a larger num-
ber of universal inputs.

1 Introduction
Turbulence modeling based on artificial intelli-

gence (AI) and machine learning (ML) has drawn a
lot of interest in recent years, especially because these
modern techniques were shown to be useful when ap-
plied to improve RANS models. Well-disseminated
approaches consist of fixing existing models, such as
the Spalart-Allmaras (SA) model, by solving an in-
verse problem and training an AI algorithm on a se-
lected dataset and extrapolating to other cases that are
not included in the training set. Parish and Duraisamy
(2016) and Singh et al. (2017) proposed to correct
the source terms in turbulence transport equations us-
ing data assimilation and machine learning. Volpi-
ani et al. (2021) opted to introduce a correction to
the Boussinesq-hypothesis by adding a forcing term
in the momentum equations. They employed varia-

tional data assimilation to infer the vectorial source
correction from high-fidelity numerical data and ma-
chine learning to reconstruct this quantity from the
local mean-flow features. On the other hand, a dif-
ferent approach consists of learning directly the un-
known terms in the RANS equations based on a high-
fidelity training set. Ling et al. (2016) proposed to
directly predict the Reynolds stress (more specifically,
its deviatoric part) using machine learning. Wang et
al. (2017) on the other hand, focused on the dis-
crepancies between the exact and the RANS modeled
Reynolds stresses. Cruz et al. (2019) explored a differ-
ent venue; they proposed to work with the divergence
of the Reynolds stress tensor, also called the Reynolds
force vector, as a target for the machine learning pro-
cedure. More recently, Volpiani et al. (2022) used ma-
chine learning techniques to infer the turbulent eddy
viscosity from high-fidelity simulations to correct the
SA model and successfully improved RANS results of
flows over bi-dimensional bumps. Despite the con-
straint of the Boussinesq hypothesis in the latter study,
predicting a turbulent-eddy viscosity has two main ad-
vantages: first, we no longer need to transport a turbu-
lent variable, i.e. we only need to solve for the mass
and momentum equations since the problem is closed;
and secondly, from a machine learning perspective, it
is easier and faster to predict a scalar quantity, rather
than a vector or tensor. This work is a continuation
of Volpiani et al. (2022)’s study and in this paper, we
compare the performance and address pros and cons of
two types of supervised-learning methodologies: arti-
ficial neural networks (NN) and random forests (RF).

2 RANS equations and configuration
By using the Reynolds decomposition for the ve-

locity ui = ui+u
′
i and pressure p = p+p′, the RANS

equations for an incompressible steady flow can be
written as

∂ui
∂xi

= 0, (1)

ui
∂uj
∂xj

= − ∂P
∂xi

+
∂(2νSij)

∂xj
− ∂aij
∂xj

(2)

where the overbar stands for mean quantities and the
prime for fluctuations. Sij = (ui,j + uj,i)/2 is the



Table 1: Summary of configurations studied in this work.
The reference data was performed by Matai and
Durbin (2019).

Case Height (mm) Characteristics Usage
h20 20 (0.0659C) No separation training
h26 26 (0.0878C) Incipient separation testing
h31 31 (0.1032C) Separated flow training
h38 38 (0.1259C) Separated flow training
h42 42 (0.1377C) Separated flow testing

mean strain tensor and ν is the molecular viscosity.
P = p + 1/3u′iu

′
i is the modified pressure and aij =

u′iu
′
j−1/3u′ku′kδij is the deviatoric anisotropic part of

the Reynolds stress tensor. In the RANS framework,
common eddy-viscosity models uses the Boussinesq
hypothesis and the tensor aij is approximated by aij =
−2νtSij . In this paper, the kinetic-eddy viscosity νt is
estimated by the one equation Spalart-Allmaras (1994)
turbulence model:

uj
∂ν̃

∂xj
−∇·

(
σ−1(ν + ν̃)∇ν̃

)
= P ν̃−D ν̃+C ν̃ (3)

where the terms P ν̃ , D ν̃ and C ν̃ are the production,
destruction and cross-diffusion terms of the quantity
ν̃, and are given by:

P ν̃ = cb1S̃ν̃ ,

D ν̃ = cw1fw

[
ν̃

d

]2
,

C ν̃ =
cb2
σ

∂ν̃

∂xk

∂ν̃

∂xk
.

More details about the model variables and the
physical definitions of each term are found in Spalart
and Allmaras (1994).

We simulate the flows over a family of bidimen-
sional bumps for which a reference dataset from Matai
and Durbin (2019) is available. Large-eddy simula-
tions were performed for five bumps heights: 20, 26,
31, 38 and 42 mm. This set of configurations is in-
teresting because it is characterized by different lev-
els of curvature, pressure gradient and flow separation.
For the lowest bump height (h20), the flow remains at-
tached all along the bottom wall. Case h26 presents
incipient separation. The other configurations (h31,
h38, h42) develop a recirculating bubble near the end
of the bump and its length increases with the protuber-
ance height. Details about the geometry and numerical
conditions can be found in Matai and Durbin (2019)
and Volpiani et al. (2022). A summary of simulations
carried out in this study is given in Table 1.

3 Supervised-Learning techniques
Supervised learning is a machine learning

paradigm for problems where the available data

consists of labelled examples, meaning that each
input data is associated with a known output. The
goal of supervised learning algorithms is to learn a
function that maps input features to labels (output).
These algorithms are particularly employed to classify
data or to predict outcomes accurately. Supervised
learning uses a training set to teach models to predict
the desired output. This training dataset includes
inputs and correct outputs, which allow the model to
learn over time. The algorithm measures its accuracy
through a loss function, which is adjusted until the
error has been sufficiently decreased. In an ideal
scenario, the algorithm is capable of estimating the
correct output even for situations not present in the
training phase. This requires the learning algorithm to
generalize from the training data to unseen situations
in a reasonable way. In this report, we employ two
major techniques of supervised learning: artificial
neural networks (NN) and random forest (RF).

Artificial Neural Networks is a subset of super-
vised learning that represents a structure of artificial
neurons connected to each other. They are organized
in one or multiple layers, through which information
is transmitted successively from the input layer to the
intermediate (hidden) layers, towards the output layer.
Each node is made up of inputs, weights, a bias, and
an output. To each neuron unit, it is assigned a func-
tion that represents how it will receive the information
from the previous layer and transmit it to the next one,
called the activation function σ. The activation out-
puts that come from each layer are usually treated by
assigning them weights (w) and biases (b), generating
a weighted input zli =

∑
j w

l
ija

l−1
j + bli, for the ith

neuron at layer l, where j designates the jth neuron
at layer l − 1. Thus, the activation output is given by
ali = σ(zli) = σ

(∑
j w

l
ija

l−1
j + bli

)
. The training of

a neural network is conducted by minimizing the error,
given by the difference between the predicted output of
the network and a correct (target) output. Successive
adjustments of its weights and biases will cause the
neural network to produce an output which is increas-
ingly similar to the target output. After a sufficient
number of adjustments (epochs) the training is paused
based upon certain criteria. In this report, we employ
the open-source Python library Pytorch to perform the
training phase of our NN algorithm.

Random forest is a supervised machine learning
algorithm used for classification and regression. The
“forest” references a collection of uncorrelated deci-
sion trees, which are then merged together to reduce
variance and create more accurate data predictions.
There are several advantages associated to the RF tech-
nique: it offers a good performance when dealing with
high-dimensional problems, it does not require hyper-
parameter tuning, it is simple to implement, and it
has low computational overhead. However, we can
cite a few inconveniences associated to this method as
well: decision-tree learners can create over-complex



Table 2: Set #2 of non-normalized input features.

Feature Description Formula
q1 Strain-rate magnitude ‖S‖
q2 Rotation-rate magnitude ‖Ω‖
q3 SA eddy viscosity νSAt
q4 SA production cb1S̃ν̃

q5 SA destruction cw1fw
(
ν̃
d

)2
q6 SA cross-diffusion cb2

σ
∂ν̃
∂xk

∂ν̃
∂xk

q7 Turbulence intensity kqcr

trees that do not generalize the data well, predictions
of decision trees are neither smooth nor continuous,
but piecewise constant approximations, and decision
trees can be unstable because small variations in the
data might result in a completely different tree being
generated. In this study, the RF algorithm is based on
the open-source Python library Scikit-Learn.

4 Input and output quantities
For the neural-network model, the input features

are the same from Volpiani et al. (2022). Concerning
the random forest algorithm, two sets of inputs were
tested: set 1, which is the same one used in Volpiani
et al. (2022) and set 2, which uses non-normalized in-
puts. Note that using set 2 for a NN model is not fea-
sible, because this situation may lead to an imbalance
in the input importance in the output prediction. Nor-
malizing all features in the same range avoids this type
of problem. The second choice of input features takes
into consideration some philosophies and fallacies in
turbulence modeling (see Spalart (2015)). For exam-
ple, models should respect the rules of Galilean invari-
ance and independence of the direction of the axes.
Galilean invariance states that the laws of motion are
the same in all inertial frames of reference. There-
fore, in general, velocity should not be a valid entry in
a model. Moreover, Spalart and Shur (1997) explain
that even the derivative Uy itself is not Galilean invari-
ant, because it is referred to axes of a reference frame,
which is aligned with the velocity. Consequently, the
streamline curvature itself is also an inadequate entry
into a model. However, it is true that if we are dealing
solely with steady flow problems, a unique reference
frame can be identified and this limitation can be with-
drawn. Spalart (2015) also highlights that acceleration
and pressure-gradient dependence in models should be
avoided, because they have no direct impact on the tur-
bulence, and can be introduced to or removed from the
equations by a simple change of reference frame. The
list of inputs concerning set 2 is given in Table 2.

Since interpretability may be useful when design-
ing a new model, two methods to shed some light in
understanding the importance of each feature to pre-
dict the output were investigated: the mean decrease
impurity (MDI, or Gini importance), and the mean de-
crease accuracy (or permutation importance). In the

Figure 1: Feature importance concerning model RF2.

first method, each feature importance is calculated as
the sum over the number of splits across all trees that
include the feature, proportionally to the number of
samples it splits. In the second method, we shuffle
the entries of a specific variable in the test dataset and
we compute the resulting increase in error. Figure 1
shows the feature importance using the MDI and per-
mutation methods for RF2, but similar importance is
observed for RF1 (not reported for brevity). A clear
conclusion arises from these images: input features re-
lated to the SA eddy-viscosity, νSAt , and the modeled
turbulent kinetic energy, kqcr, present great relevance
in the estimation of the corrected eddy viscosity. The
fact that νSAt is the most important variable is not sur-
prising, since it models the output quantity. The sec-
ond most important quantity kqcr also indicates that
this quantity is of prime importance in modelling tur-
bulence closure.

The output quantity is the eddy-viscosity estimated
from the LES as done in Volpiani et al. (2022):

νLESt =
max (0,−aij ∂jui)
max (0, 2SijSij) + ε

(4)

where ε is a small parameter. Figure 2 shows the nor-
malized eddy-viscosity fields coming from the base-
line SA model, the reference simulation, the NN, RF1
and RF2 models for both extreme cases: h20, which
presents no separation and belongs to the training set
and h42, which presents large separation and belongs
to the testing set. For case h20, the SA model tends
to overpredict the eddy viscosity above and in the rear
of the bump. We would like to emphasize that pre-
dicting the correct amount of νt for all configurations
is not easy, and our goal is to use machine-learning
algorithm to help in this task. We note that the NN
model manages to reproduce the correct levels of tur-



Figure 2: Normalized turbulent viscosity νt/ν computed
from the SA, LES, NN, RF1 and RF2 models
(from top to bottom), case h20 (left) and h42
(right).

bulent eddy viscosity, despite some fluctuations in the
frontier of the free stream. Models RF1 and RF2
present similar predictions. For case h42, the tradi-
tional SA model underpredicts the eddy viscosity in
the boundary-layer recovery region. The NN model
predicts precisely the eddy-viscosity field. However,
it is possible to note oscillations after the bump and
close to the wall region which can contribute to a noisy
RANS solution. The RF models do not present such
oscillatory behavior. For this test case, RF2 is superior
than RF1. The drawback of the RF models is that the
maximum value of the output quantity is bounded by
the maximum value present in the training set, indicat-
ing that the RF method should be used with caution
when dealing with extrapolations. These conclusions
are also supported by figure 3 that plots the output of
the ML models (NN, RF1 and RF2) as a function of
the expected quantity. If the model works, the scatter
points should approximate to the solid line plotted as
reference. The NN model manages to predict a more
realistic trend overall, despite its oscillatory behavior
observed in figure 2. On the other hand, RF models are
more stable, they predict extremely well the training
set, but quantitatively are less precise than NN when
extrapolating. In the next section, we present a poste-
riori RANS results obtained with the NN and RF mod-
els.

5 A posteriori results
The new ML assisted models were trained in three

configurations: cases h20 (attached flow), h31 (small
separation), and h38 (moderate separation); and tested
in cases h26 (incipient separation) and h42 (large sep-
aration). This setup allows us to evaluate the new ML
models in scenarios of interpolation and extrapolation.
Figure 4 (top) displays the skin-friction coefficients for

Figure 3: Normalized output quantities from NN (top), RF1
(middle) and RF2 (bottom). The scatter points
should approximate to the solid line plotted as ref-
erence.

testing cases h26 and h42 using the NN1 model. Re-
sults are in agreement with the ones from Volpiani et
al. (2022). We note a considerable improvement when
predicting the skin-friction distribution. Conversely,
we observe significant noise in the near wall region af-
fecting the Cf profiles. For instance, there is a jump
in the solution, in the region 0.7 < x/c < 0.8, that is
non-physical. This noise is particularly present in the
first boundary cells and is not a generalized behavior.
The wall pressure distribution presents a smooth sig-
nal (not shown for brevity). Figure 4 (middle) shows
the same quantities using the RF1 model. Two conclu-
sions stand out from this graphic: i) the first is that
the Cf profiles present less oscillations than in the
NN situation; and (ii) the second is that the results
are closer to the reference LES results. At least for
the skin-friction distribution, the RF model seems to
be less sensitive than the NN one. Contrarily to NN,
non-dimensionalized input features can be fed to a RF
model. This means that more variables can be used to
train the model and using crude quantities avoids di-
visions by small numbers, helping to improve the pre-
diction capabilities. This time, we choose features that
respect the recommendations from Spalart (2015) as
shown in Table 2. In figure 4 (bottom), we compare
theCf profiles at the lower wall for the reference LES,
baseline RANS-SA and the new RANS-RF2 simula-
tion using non-dimensionalized input features. We
note that the skin-friction profiles are smoother than
in the previous cases (NN1 and RF1), confirming that
the new inputs improve the learning process. Globally,
the ML-based model manages to predict two types of
flow conditions: an attached flow for case h26 and a
separated flow for case h42. However, it is impressive



the good prediction of skin friction using RF2, espe-
cially for the extrapolation scenario h42, which was
proven in Volpiani et al. (2022) to be a case where the
eddy-viscosity formula is not precise.
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Figure 4: Skin friction distribution for cases h20 (left) and
h42 (right).

Now we focus our attention in the velocity field as
a whole. In Figure 5, we plot the error

e =

[(
uRANS − uLES

u∞

)2

+

(
vRANS − vLES

u∞

)2
]1/2

given by the difference between the reference and
modeled velocities for testing cases h26 and h42. We
note that, in the baseline simulation, the error is con-
centrated in the boundary-layer region, especially af-
ter the bump. The error in the RANS simulation in-
creases if we increase the hump height. For case h26,
that presents incipient separation, the SA model does a
good job predicting the overall flow field, except very
close to the wall. The ML models increase the ac-
curacy especially on top of the bump, but generally
the results are very similar to the SA model. The NN
might have a slightly advantage in the diverging sec-
tion around x/c ≈ 1.0 and the RF in the boundary-
layer recovery region (x/c > 1.1), but the results
are comparable. Concerning case h42, that presents
large flow separation, the discrepancy between LES
and RANS are more flagrant. The baseline SA simu-
lation fails in the boundary-layer region and in a more
extended region after the bump. The ML model that
best corrects the velocity field is the NN-based one,
but there is still a region around 0.8 < x/c < 1.0 that
it misses precision. Model RF1 presents a similar be-
havior than the NN-based one but the error is slightly
amplified in the same region. The same is observed
for model RF2. It was shown that the ML methods

Figure 5: Velocity error computed for the baseline SA, NN,
RF1 and RF2 models (from top to bottom), case
h26 (left) and h42 (right).

manage to learn our key quantity. However, it is im-
portant to note that the error given by the ML models
can also come from the strong approximation made to
compute the turbulence eddy viscosity Eq. (4), which
is known to be inaccurate in flows presenting separa-
tion. Therefore, a possible solution to correct the full
resulting flow field would be to improve the estimate
of νt through data-assimilation for example. On the
other hand, if the CFD engineer is only interested in
the skin-friction distribution, then approximation (4)
and the ML models presented herein are sufficient.

6 Conclusions
In this paper, we compared two types of

supervised-learning methodologies to correct RANS
simulations of flows over a family of bumps. The ML-
based models were trained in three configurations pre-
senting attached flow, small and moderate separation
and curvature (cases h20, h31 and h38 respectively)
and tested in two configurations presenting incipient
and large separation (cases h26 and h42 respectively).
The new models based on artificial neural networks
and random forest improved considerably the results
if compared to the baseline SA model, in terms of
velocity field and skin-friction profiles. One of the
goals of the paper was to investigate which method
outperforms the other, in other words, which method
is better suited to augment RANS turbulence mod-
els. We concluded that each strategy has its pros and
cons, which need to be taken into account when de-
veloping a data-driven model. We highlight that the
conclusion here does not only apply to RANS mod-
els, but can also be generalized to other fields. We
learned that NN are more efficient in interpolating and
extrapolating the output quantity than RF. However,
this technique when used to predict the turbulence-
eddy viscosity can display some oscillatory behavior
especially close to the wall boundaries (noticed by
skin-friction profiles). One way to overcome this is-
sue is to keep the turbulent-variable transport equation



and try to correct a term in this equation (as done in
Parish and Duraisamy (2016) or Singh et a. (2017)
through data assimilation for example). The advan-
tage of the present method is that all the modelling
is embedded in the turbulence-eddy viscosity given
by the ML-based model. This is an extremely sim-
ple and straightforward way (both in terms of physi-
cal modelling and numerical implementation) to cor-
rect a RANS simulation. The oscillations in the skin-
friction profiles are much reduced if RF are employed.
Moreover, the RF method does a good job learning
the training cases. However, it was shown that RF do
not extrapolate well to configurations unseen during
the training process. Nonetheless, the results obtained
with the RF model for case h42 are still in excellent
agreement with the reference data. One of the high-
points of the RF method, in the author’s opinion, is
the fact that non-normalized inputs can be fed to the
RF algorithm, contrarily to NN. The set 2 of inputs
were derived based on a more generic framework that
can be used in mixed configurations. ML-based turbu-
lence models are still in early stages of development
if compared to their traditional RANS model coun-
terparts that went through decades of adjustments and
tunning. However, as time goes by, more and more
reference data will become available and taking into
consideration this additional information in a model
seems natural. So, developing a data-driven model that
gives outstanding performance for flows around stator
blades is good, but a model that deals with both stator
and rotor blades is better. This work laid an additional
brick in the development of a more general data-driven
turbulence model.
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