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Introduction: Attention deficit/hyperactivity disorder (ADHD) is a common
neurodevelopmental disorder characterized by hyperactivity, inattention, and
impulsivity that often persist until adulthood. Frequent comorbid disorders
accompany ADHD and two thirds of children diagnosed with ADHD also suffer
from behavioural disorders and from alteration of sensory processing. We recently
characterized the comorbidity between ADHD-like symptoms and pain sensitisation
in a pharmacological mouse model of ADHD, and we demonstrated the implication
of the anterior cingulate cortex and posterior insula. However, few studies have
explored the causal mechanisms underlying the interactions between ADHD and
pain. The implication of inflammatory mechanisms has been suggested but the
signalling pathways involved have not been explored.

Methods: We investigated the roles of purinergic signalling, at the crossroad of
pain and neuroinflammatory pathways, by using a transgenic mouse line that
carries a total deletion of the P2X4 receptor.

Results:We demonstrated that P2X4 deletion prevents hyperactivity in the mouse
model of ADHD. In contrast, the absence of P2X4 lowered thermal pain thresholds
in sham conditions and did not affect pain sensitization in ADHD-like conditions.
We further analysed microglia reactivity and the expression of inflammatory
markers in wild type and P2X4KO mice. Our results revealed that P2X4
deletion limits microglia reactivity but at the same time exerts proinflammatory
effects in the anterior cingulate cortex and posterior insula.

Conclusion: This dual role of P2X4 could be responsible for the differential effects
noted on ADHD-like symptoms and pain sensitization and calls for further studies
to investigate the therapeutic benefit of targeting the P2X4 receptor in
ADHD patients.
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Introduction

Attention deficit and hyperactivity disorder (ADHD) is
classified in the DSM-IV (Diagnostic and Statistical Manual of
mental Disorders) (American Psychiatric Association, 2013) as a
heterogeneous neurodevelopmental disorder manifested by
varying levels of hyperactivity, impulsivity, and inattention in
humans. ADHD is the most common neuropsychiatric disorder
with a prevalence of 8%–12% in children (Danielson et al., 2018)
that remains steady over the last decades (Polanczyk et al., 2014;
Song et al., 2021). ADHD exists as three sub-types: Inattentive,
hyperactive-impulsive, or combined, and the T.O.V.A test can
discriminate between these sub-types (Greenberg et al., 1991).
ADHD continues into adulthood in up to 50% of the patients
diagnosed during childhood (Faraone et al., 2006), and up to 80%
for patients of the combined subtype of ADHD (van Lieshout
et al., 2016). Adult symptoms are variable and may include
functional impairments (Simon et al., 2009). The Conners’
Adult ADHD Rating Scales (CAARS) is used to determine
whether an individual may have ADHD and what is the
symptoms severity.

In clinics, ADHD patients report impaired perceptual functions
(Fuermaier et al., 2018; Panagiotidi et al., 2018; Dellapiazza et al.,
2021) and pain sensitivity (Treister et al., 2015). ADHD patients
have increased risks of pain disorders and high prevalence of pain
among adults with ADHD can reach up to 80% (Lensing et al., 2013;
Stray et al., 2013). ADHD severity positively predicts pain sensitivity
in human adolescent males, and it is associated to larger
physiological response as measured by skin conductance level
(Northover et al., 2015). Accordingly, attentional processes have
been shown to regulate pain transmission through the modulation
of brain networks (Kucyi et al., 2013) and descending pathways
(Villemure and Bushnell, 2002; Sprenger et al., 2012). Reciprocally,
chronic pain increases impulsivity (Ko et al., 2013) and induces
attentional and cognitive deficits in human patients (Moore et al.,
2019; Kasahara et al., 2020) and preclinical animal models (Higgins
et al., 2015). Among 153 patients with chronic pain, 72.5% had a
CAARS and frequently experience symptoms such as hyperactive
behavior and other clinical characteristics of ADHD (Kasahara
et al., 2020).

The understanding of the mechanisms underpinning
ADHD and pain comorbidity requires to investigate animal
models of ADHD with good face, construct and predictive
validity. Because alterations of dopamine transmission are
considered as significant factors for the progression of the
disease (Albrecht et al., 2015), a mouse model of ADHD by
lesioning dopaminergic fibers with neonatal intra-
cerebroventricular injection of 6-hydroxydopamine (6-
OHDA) was developed and validated (Sontag et al., 2010;
Bouchatta et al., 2018; 2020). In addition to hyperactivity,
inattention and impulsivity, the 6-OHDA mice exhibited a
marked decrease of withdrawal thresholds to thermal and
mechanical stimuli, suggesting that ADHD-like conditions
increase nociceptive sensitivity (Bouchatta et al., 2022;
Meseguer-Beltrán et al., 2023; Sifeddine et al., 2023). These
previous studies indicated that ADHD and pain sensitization
are mutually worsening comorbid disorders. They also pointed
to a key role of the anterior cingulate cortex (ACC)

hyperactivity that alters the ‘ACC–posterior insula (PI)’
circuit, and triggers pain sensitization (Bouchatta et al., 2022).

ADHD patients display a large heterogeneity in symptoms and
cognitive performances (Castellanos and Tannock, 2002; Nigg et al.,
2005). The exact origin of this heterogeneity remains unknown.
However, it has been suggested that inconsistent neurotransmission
in neural circuits that engage the prefrontal cortex may account for
fluctuations in attentional processing and cognitive performance
and hence, for intra-individual variability (Russell et al., 2006).
Neurotransmission impairments can be caused by alterations in
neurotransmitter release or binding (Posner et al., 2020), neuroglia
interactions (Oades et al., 2010; Zhang et al., 2022), or
neuroinflammatory processes (Leffa et al., 2018; Corona, 2020).

Purinergic signalling influences numerous physiological
processes including neuromodulation, synaptic plasticity,
neuroinflammation and neuron-glia communication and is also
involved in major CNS disorders. ATP is released by neurons as
well as by astrocytes or microglia and activates different P2 receptors
and adenosine receptors after extracellular ATP catabolism by
ectonucleaotidases expressed in various cell types (Rodrigues
et al., 2015). In many pathological conditions, the increase of
ATP release exacerbates ATP signalling promoting astrogliosis,
activation of microglia and inflammatory responses (Rodrigues
et al., 2015). Among ATP P2 receptors, P2X receptors are
trimeric ATP-gated cation channels made from 7 different
subunits (P2X1–P2X7) encoded by 7 genes in mammals. P2X4 is
the main subunit in neurons and microglia, and possibly astrocytes
(Suurväli et al., 2017). It is the most widely distributed P2X receptor
in the brain and is likely to modulate cortical circuits that underpin
attentional and cognitive processes as well as pain perception. Since
P2X4 is involved in various neurological and psychiatric disorders
(Lindberg et al., 2015; Duveau et al., 2020; Montilla et al., 2020), we
made the hypothesis that P2X4 could play an important role in
ADHD symptoms and comorbid pain by modulating microglia
activation and neuronal transmission in the ACC and/or the PI.

To address this question, we generated an ADHD-like model by
neonatal injection of 6-OHDA in a mouse line carrying a global
deletion of the P2X4 receptor (P2X4KO) (Sim et al., 2006). To
identify possible neural pathways that are influenced by
P2X4 signalling in the ADHD model, we explored the expression
of neuroinflammatory andmicroglial activation markers in the ACC
and PI of 6-OHDA wild-type (WT) and P2X4KO mice. We further
measured hyperactivity, the most common symptom of ADHD, and
assessed pain sensitisation.

Materials and methods

The time course of the experiments is described in Figure 1.

Animals

C57BL/6 (Janvier Labs, France) and P2X4KO (EOPS facility,
Bordeaux Neurocampus) pregnant females and their newborn pups
were housed under a 12 h light/dark cycle (lights on at 7 a.m.),
provided with water and food ad libitum, at the animal facility of the
University of Bordeaux. The study was approved by the local ethical
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committee and the French Ministry of Higher Education, Research
and Innovation (authorization APAFIS#27681 and
APAFIS#21135). Procedures were conducted in conformity with
the approved institutional protocols. Efforts were made to reduce
animal suffering.

6-OHDA neonatal injection (P5 surgery)

At postnatal day 5 (P5), male and female pups were submitted to
hypothermal anesthesia and received an intracerebroventricular
injection (AP −2 mm, ML ±0.6 mm, DV−1.3 mm from Bregma)
of 25 μg 6-OHDA hydrobromide (Sigma-Aldrich, France) dissolved
in 3 μL 0.1% ascorbic acid, or vehicle, following a published protocol
(Bouchatta et al., 2018). A pretreatment with desipramine
hydrochloride (20 mg/kg s.c., Sigma-Aldrich, France) was
performed 30 min before surgery to prevent the depletion of
noradrenergic neurons. After surgery, the pups were placed back
with the mother, kept under constant observation, and provided
with enriched food (#SAFED113, Safe-lab, Augy, France) to improve
recovery. After weaning, mice were housed in cages of two to five
animals to reduce stress due to isolation.

Behavioural procedures

For all the behavioural paradigms, mice were habituated to the
researcher for 4 days before starting the procedures and to the
testing room 30 min before performing each test. Behavioural
procedures started at P30. The tests were conducted during the
day, with a dim light. All apparatuses were cleaned using a 30%
ethanol solution between trials and animals. All mice performed all
the paradigms.

1. Open Field: spontaneous locomotor activity was assessed
through the open field test. Mice were placed in the center
of the arena (measurements: 40 cm × 40 cm × 40 cm; Ugo
Basile, Gemonio, Italy) and allowed to freely explore for
10 min. Animals were recorded using a video tracking
system (EthoVision XT15, Noldus, Wageningen,
Netherlands). Distance traveled (cm) and speed (cm/s)
were quantified.

2. Von Frey test: nociceptive response to mechanical stimulus was
assessed using von Frey setup (Ugo Basile, Gemonio, Italy), as
described previously (Bouchatta et al., 2022). During 30 min,
mice were habituated to individual cages with a mesh floor. The
plantar surface of the hind paws was stimulated by calibrated von
Frey filaments of different grams to set the withdrawal threshold.
For both hind paws, three to five measurements were registered,
with an interval of 30 s between each. The grams of the filament
at which the mouse withdrew its paw was considered to be the
mechanical pain threshold value.

3. Plantar test (Hargreaves’method): nociceptive response to
thermal stimulus was assessed using Plantar test setup (Ugo
Basile, Gemonio, Italy), as described previously (Bouchatta et al.,
2022). During 30 min, mice were habituated to individual cages
with a glass pane floor. The plantar surface of the hind paws was
stimulated by an infrared (IRed) generator (IRed intensity of 50,
cut-off time set at 15 s) to establish the thermal pain threshold.
For both hind paws, the latency to paw withdrawal was recorded,
and three measurements per paw were performed with an
interval of 2 min between each.

Tissue preparation for immunofluorescence

Mice were anesthetized with ketamine (100 mg/kg i.p., Virbac,
France) and xylazine (20 mg/kg, i.p., Virbac, France) and were
transcardially perfused with 0.9% NaCl containing 0.01%
heparin, followed by fixative (4% paraformaldehyde (PFA) in
0.1 M phosphate buffered (PB), pH 7.4). The brains were
removed and immersed in 4% PFA overnight at 4°C. After post-
fixation, brains were cryoprotected in 12.5% sucrose in 0.01 M
phosphate-buffered saline (PBS) at 4°C for 2 days. Coronal
sections (25 μm) were obtained using a cryostat (CM3050S,
Leica, Heidelberg, Germany).

Immunofluorescence staining

The sections were washed three times, for 10 min each, in PBS
0.1M. They were incubated for 1 h, at room temperature, in a
blocking solution consisting of PBS BSA 1% containing 0.3%
Triton X-100, and then with anti-Iba1 (rabbit, dilution 1:2000,

FIGURE 1
Experiment design timeline. Neonatal 6-OHDA injection was performed at postnatal day 5. Behavioural tests lasted from P30 to P33, andmice were
culled at 2 months old.
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Wako, Japan) in a solution of PBS BSA 1%, overnight at 4°C. The
sections were rinsed again three times, for 10 min each, in PBS 0.1M.
They were incubated with a secondary Alexa fluor 568 goat anti-
rabbit antibody (dilution 1:500, Invitrogen, MA, United States), for
2 h at room temperature. A final three-times washing step was
performed, and the sections were mounted on Superfrost slides
(Fisher Scientific, Illkirch, France) and coverslipped with
Fluoromount G mounting medium (Invitrogen).

Image acquisition and analysis

Images of the ACC were acquired using a confocal
microscope (Leica TCS SP5), with the 20x oil immersion
objective. Two optical planes for each picture were chosen,
and five, non-overlapping cells were selected randomly. Six to
7 mice were analyzed per group, with at least 400 cells quantified
per group. The analysis was performed using FIJI and FracLac for
ImageJ software as previously described (Espinosa-Fernández
et al., 2019). Four morphological parameters were assessed:
cell perimeter, cell area, fractal dimension, and lacunarity. Cell
perimeter was quantified based on the outline of the cell shape,
while cell area was measured through the total number of pixels
in the filled shape of the cell image. Fractal dimension was used
for the interpretation of cell complexity and the characterization
of microglial forms. A higher fractal dimension implies a more
branched and complex structure. Lacunarity was associated with
fractal dimension to describe cell heterogeneity. It is indicative of
morphological changes and those of the soma. The lowest the
lacunarity, the more homogenous the cell image is (Fernández-
Arjona et al., 2017; Espinosa-Fernández et al., 2019).

Tissue preparation for RT-qPCR procedure

Mice were anesthetized with ketamine (100 mg/kg i.p., Virbac)
and xylazine (20 mg/kg, i.p., Virbac) and then sacrificed by
decapitation. The ACC and PI were rapidly dissected under a
binocular, under sterile conditions, and frozen in dry ice. The
samples were stored at −80°C to avoid RNA degradation.

RNA extraction

RNA of ACC and PI was extracted using the chloroform/
isopropanol method. Briefly, 500 μL of the TRI-Reagent
(Euromedex, France) was added to each sample to homogenize
and lyse the tissue. Chloroform (Sigma-Aldrich, France) was then
used to separate the RNA (aqueous phase) from the DNA and
proteins (organic phase). The aqueous phase was transferred to a
new and clean tube, and isopropanol (Fisher Scientific) was added to
precipitate the RNA. Ethanol 75% was utilized to wash the RNA
pellet. The samples were then incubated with DNAse I (Fisher
Scientific) to eliminate DNA residues. Finally, RNA quantification
was performed by measuring the absorbance at 260 nm using a
spectrophotometer, and its quality was checked by capillary
electrophoresis with the bioanalyzer 2,100 (Agilent, CA,
United States).

RT-qPCR

cDNA synthesis was performed using 2ug of RNA, the Maxima
Reverse Transcriptase enzyme (Fisher Scientific), and a mix of
random and oligo dT primers (Fermentas, MA, United States) at
150 ng/μL and 200 ng/μL, respectively. Transcript-specific primers,
2 μL of cDNA at 2 ng/μL, and LightCycler 480 SY Green Master
(Roche, Basel, Switzerland) in a final volume of 10 μL were used for
real-time PCR. The list of primers is presented in Supplementary
Table S4. The relative gene expression to the vehicle-injected group
(sham group) was calculated by using the 2−ΔΔCT method for each
reaction. Two reference genes were selected for each area of interest:
Gusb (glucuronidase beta) and Ubc (Ubiquitin C) for the PI, Gapdh
(Glyceraldehyde-3-Phosphate Dehydrogenase) and Nono (Non-
POU-domain-containing, Octamer binding protein) for the ACC.

Statistical analyses

The statistical analyses were conducted using GraphPad software
(GraphPad Prism V9 software, GraphPad, La Jolla, CA, United States).
Gaussian distribution was determined using the Shapiro-Wilk test. For
Iba1 staining data, the non-parametric two-tailed Unpaired Mann-
Whitney U test for two-sample comparisons was performed, since the
data did not meet normality. For RT-qPCR results, a one-tailed (RT-
qPCR screening in the ACC data) or two-tailed (RT-qPCR screening in
the PI data) Unpaired t-test were carried out, since the data reached
normality. To analyse behavioural tests data, two-tailed Unpaired t-test
was applied (Open Field, Plantar test and amplitude of changes in
thermal threshold). Since Von Frey test results did not reach normality,
the two-tailed Unpaired Mann-Whitney U test for two-sample
comparisons was carried out. The amplitude of changes in
mechanical threshold was also analysed by Mann-Whitney U test.
All data were expressed as the mean ± standard error of the mean
(SEM) and statistical tests were performed with probability set at p <
0.05. We also indicated the t-value (t, t-test), degree of freedom (df,
t-test), U-value (U, Mann-Whitney U test).

Results

P2X4 receptor deletion prevents locomotor
hyperactivity in ADHD-like conditions

We evaluated spontaneous locomotor hyperactivity in WT and
P2X4KO mice (females and males) with the open field test
(Figure 2). We observed that 6-OHDA-WT animals travelled
significantly more distance than sham-WT mice (Figure 2B,
Supplementary Table S1A, B, two-tailed Unpaired t-test).
Furthermore, 6-OHDA-WT group showed higher velocity than
sham-WT mice (Figure 2C, Supplementary Table S1A, B).

In contrast, neonatal 6-OHDA lesion did not significantly
increase the locomotor activity in P2X4KO female mice nor
P2X4KO males compared with sham-P2X4KO females and males
(Supplementary Table S1A, B).

We did not observe significant differences in the distance
travelled nor the velocity between sham-WT and sham-P2X4KO
groups. When comparing 6-OHDA groups, no significant
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differences were found either in distance travelled or velocity
(Supplementary Table S1A, B).

We did not observe significant differences when comparing
females and males of each condition in both mouse lines (WT and
P2X4KO) neither in distance travelled nor in velocity
(Supplementary Table S1G).

These results indicated that the lack of the P2X4 receptor
prevented the development of spontaneous locomotor
hyperactivity induced by neonatal 6-OHDA injection.

P2X4 receptor deletion induces sensitization
to thermal stimuli in basal but not ADHD-like
conditions

Mechanical and thermal pain sensitivity were assessed with Von
Frey and Plantar (Hargreaves’ method) tests, respectively
(Bouchatta et al., 2022).

In the von Frey test, WT mice that received neonatal 6-OHDA
injection displayed a significant decrease in the mechanical pain
threshold compared with sham animals (Figure 3A, Supplementary
Table S1C, D, two-tailed Unpaired Mann-Whitney U test).
Moreover, P2X4KO mice injected with 6-OHDA at P5 also
showed lower mechanical pain threshold than sham-P2X4KO
group (Supplementary Table S1C, D). When comparing WT and
P2X4KO groups, we did not find any significative difference in
shams (Supplementary Table S1C, D). Similarly, we did not observe
significant differences between 6-OHDA groups (Supplementary
Table S1C, D).

With the plantar test, we observed in both WT and P2X4KO
groups that 6-OHDA females and males were significantly more
sensitive to thermal stimulation than sham females and males
(Figure 3B, Supplementary Table S1E, F, two-tailed Unpaired
t-test). Interestingly, P2X4KO sham mice displayed significantly
higher thermal pain sensitization thanWT shammice and this effect
is irrespective of sex (Supplementary Table S1E, F). No significant

FIGURE 2
Dopaminergic lesion at P5 does not increase spontaneous locomotor activity in P2X4KO mice in both sexes. Representative images of locomotor
activity traces of females (upper row) andmales (bottom row) during open field test (A). Distance travelled (cm) (B) and velocity (cm/s) (C) in the open field
arena for female sham-WT C57BL6/J mice (empty purple squares), female 6-OHDA-WT mice (filled green squares), female sham-P2X4KO mice (empty
purple triangles), female 6-OHDA-P2X4KO mice (filled green triangles), male sham-WT C57BL6/J mice (empty purple circles), male 6-OHDA-WT
mice (filled green circles), male sham-P2X4KO mice (empty purple rhombi), male 6-OHDA-P2X4KO mice (filled green rhombi). Data are presented as
mean ± SEM (n = 7–18 per group) and analysed with two-tailed Unpaired t-test (*p < 0.05; **p < 0.01; ns = not significant).
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difference was observed when comparing the 6-OHDA groups
(Supplementary Table S1E, F).

We did not find significant differences between males and
females from each experimental condition neither in
mechanical nor thermal pain threshold
(Supplementary Table S1G).

When data was expressed in percentage of changes with respect
to sham groups of each mouse line (WT or P2X4KO), we observed
that differences in thermal pain threshold between sham and 6-
OHDA-P2X4KO mice were significantly lower than between sham
and 6-OHDA-WT groups, determined by two-tailed Unpaired t-test
for females and males (Figure 3D, Supplementary Table S1E, F).
Regarding mechanical sensitivity, we did not observe significant
differences in the percentage of changes between WT females and

P2X4KO females, nor between WT males and P2X4KO males
(Figure 3C, Supplementary Table S1C, D).

Our finding suggested that neonatal dopaminergic lesion
induced mechanical and thermal pain sensitization independently
of P2X4 receptor suppression, but the lack of this purinergic
receptor decreased thermal pain threshold in basal conditions.

The P2X4 receptor modulates microglia
reactivity

Microglia activation was previously described in the spontaneously
hypertensive rat (Zhang et al., 2022), and the 6-OHDA mouse
(Meseguer-Beltrán et al., 2023) models of ADHD. We decided to

FIGURE 3
Thermal and mechanical sensitivity displayed by WT and P2X4KO mice. Mechanical threshold (grams of filament) in Von Frey test (A) and thermal
threshold (seconds) in Plantar test (Hargreaves’method) (B) of female sham-WT C57BL6/J mice (empty purple squares), female 6-OHDA-WTmice (filled
green squares), female sham-P2X4KO mice (empty purple triangles), female 6-OHDA-P2X4KO mice (filled green triangles), male sham-WT C57BL6/J
mice (empty purple circles), male 6-OHDA-WTmice (filled green circles), male sham-P2X4KOmice (empty purple rhombi), male 6-OHDA-P2X4KO
mice (filled green rhombi). Amplitude of changes in mechanical threshold (Von Frey test) (C) and latency of paw withdrawal (Plantar test) (D) in 6-OHDA-
WT and 6-OHDA-P2X4KO as compared with WT and P2X4KO sham groups in both sexes. Data presented as mean ± SEM (n = 7–17 per group). Von Frey
test data and amplitude of changes in mechanical threshold were analysed with two-tailed Unpaired Mann-Whitney U test. Plantar test data and
amplitude of changes in thermal threshold were analysed with two-tailed Unpaired t-test (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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FIGURE 4
Microglia morphology in the anterior cingulate cortex (ACC). Representative images of microglia in the ACC of sham and 6-OHDAWT and P2X4KO
mice (A). The arrows point tomicroglia with a complex branchedmorphology (thin arrows) and a small cell soma (thick arrows) in shammice and to a de-
ramified morphology (thin arrows) with an enlarged cell soma (thick arrows) in 6-OHDA mice. Five microglial cells were quantified per picture: cell
perimeter (μm) (B1), cell area (μm2) (C1), fractal dimension (D1), and lacunarity (E1) were determined. Amplitude of changes in cell perimeter (B2),
cell area (C2), fractal dimension (D2), and lacunarity (E2) were assessed in 6-OHDA-WT and 6-OHDA-P2X4KO mice as compared to sham. Data are
presented as mean ± SEM (n = 6–7 mice per group) and were analysed with a two-tailed Unpaired Mann-Whitney U test (*p < 0.05; ***p < 0.001; ****p <
0.0001; ####p < 0.0001; ns = not significant).
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verify microglia reactivity in our conditions, and to investigate the
consequences of P2X4 deletion on microglia changes. We performed
Iba1 staining to analyse morphological modifications in the ACC to
compare WT and P2X4KO, and to explore possible differences in
microglial reactivity between the two genotypes under ADHD-like vs.
sham conditions (Figure 4A). For this purpose, we used quantitative
assessments of the cell perimeter and area as indices of the ameboid-like
or ramified morphological shape of microglia, and the fractal
dimension and lacunarity as indices of the branching complexity
(Leyh et al., 2021).

In sham animals, we observed an increase in the baseline
homeostatic parameters when P2X4 was deleted compared to
WT mice. Cell perimeter, cell area, fractal dimension, and
lacunarity exhibited significantly higher values in sham-P2X4KO
mice compared to sham-WT mice (Figure 4B1–E1, Supplementary
Table S2A, two-tailed Unpaired Mann-Whitney test). Similarly,
ADHD-like conditions also resulted in increased cell perimeter,
cell area, fractal dimension, and lacunarity in P2X4KO as compared
to WT animals (Figure 4B1–E1, Supplementary Table S2B). This
suggested that P2X4 receptor deletion influenced microglial
morphology toward a more pronounced homeostatic phenotype.

In both genotypes, 6-OHDA neonatal injection caused changes
in microglia morphology. Cell perimeter, cell area, fractal
dimension, and lacunarity appeared significantly lower in 6-
OHDA-WT mice as compared to the sham animals (Figure 4A1,
Figure 4B1–E1, Supplementary Table S2C, two-tailed Unpaired
Mann-Whitney test). In 6-OHDA-P2X4KO mice, cell perimeter,
cell area, and lacunarity displayed decreased values compared to
sham-P2X4KO mice, with no significant difference in fractal
dimension (Figure 4A1, Figure 4B1–E1, Supplementary Table
S2D). Overall, lower values for fractal dimension, lacunarity, cell
area and perimeter characterized an ameboid-like microglial
morphology, indicating microglia reactivity in 6-OHDA-WT and
6-OHDA-P2X4KO as compared to shams.

Next, we investigated the ability of P2X4 to modulate microglia
reactivity in ADHD-like conditions. For this purpose, we assessed
the percentage of changes after 6-OHDA neonatal injection for the
four morphological parameters in WT and P2X4KO mice using a
two-tailed Unpaired Mann-Whitney test. Differences in cell
perimeter, cell area, and fractal dimension were significantly
higher in 6-OHDA-WT mice compared to 6-OHDA-P2X4KO
mice. No significant difference was detected for lacunarity
(Figure 4B2–E2, Supplementary Table S2E). This result showed
that the absence of the P2X4 receptor limited neonatal 6-OHDA-
induced changes in microglia morphology.

P2X4 receptor protects against
neuroinflammation

Using RT-qPCR, we studied changes in the expression of several
cytokines, intracellular markers of neuro-inflammation and glial
activation to determine whether the P2X4 receptor affects the
response of ACC and PI to neonatal 6-OHDA injection. All
values obtained for the ACC and PI are indicated in
Supplementary Table S3, S4, respectively. Among all markers
tested (see Material and Methods and Supplementary Table S5),
only those for which differences between WT and P2X4KO have

been detected in ADHD-like conditions are presented. These
markers and their possible functions are summarized in Table 1.

In the ACC, canonical pro-inflammatory cytokines (IL-6, IL-16,
TNF-α) mRNA exhibited decreased amounts in the absence of
P2X4. Interestingly, and in agreement with the morphological
findings, Iba1 was also expressed at lower levels in 6-OHDA-
P2X4KO mice. However, other markers displayed higher levels of
expression; most of them being involved in the exacerbation of
inflammation (CCL4, CX3CR1, IRF5, and IRF8). Moreover, elevated
expression levels of intracellular signalling factors, such as GSK3β
and NLRP3, were also detected (Figure 5A, one-tailed Unpaired
t-test) and may contributed to the amplification of the immune
response through the induction of pro-inflammatory cytokines
release. The mRNA level of the astrocyte-specific marker GFAP
was also significantly increased in P2X4KOmice (Figure 5A). On the
contrary, SOD1 and Arg1, two enzymes with protective roles,
displayed lower values (Figure 5B, one-tailed Unpaired t-test).
This finding indicated the presence of an overall predominantly
pro-inflammatory microenvironment in the ACC under ADHD-
like conditions in both WT and P2X4KO mice.

In the PI, the transcripts for secreted or intracellular factors
intensifying the immune response were mainly upregulated in 6-
OHDA-P2X4KO mice (IL-18, IL-16, TNF-α, TNF-R, CX3CR1). IL-
6 mRNA, on the contrary, showed a decreased expression level.
Intracellular molecules which mainly lead to a pro-inflammatory
microenvironment were also overexpressed (GSK3β, NF-κB,
NLRP3, IRF5, and IRF8), along with some chemokines and their
receptors (CX3CL1, CXCL12, and CCR5). Astrocytic expression of
GFAP was also enhanced, as well as other molecules involved in
antigen presentation such as Cathepsin S (Figure 6A, two-tailed
Unpaired t-test). Interestingly, higher levels of TGF-β, SOD1, and
Arg1 mRNA were observed (Figure 6B, two-tailed Unpaired t-test).
These latter markers are likely to exert an anti-inflammatory role.
Taken together, these data pointed towards a predominantly pro-
inflammatory microenvironment in the PI under ADHD-like
conditions in both WT and P2X4KO mice.

Discussion

In the present study, we demonstrated that the total deletion of
P2X4 prevents neonatal 6-OHDA injection-induced hyperactivity
but has only slight effects on pain sensitization that is associated with
ADHD-like conditions. Iba1 immunolabeling confirms the
activation of microglia in the 6-OHDA mouse model of ADHD.
It further indicates that the lack of P2X4 receptor reduces the
baseline activation state of microglia and limits, but not
suppresses, its reactivity in ADHD-like conditions. Unexpectedly,
P2X4 deletion is accompanied by the creation of a proinflammatory
environment in the ACC and PI of 6-OHDA adult mice as
demonstrated by overexpression of various proinflammatory
markers. This situation is further amplified in the ACC by the
downregulation of anti-inflammatory molecules.

The 6-OHDA mouse model of ADHD is characterized by
alterations of the dopaminergic system that have been extensively
considered as a significant factor for the progression of the disease
(Albrecht et al., 2015) and may be seen as the primary cause of
ADHD pathology (Faraone et al., 2021). Mesocortical dopamine has
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TABLE 1 List of markers that exhibit expression changes in 6-OHDA-P2X4KO mice in qRT-PCR experiments. They are sorted according to their functions in
inflammation, oxidative stress, or intracellular signalling.

Markers Type Function Cellular expression References

Secreted Cytokines
and Receptors

CCL4 Chemokine • Chemoattractant for immune regulatory cells
(i.e., macrophages, T-lymphocytes)

Astrocytes Saika et al., 2012a

• Contributes to neuropathic pain Sindhu et al., 2019

• Pro-inflammatory microglial profile Ullah et al. (2020)

CCR5 Chemokine receptor • Chemotaxis of microglia Microglia Astrocytes Carbonell et al., 2005

• Activation of astrocytes and exacerbation of
inflammation

Saika et al., 2012b

• Contributes to neuropathic pain Liu et al. (2014)

• Pro-inflammatory microglial profile

CX3CL1 Chemokine • Neuron-microglia communication Neurons Can be expressed by
astrocytes

Lauro et al., 2015,
2019

• Regulator of microglia activation Pawelec et al., 2020

• Can present neuroprotective functions Silva and Malcangio,
2021

• Pain-mediating chemokine Wilkinson et al., 2015

Yoshida et al. (2001)

CX3CR1 Chemokine receptor • Neuron-microglia communication Microglia Lee et al., 2018

• Promote the activation of microglia and stimulate
the release of inflammatory factors

Pawelec et al., 2020

• Pro-inflammatory microglial profile Tang et al. (2014)

CXCL12 Chemokine • Local immune responses in the CNS Astrocytes Neurons Guyon, 2014

• Chemotaxis of leukocytes Han et al. (2001)

• Induction of NF-κB signaling pathway

IL-16 Cytokine • Initiating and/or sustaining an inflammatory
response

Microglia Guo et al., 2004

• Modulates T-cell activation Little and
Cruikshank, 2008

• Pro-inflammatory microglial profile Mathy et al. (2000)

IL-18 Cytokine • Secretion induced by NLRP3 inflammasome Microglia Neurons Alboni et al., 2010

• Initiation of signaling pathways and
inflammatory responses in microglia

Felderhoff-Mueser et
al., 2005

• Exacerbation of neuronal cell death through the
increase of Fas-ligand expression

Song et al. (2017)

• Pro-inflammatory microglial profile

IL-6 Cytokine • Promotes alternative activation of macrophages Microglia Codeluppi et al., 2014

• Inflammatory acute phase response Astrocytes Fuster and Walsh,
2014

• Contributes to both nociceptor and central
sensitization

Can be expressed in neurons Renner et al., 2022

• Pro-inflammatory and anti-inflammatory
microglial profile

Zhou et al. (2016)

TGF-β Cytokine • Suppression of the immune response and glial
activation

Microglia Astrocytes Chen et al., 2015

• Regulation of astrocyte reactivity Hisatomi et al., 2002

(Continued on following page)
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TABLE 1 (Continued) List of markers that exhibit expression changes in 6-OHDA-P2X4KO mice in qRT-PCR experiments. They are sorted according to their
functions in inflammation, oxidative stress, or intracellular signalling.

Markers Type Function Cellular expression References

• Anti-inflammatory microglial profile Luo, 2022

Yoshimura et al.
(2010)

TNF-R Cytokine receptor • NF-κB and AP-1 pathway activation Astrocytes Microglia Neurons Probert, 2015

• Role in central pain sensitization Wajant et al., 2003

• Pro-inflammatory microglial profile Zhang et al. (2011)

TNF-α Cytokine • Inflammatory acute phase response Microglia Hess et al., 2011

• NF-κB and AP-1 pathways activation Idriss and Naismith,
2000

• Nociceptive responses in the central nervous
system

Jang et al., 2021

• Pro-inflammatory microglial profile Raffaele et al. (2020)

Intracellular
Signaling Markers

GSK3β Serine/threonine
kinase

• Increases cytokine and chemokine production
through activation of JNK and NF-κB pathways

Microglia Astrocytes Abd-Ellah et al., 2018

• Alterations in GSK3β function are associated with
pathological pain

Maixner and Weng,
2013

• Pro-inflammatory microglial profile Wang et al. (2010)

IRF5 Transcription factor • IRF8-IRF5 transcriptional axis induces P2X4R
expression in microglial cells

Microglia Al Mamun et al.,
2020

• Involved in neuropathic pain Masuda et al., 2014

• Pro-inflammatory microglial profile Tsuda et al. (2017)

IRF8 Transcription factor • IRF8-IRF5 transcriptional axis induces P2X4R
expression in microglial cells

Microglia Masuda et al., 2012

• Contributes to chronic pain Tsuda et al. (2017)

• Pro-inflammatory microglial profile

NF-κB Transcription factor • Induction of NLRP3 inflammasome expression Microglia Astrocytes Neurons Babkina et al., 2021

• Role in inflammatory processes in glial cells
(cytokines production, iNOS expression)

Liu et al., 2017

• Pro-inflammatory microglial profile Sutterwala et al.
(2014)

NLRP3 Pattern recognition
receptor

• Induction of IL-18 and IL-1β secretion through
caspase-1 activity

Microglia Can be expressed in
neurons and astrocytes

Liu et al., 2017

• Pro-inflammatory microglial profile Sutterwala et al., 2014

Voet et al. (2019)

Astrocytic Markers GFAP Class-III
intermediate
filament

• Marker of reactive astrogliosis Astrocytes Amalia, 2021

• Involved in pro-inflammatory cytokines release Azzolini et al., 2022

• Increased expression under inflammatory pain Ikeda et al. (2013)

Oxidative Stress
Markers

Arginase 1 Enzyme • Downregulation of nitric oxide production by
competing with iNOS

Microglia Cherry et al. (2014)

• Anti-inflammatory microglial profile

SOD1 Enzyme • Regulates oxidative stress responses Neurons Astrocytes Microglia Boillée and
Cleveland, 2008

• Potential anti-inflammatory effects through its
reduction of reactive oxygen species

Hwang et al., 2020

(Continued on following page)
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a pivotal role in selective attention, and working memory, which
indicates its involvement in the pathophysiology of ADHD (Levy,
2004; Ruocco et al., 2009). Dopaminergic lesions by neonatal intra-
cerebroventricular injection of 6-OHDA in rodents (Sontag et al.,
2010) generates ADHD-like models with well-established validity
(Avale et al., 2004; Bouchatta et al., 2018). 6-OHDA mice
demonstrated good face validity by exhibiting not only the major
symptoms of the disease (i.e., hyperactivity, inattention and
impulsivity), but also discrete co-existing symptoms
(i.e., heightened anxiety, antisocial behaviour and impaired
cognitive functions) (Bouchatta et al., 2018; 2020).

Neuroimaging studies in ADHD patients identified structural
and functional abnormalities in brain networks with a key role of the
ACC (Faraone, 2015) that is at the crossroad of executive functions
and pain processing (Garcia-Larrea and Peyron, 2013; Hart et al.,
2013; Sellmeijer et al., 2018). We further identified a key role for the
ACC-PI pathways in the interaction between ADHD-like conditions
and pain sensitization (Bouchatta et al., 2022). Therefore, we focused
the present study primarily on the effects of P2X4 deletion in the
ACC and on its consequences in the target PI.

ATP release is triggered by inflammatory conditions and in
neurological diseases. Its accumulation in the extracellular space
regulates synaptic plasticity and neuron-glia interactions through
binding to purinergic receptors, including the P2X4 receptor
(Lindberg et al., 2015). The effects of P2X4 deletion on microglia
phenotype and secretome are instrumental in our understanding of
inflammatory processes underlying neurological diseases. Microglia
responds to challenges caused by brain diseases by modifying its
morphology, molecular profiles and functions. In contrast to the
classical, dualist vision of “good” and “bad” microglia, a recent
collective update (Paolicelli et al., 2022) made clear that microglia
exist in a broad array of highly dynamic, and multidimensional
states. This never-resting microglia can be described as a continuum
of configurations according to signals from the external and local

environments. Disruption of microglia functions has been proposed
to account for the pathological onset of neurodevelopmental
disorders including ADHD (Bordeleau et al., 2019). Moreover, a
genome-wide associated study identified causal genes for ADHD in
microglia (Fahira et al., 2019). Accordingly, microglia reactivity in
ADHD conditions has been already demonstrated in humans
(Yokokura et al., 2021) and animal models (Song et al., 2021;
Zhang et al., 2022; Sanches et al., 2023). Recent evidence for
microglia reactivity has been also provided in the ACC of the 6-
OHDA mouse model (Meseguer-Beltrán et al., 2023).

Over the past decades, the role of P2X4 has been extensively
studied in microglia that display abundant expression of this
receptor (Tsuda et al., 2003; Vázquez-Villoldo et al., 2014;
Duveau et al., 2020). P2X4 has been shown to mediate pain
hypersensitivity in the spinal cord of animal models of
neuropathic (Tsuda et al., 2003; Coull et al., 2005) and
inflammatory (Ulmann et al., 2010; Aby et al., 2018) pain.
Reactive microglia may also be a causal agent for ADHD-like
symptoms in the spontaneously hypertensive rat model (Zhang
et al., 2022), although in other models (i.e., traumatic brain
injury-induced ADHD-like conditions) microglia inhibition with
minocycline did not affect impulsivity and attention deficits
(Pechacek et al., 2022). Although P2X4 was proposed as a male-
biased microglial mediator of chronic pain (Halievski et al., 2020),
recent findings showed that microglial P2X4 is crucial for
neuropathic pain, regardless of sex (Gilabert et al., 2023). In
agreement, sex comparisons in WT and P2X4KO mice did not
reveal any differences between males and females in hyperactivity,
impulsivity or sensory thresholds.

Interestingly, the present study demonstrates an unexpected
function of P2X4 that may contribute to basal microglia
homeostasis. Indeed, its deletion amplifies the features of
homeostatic microglia in sham conditions. In 6-OHDA mice,
P2X4 suppression attenuates but does not fully prevent microglia

TABLE 1 (Continued) List of markers that exhibit expression changes in 6-OHDA-P2X4KO mice in qRT-PCR experiments. They are sorted according to their
functions in inflammation, oxidative stress, or intracellular signalling.

Markers Type Function Cellular expression References

• High SOD1 levels may correlate with
postoperative pain reduction

Jaarsma et al., 2008

KÄRKKÄINEN et al.,
2018

Nagai et al. (2007)

Other Markers Cathepsin
S

Protease • Role in antigen presentation Microglia Hao et al., 2007

• Role in microglia-neuron communication Nakagawa et al., 1999

• Involved in microglia migration towards sites of
injury or infection

Pišlar et al., 2021

• Involved in neuropathic pain Silva and Malcangio,
2021

Smyth et al. (2022)

Iba1 Protein • Role in actin-crosslinking which is involved in
microglial membrane ruffling

Microglia Hovens et al., 2014

• Induction of microglial phagocytic activity Ohsawa et al. (2004)

• Its increased expression is associated with
microglial response
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reactivity. In addition, our findings indicate a less reactive microglia
phenotype in 6-OHDA-P2X4KO than in 6-OHDA-WT. Beside the
morphological analysis, the decreased reactive phenotype of ACC
microglia in ADHD-like conditions is also characterized in our
study by the decreased expression of i) the microglia-specific marker

Iba1, and ii) the IL16 and TNF-α cytokines that are mostly released
by microglial cells (Borst et al., 2021). Limited microglia reactivity in
6-OHDA-P2X4KO mice may explain the lack of hyperactivity
(distance travelled) and impulsivity-like (velocity) behaviours
induced by ADHD-like conditions in P2X4KO mice.

FIGURE 5
Detection of pro- (A) and anti-inflammatory (B)markers in the ACC of 6-OHDA-WT and 6-OHDA-P2X4KO mice. All data are expressed as relative
gene expression, mean ± SEM (n = 4–11 mice per group), and were analysed with a one-tailed Unpaired t-test (*p < 0.05; **p < 0.01; ***p < 0.001).
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Despite this reduced microglia reactivity, the qRT-PCR
analysis of cytokine expression in ADHD-like conditions
suggest that P2X4 deletion favours a predominantly pro-
inflammatory environment in the ACC and PI as compared to

WTmice. Table 1 recapitulates these markers sorted according to
their possible functions. Microglia pro-inflammatory cytokine
receptor (CX3CR1), and transcription factors (IRF5 and IRF8)
are upregulated in the ACC and PI of 6-OHDA-P2X4KO mice.

FIGURE 6
Detection of pro- (A) and anti-inflammatory (B)markers in the PI of 6-OHDA-WT and 6-OHDA P2X4KOmice. All data are expressed as relative gene
expression, mean ± SEM (n = 3–8 mice per group), and were analysed with a two-tailed Unpaired t-test (*p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001).
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The expression of pro-inflammatory markers of intracellular
signalling pathways is also increased in both regions (GSK3β,
NLRP3, NF-κB). The overexpression of astrocytic markers
(GFAP) (Giovannoni and Quintana, 2020) and chemokines
(CCL4 in the ACC, CXCL12 in the PI) (Guyon, 2014; Zhu
et al., 2014) are indicative of astrogliosis that may also
contribute to the pro-inflammatory environment.

The results displayed striking differences in the two brain
regions investigated. The pro-inflammatory environment is
more pronounced in the PI than in the ACC. As an example,
IL18 is overexpressed in the PI while no changes were noticed in
the ACC. Interestingly, its release is stimulated by NLRP3
(Amores-Iniesta et al., 2017) that is also upregulated in the
PI of 6-OHDA-P2X4KO mice. Modifications of cytokine
receptors expression were also detected in the PI
(TNFR, CCR5).

Other markers did not show any significant difference in their
levels of expression following the deletion of the P2X4 receptor
under ADHD-like conditions. Remarkably, some of these molecules
were previously shown to be involved in neuropathic pain (MMP9,
BDNF) (Kawasaki et al., 2008; Thakkar and Acevedo, 2023) or pain
pathogenesis (Wnt5a) (Wang et al., 2020; Liu et al., 2023). These
results are in line with the absence of effects of P2X4 deletion on pain
sensitization.

Many inflammatory pathways exist in neural cells and some
changes in the inflammatory environment may be indirectly
triggered by P2X4 deletion. P2X7 is another purinergic receptor
known to play prominent roles in inflammatory processes (Di
Virgilio et al., 2017) by promoting cytokine production by
microglia and astrocytes (Sperlágh and Illes, 2014).
P2X7 interacts with P2X4 (Schneider et al., 2017) and
P2X4 deletion may thus impact purinergic signalling at large,
beyond the sole P2X4 receptor.

The mild pro-inflammatory environment of 6-OHDA-P2X4KO
mice is associated with the prevention of hyperactivity/impulsivity
and might exert a protective role against ADHD-like symptoms.
However, the various pro-inflammatory features described in the 6-
OHDA-P2X4KO vs. sham mice are likely to have different, possibly
opposite, consequences. Inflammation-induced astrocyte reactivity
has been implicated in ADHD-like conditions (Sandau et al., 2012;
Zhang et al., 2022; Liu et al., 2023) while in our model it is associated
with reduced symptoms. In contrast, a protective role is in
agreement with the amplified homeostatic features of microglia
observed in P2X4KO mice. In several cases, P2X4 contributes to the
development of neurological disorders through well-identified
mechanisms, e.g., in hippocampal neurons for Alzheimer’s
disease (Varma et al., 2009), or in spinal microglia for
neuropathic pain (Coull et al., 2005). Conversely, protective roles
of P2X4 have been described on motoneurons in amyotrophic
lateral sclerosis (Andries et al., 2007) and autoimmune
encephalitis (Zabala et al., 2018). In line with our results, the
latter study demonstrated an increase in pro-inflammatory gene
expression in a P2X4KO mouse model of autoimmune encephalitis
as compared to WT mice. In contrast to its effects on hyperactivity
and impulsivity, P2X4 deletion does not change mechanical or
thermal hypersensitivity in 6-OHDA mice. P2X4 deletion may
even induce basal thermal hypersensitivity in sham-P2X4KO
mice as compared to WT animals.

The dual effect of P2X4 deletion on ADHD-like symptoms and
pain sensitization could result from the dysfunction of distinct cell
types. P2X4 is expressed in both neurons and microglia (Bo et al.,
2003) and plays different functions in these 2two cell populations
(Duveau et al., 2020). Beneficial impact of both overexpression or
deletion of P2X4 described in SOD1 mouse model of amyotrophic
lateral sclerosis suggests that P2X4 expressed in motoneurons, and
microglia exert opposite effects in ALS pathogenesis (Bertin et al.,
2022). In addition, compelling evidence indicates the existence of
distinct microglia subpopulations (Stratoulias et al., 2023) that may
differ with regard to the expression and/or function of P2X4. The
comorbidity of ADHD-like symptoms and pain sensitization may be
underpinned by different cell types and/or by the dysfunction of
different brain areas.

Our data revealed a complex role of P2X4 likely dependent on a
combination of glial and neuronal effects. The lack of P2X4 triggers
the development of predominantly pro-inflammatory but distinct
environments in the ACC and PI of 6-OHDA mice. In ADHD-like
conditions, it decreases microglial reactivity in the ACC and
alleviates hyperactivity/impulsivity while only slight alterations of
nociceptive behavior are observed. P2X4 deletion has apparent
contradictory effects, amplifying the homeostatic characteristics
of ACC microglia but promoting the over-expression of pro-
inflammatory markers. Importantly, however, these results
confirm that microglia activation and inflammation are not
equivalent (Paolicelli et al., 2022). In ADHD-like conditions, the
lack of P2X4 modulates the microglia phenotype and modifies the
“cytokine-enriched secretomes” from microglia and most probably
from other cell types as well.

Taken together, our findings suggest that P2X4 facilitates
microglia reactivity but at the same time exerts a protective role
on the expression of some pro-inflammatory markers, possibly from
non-microglia origin. This dual role of P2X4 could be responsible
for the differential effects noted on ADHD-like symptoms and pain
sensitization.
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