
HAL Id: hal-04372450
https://hal.science/hal-04372450

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Provably Fair Cooperative Scheduling
Reiner Hähnle, Ludovic Henrio

To cite this version:
Reiner Hähnle, Ludovic Henrio. Provably Fair Cooperative Scheduling. The Art, Science, and Engi-
neering of Programming, 2023, 8 (2), �10.22152/programming-journal.org/2024/8/6�. �hal-04372450�

https://hal.science/hal-04372450
https://hal.archives-ouvertes.fr

Provably Fair Cooperative Scheduling

Reiner Hähnlea and Ludovic Henriob
a Department of Computer Science, TU Darmstadt, Germany
b Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, Lyon, France

Abstract The context of this work is cooperative scheduling, a concurrency paradigm, where task execution
is not arbitrarily preempted. Instead, language constructs exist that let a task voluntarily yield the right to
execute to another task.

The inquiry is the design of provably fair schedulers and suitable notions of fairness for cooperative
scheduling languages. To the best of our knowledge, this problem has not been addressed so far.

Our approach is to study fairness independently from syntactic constructs or environments, purely from the
point of view of the semantics of programming languages, i.e., we consider fairness criteria using the formal
definition of a program execution. We develop our concepts for classic structural operational semantics (SOS)
as well as for the recent locally abstract, globally concrete (LAGC) semantics. The latter is a highly modular
approach to semantics ensuring the separation of concerns between local statement evaluation and scheduling
decisions.

The new knowledge contributed by our work is threefold: first, we show that a new fairness notion, called
quiescent fairness, is needed to characterize fairness adequately in the context of cooperative scheduling; second,
we define a provably fair scheduler for cooperative scheduling languages; third, a qualitative comparison
between the SOS and LAGC versions yields that the latter, while taking higher initial effort, is more amenable
to proving fairness and scales better under language extensions than SOS.

The grounding of our work is a detailed formal proof of quiescent fairness for the scheduler defined in
LAGC semantics.

The importance of our work is that it provides a formal foundation for the implementation of fair schedulers
for cooperative scheduling languages, an increasingly popular paradigm (for example: akka/Scala, JavaScript,
async Rust). Being based solely on semantics, our ideas are widely applicable. Further, our work makes clear
that the standard notion of fairness in concurrent languages needs to be adapted for cooperative scheduling and,
more generally, for any language that combines atomic execution sequences with some form of preemption.

ACM CCS 2012
Theory of computation → Parallel computing models; Program semantics;
Software and its engineering → Concurrent programming structures;

Keywords Trace semantics, provably fair scheduling, cooperative scheduling

The Art, Science, and Engineering of Programming

Submitted May 23, 2023

Published October 15, 2023

doi 10.22152/programming-journal.org/2024/8/6
© Reiner Hähnle and Ludovic Henrio
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 8, no. 2, 2024, article 6; 42 pages.

https://doi.org/10.22152/programming-journal.org/2024/8/6
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Provably Fair Cooperative Scheduling

1 Introduction

In this article we study, from a semantic point of view, the design of fair schedulers,
in particular, for languages with cooperative scheduling. Cooperative scheduling
denotes a concurrency paradigm, where task execution is not arbitrarily preempted.
Instead, there are language constructs letting a task voluntarily yield control (hence
the adjective cooperative). Cooperative scheduling is implemented in active object
languages [6] and recently became more widespread (for example, in akka/Scala,
JavaScript, async Rust).

Specifically, our motivation to study fairness [17] comes from the challenge to
implement the active object language ABS [20]. Which scheduling policy should the
ABS runtime system [28] choose? Existing notions of (weak) fairness were clearly
inapplicable. The pragmatic solution is to realize a non-deterministic scheduler that
randomly selects an enabled process with equal probability [2] , conjectured to be
asymptotically fair, however, the absence of an adequate fairness notion and an at
least weakly fair deterministic scheduler is clearly unsatisfactory. We remedy this
situation in the present article in a sufficiently abstract manner for our results to be
applicable to any language with cooperative scheduling.

Generally speaking, fairness properties state that “considering an event that could
occur infinitely often, this event will occur eventually”. In particular, fairness provides
no guarantee for terminating programs or stuck processes. In distributed systems,
certain fairness notions quantify over the number of scheduled processes before an
event occurs: This is not what we study here.

First, we study fairness independently from dedicated syntactic constructs or envi-
ronments, purely from the point of view of the semantics of programming languages,
i.e., we consider fairness criteria using the formal definition of a program execution.
Specifically, we compare a classic structural operational semantics (SOS) with the
more recent locally abstract, globally concrete (LAGC) semantics [12, 13]. LAGC is a
highly modular approach to semantics ensuring the separation of concerns between
local statement evaluation and scheduling decisions. In either case, different notions
of fairness are based on the principle that enabled actions are the reachable statements.

Second, we explain that the traditional weak fairness criterion is inadequate in the
context of cooperative scheduling, because it relies on actions that can be continuously
triggered. This is not applicable in cooperative scheduling, where a process runs unin-
terrupted until the next yield point. We detail and formalize this issue in Section 3.3
and suggest an alternative, more adequate, notion of weak fairness based on so-called
quiescent states. Quiescent fairness amounts to checking the fairness condition only at
quiescent states, i.e. at (cooperative) scheduling points. Incidentally, standard weak
fairness is inadequate not only for languages with cooperative scheduling, but for any
language that combines atomically executed sequences with some form of preemption,
such as ProMeLa [19].

Third, we define a quiescent fair scheduler for languages with cooperative schedul-
ing in SOS as well as LAGC semantics. For the minimalist language in this paper, the
LAGC definitions are slightly more complex, but also more modular than SOS, because
they strictly decouple the local semantics of individual statements from scheduling

6:2

Reiner Hähnle and Ludovic Henrio

s ∈ Stmt ::= skip | v := e | if e { s } | s; s | while e { s }

Figure 1 The syntax for statements in While.

P ∈ Prog ::=M {s}
M ∈ Proc ::=m(x){s}

s ∈ Stmt ::= s0 | spawn(m, e)

Figure 2 Program syntax with procedure calls, s0 are the statements introduced in Figure 1.

and composing them into a global trace. This modularity permits to prove quiescent
fairness of the LAGC scheduler in a reasonably compact manner; such a proof would
be much more cumbersome with the SOS version. To the best of our knowledge, we
provide the first scheduler for cooperative scheduling proven to be fair.
To make the paper more accessible, we develop our notions along a sequence of

languages of increasingly complexity. These are defined in Section 2. Then Section 3
discusses fair scheduling for cooperative scheduling languages in the context of SOS.
As LAGC semantics is less known, we give its essentials in Section 4 to make the
paper self-contained. Next we develop and prove fairness of a scheduler in three
successive stages in Sects. 5, 6, 7, where the latter addresses cooperative scheduling.
Section 8 compares the SOS and LAGC semantics with respect to the design of fair
schedulers. Section 9 discusses work related both to fairness and to different ways
to write programming language semantics; we conclude in Section 10. Proofs and
auxiliary notions are located in the appendix to improve readability.

2 Languages

In this paper we consider four languages of increasing complexity:
1. A standard sequential language called While;
2. An extension of While with concurrent procedures called Spawn;
3. An extension of Spawn with guarded statements;
4. The cooperative scheduling language CoopWhile, containing spawn, suspend,1 and

join.
We collect the definitions of these languages in the present section for future

reference. Figure 1 contains the grammar of While. There is a fixed set of global
variables v. We leave out the expression syntax Exp and suppose that expressions
are side effect-free and well-typed so that expression evaluation does not get stuck.
Standard Boolean and arithmetic expressions appear in the examples.

Figure 2 defines an extension of While with a spawn statement: A program P is a set of
procedure declarations M and a main block {s}. A procedure declaration associates a
name mwith the statement in its body. To reduce technicalities, we consider procedures
with one local parameter and no return value. We call this language Spawn.

1 In some languages this statement is called “yield”.

6:3

Provably Fair Cooperative Scheduling

s ∈ Stmt ::= s0 | spawn(m, e, x) | suspend | await x | return

Figure 3 Syntax of CoopWhile: s0 are statements of While in Figure 1, procedure calls and
programs are defined as for Spawn in Figure 2. The return statement only appears
at runtime.

Guarded statements are a common synchronization mechanism in concurrent
languages [10, 19, 20]. A statement is preceded by a Boolean guard expression that
blocks execution of the current process, until the guard is evaluated to true. This can
be used, for example, to ensure that the result of a computation is ready before it
is used, a message has arrived, etc. Our syntax for guarded commands is inspired
by ProMeLa [19]; in the Guard language the syntax for statements from Figure 2
becomes:

s ∈ Stmt ::=(:: g; s) | s1 ,

where g is a Boolean expression and s1 are the statements defined in Figure 2.
Finally, we define a minimal language with spawn, suspend, and join that nev-

ertheless contains all complications of cooperative scheduling called CoopWhile. The
syntax of the language CoopWhile is shown in Figure 3. Each spawn statement creates a
task identifier stored in x that can later be waited upon with await x (we assume task
identifiers are initialized before they are used). It is also possible that a task voluntarily
yields the processor to other tasks with the unconditional suspend command.

3 Fair Scheduling Based on Structural Operational Semantics

We explain how to model fairness in a straightforward, classical SOS semantics
setting. As SOS is very common, we jump directly to the CoopWhile language that raises
interesting questions in presence of cooperative scheduling. The semantics presented
in Section 3.1 is pretty standard and could be skipped by the knowledgeable reader,
however, we use it in Section 3.3 to explain the principles of our fairness criteria in an
SOS setting.

3.1 SOS for CoopWhile

We begin with an SOS semantics for CoopWhile, as an extension of the standard SOS
semantics for While [22]. We assume for While a binary relation (s,σ)

While
−−−→ (s′,σ′)

between pairs of statements s and computation states σ (mapping variables to values),
such that s is reduced to s′ in one step while σ is updated to σ′. As usual, we rely on
a function valσ(e) for evaluating expressions, parameterized by σ.

The SOS rules for statements in CoopWhile that are not part of While, are in Figure 4.
Configurations are either of the form f · s, T, σ, when exactly one task with identifier
f and current statement s is active, or Idle, T, σ when no task is currently active. T is
a mapping from task identifiers to suspended tasks, σ represents shared memory. The
rules are inspired by semantics for active object and cooperative languages [1, 7, 20].

6:4

Reiner Hähnle and Ludovic Henrio

(s,σ)
while
−−−→ (s′,σ′)

f · s, T, σ→ f · s′, T, σ′
Local Return

f · return, T, σ→ Idle, T, σ

SpawnStart
f ′ ̸∈ dom(T)∪ {f} m(z){s′} ∈ M y ̸∈ dom(σ)

f · spawn(m, e, x); s, T, σ→ f · s, T[f ′ 7→ s′[z← y]; return], σ[y 7→ valσ(e), x 7→ f ′]

YieldSuspend
f · suspend; s, T, σ→ Idle, T[f 7→ s], σ

YieldAwait
f · await x; s, T, σ→ Idle, T[f 7→ await x; s], σ

ScheduleSimple
s is not of the form await x; s′

Idle, T ⊎ [f 7→ s], σ→ f · s, T, σ

ScheduleAwait
s = await x; s′ valσ(x) ̸∈ dom(T)

Idle, T ⊎ [f 7→ s], σ→ f · s′, T, σ

Figure 4 SOS semantics for CoopWhile

Rule Local triggers the SOS rules for While for an active task f . Rule SpawnStart
spawns a task, associates a fresh task identifier f ′ to it, and assigns it to x . It also
looks up the declaration of m, renames its parameter z to a fresh y; the new task
associates f ′ with the renamed procedure body. Then rule SpawnStart continues
with the trailing statement s after the procedure call. The end of the spawned task is
marked with statement returnwhich is only used for this purpose. Its SOS rule Return
releases the processor. Both suspend and await yield the processor, the difference is that
the task identifier x of await needs to be queried and is thus kept. Scheduling takes
place whenever there is no active ask and is performed by the two scheduling rules.
Again, the difference is whether a wait condition must be checked, indeed an await
statement can only be scheduled if the awaited task is finished.

To evaluate a CoopWhile program with main block sP , one must start from an initial
configuration of the form f · sP , ;, ; for an arbitrary f.

3.2 SOS of CoopWhile with Scheduling

In Figure 5we add scheduling to the SOS of CoopWhile, i.e. we resolve the non-determinism
in the scheduling rules (all other rules are deterministic). To this end we let q range
over queues of pairs of task identifiers f and statements s. Queues are equipped
with the following operations: create() creates an empty queue, push(q, k) returns q
extended with k as its final element; pop(q) returns a pair (q′, k), where k is the first
element in q and q′ the rest of the queue, rotate(q) shifts the beginning of the queue
by one element, turning the new queue (App. A formally defines queues).
Rules Local and Return are unchanged except replacing f with q and we omit

them. Rule SpawnStart pushes the new task to the end of q, instead of extending
mapping f, and is unchanged otherwise. The same holds for the Yield rules, which
we omit as well. The only non-trivial change is required for scheduling: One always

6:5

Provably Fair Cooperative Scheduling

SpawnStart
f ′ ̸∈ dom(T)∪ {f} m(z){s} ∈ M y ̸∈ dom(σ)

f · spawn(m, e, x); s, q, σ→ f · s, push
�

q, (f ′, s[z← y]; return)
�

, σ[y 7→ valσ(e), x 7→ f ′]

pop(q) =
�

q′, (f, s)
�

s is not of the form await x; s′

Idle, q, σ→ f · s, q′, σ
ScheduleSimple

pop(q) =
�

q′, (f, s)
�

s = await x; s′ valσ(x) ̸∈ Tsk(q)

Idle, q, σ→ f · s′, q′, σ
ScheduleAwaitDone

pop(q) =
�

q′, (f, s)
�

s = await x; s′ valσ(x) ∈ Tsk(q)

Idle, q, σ→ Idle, rotate(q), σ
ScheduleAwaitWait

Figure 5 SOS scheduler semantics for CoopWhile, where Tsk(q) = {f | ∃s. (f, s) ∈ q}

(re-)activates the first task in q by retrieving it with pop, but this does not succeed for
an await whose task identifier x has not finished. In that case, the queue is rotated in
rule ScheduleAwaitWait. For a CoopWhile program with main block sP ,the initial
configuration is f · sP , create(), ; for some f.

3.3 Fairness

We design now a notion of fairness that is inherently tied to program semantics, not
the programs themselves or a specific interpreter. First, we label SOS transitions with
task identifiers to record which task progresses, but this is very operational, so in a
second version we state an alternative fairness criterion based on reachable statements.
It is important to note that, by definition, both weak and strong fairness conditions
apply only if a considered event can be scheduled regularly in the future. This implies
that when a process never yields and does not terminate, then the underlying program
never reaches a scheduling point, hence, the single possible execution that always
runs the same thread is “fair” by definition.

3.3.1 Using Task Identifiers to Define Fairness
We assume that every SOS rule application is labeled with the task identifier that
progresses (or with the identifier of the task being suspended). Transitions are then of

the form C
f
−→ C ′ with C and C ′ the source and target SOS configuration, respectively,

and f the task identifier of the task that progresses. We define enabled(C) as the set

of task identifiers that can progress: enabled(C) = {f | ∃C ′. C
f
−→ C ′}. We can then

express standard fairness criteria as follows:

6:6

Reiner Hähnle and Ludovic Henrio

Definition 1 (Fairness). Given an infinite sequence of SOS rule applications C0
f1−→ C1

f2−→

· · ·
fn−→ Cn · · · , we say that the resulting execution is weakly fair if:

∀m, f.
�

(∀n≥ m. (f ∈ enabled(Cn)))⇒
�

∃n′ ≥ m.
�

Cn′
f
−→ Cn′+1

���

.

We say that the resulting execution is strongly fair if:

∀m, f.
�

(∀n≥ m.∃ l ≥ n. (f ∈ enabled(Cl)))⇒
�

∃n′ ≥ m.
�

Cn′
f
−→ Cn′+1

���

.

Weak fairness requires a statement to be always “schedulable” from a certain point
onward to guarantee that it will be scheduled; in contrast, strong fairness merely
requires the statement to be “schedulable” infinitely often.

3.3.2 A Fairness Criterion for Cooperative Scheduling
The standard notion of weak fairness as defined above is too weak to be useful
for cooperative scheduling. As soon as one task is active, the other tasks cannot be
scheduled immediately, which makes the precondition for weak fairness inapplicable.
In our setting, the only point where several different tasks belong to the set of enabled
actions is when no task is currently active. When a task is scheduled the other task
identifiers are not enabled any more. Thus, weak fairness provides no guarantee in a
cooperative scheduling context, as shown by the Example 1 below. Regarding strong
fairness, it is generally impossible to design a deterministic strongly fair scheduler
valid for any program, because, in CoopWhile and in many languages, strong fairness
can only be achieved probabilistically. See Example 8 for a discussion on this point.

Example 1 (Inadequacy of weak fairness for cooperative scheduling). Consider the
CoopWhile program P with main block “{spawn(m, 0, z); suspend; j := 2}” and a procedure
m declared as “m(x) {while true {suspend; i := 1}}”. We ask the following question: Does
fairness ensure that statement “ j := 2” will be executed at some point? Strong fairness
would be sufficient, but it is too difficult to implement. In contrast, weak fairness is
insufficient, because the execution that suspends the main thread and then always
schedules the spawned task is weakly fair. Every time the while statement is reached, the
spawned task is active and the main thread is unable to progress. Weak fairness merely
requires actions to be always schedulable to progress, so it is insufficient to ensure that
“ j := 2” is executed.

Instead, if we only check schedulability at suspension points, we note that “ j := 2”
can be executed each time the spawned thread is suspended. Our new notion of fairness
defined below, called quiescent fairness, ensures that “ j := 2” will be executed.

We define a notion of weak fairness adequate for cooperative scheduling which,
instead of demanding that a statement can be scheduled at any stage n≥ m , merely
stipulates this needs to be the case whenever there is no currently running task. The
precondition then becomes “from a certain point on in the execution, whenever the
configuration is idle, the considered task can be scheduled”. We call idle configurations
quiescent states and derive a corresponding fairness notion called quiescent fairness. A
related concept in the context of I/O automata has been suggested in [26, 27].

6:7

Provably Fair Cooperative Scheduling

Definition 2 (Quiescent Fairness). Let quiescent(C) be true if C is of the form Idle, T, σ.
An execution is quiescent fair if a statement that can be scheduled at each quiescent
state after a certain point is eventually scheduled:

∀m, f.
�

∀n> m. (quiescent(Cn)⇒ f ∈ enabled(Cn))⇒∃n′ > m.
�

Cn′
f
−→ Cn′+1

��

.

Quiescent fairness is sufficient to ensure that a task that can progress will even-
tually be scheduled, even if another task is permanently blocked, e.g. on an await
statement. Quiescent fairness is only interesting for programs that have no infinite
local computation. We restrict ourselves to these programs in the following, formally:

Definition 3 (No Infinite Local Computation). A program has no infinite local compu-
tation if at any stage m of an execution starting from the initial program state there is a
following stage n> m that is a quiescent state.

Example 2. The program in Example 1 has no infinite local computations, thus a
quiescent fairness will ensure that “ j := 2” is executed.

3.3.3 Fairness Based on Reachable Statements
Task identifiers are an operational notion and reasoning over them is restrictive. For
example, a task might progress infinitely often, but never when it can enter a relevant
branch, and this is not observed in Def. 1. An alternative is to use the set of reachable
statements, called newStmt(C , C ′), defined as the set of statements introduced by a
single reduction step from C to C ′. It represents the computational state of the threads
that made progress during that reduction.

Definition 4 (Set of Possible Continuations). Given two configurations C , C ′ such that
C → C ′, we define newStmt(C , C ′) as follows:

newStmt((f · s, T, σ), (f · s′, T ′, σ′)) = {s′} ∪ {s′′ | ∃f′. T ′ = T ∪ [f′ 7→ s′′]}
newStmt((f · s, T, σ), (Idle, T ′, σ′)) = ;

enabled(C) is the multiset of new statements reachable from C:

enabled(C) = {newStmt(C , C ′) | ∃C ′. C → C ′}

We observe that enabled(C) is an infinite set, whenever a fresh name or identifier is
created, but this has no adverse consequences on the definition of fairness (it is also
possible to render this set finite). It is a multiset, because identical statements may
result from different rule applications. This way to define enabled actions is more
abstract than in Section 3.3.1 and it is less precise in certain cases, because different
tasks can result in identical statements. It also raises the question of statements that
are reduced to themselves: if (s,σ)→ (s,σ) is a valid reduction of the local semantics,
is s an enabled statement or not? However, identical statements that really originate
from different tasks can always be syntactically distinguished, for example, by their
position in the code, or even using a task identifier in addition to the statement for
even more precision.

6:8

Reiner Hähnle and Ludovic Henrio

Now we adapt weak, strong, and quiescent fairness to the new version of enabled(c):

Definition 5 (Fairness based on reachable statements). Given an infinite sequence of
SOS rule applications C0→ C1→ ·· · → Cn · · · , the resulting execution is weakly fair if:

∀m, s.
�

(∀n≥ m. (s ∈ enabled(Cn)))⇒
�

∃n′ ≥ m. (s ∈ newStmt(Cn′ , Cn′+1))
� �

.

It is strongly fair if:

∀m, s.
�

(∀n≥ m.∃ l ≥ n. (s ∈ enabled(Cl)))⇒
�

∃n′ ≥ m. (s ∈ newStmt(Cn′ , Cn′+1))
� �

.

It is quiescent fair if:

∀m, s.
�

∀n> m. (quiescent(Cn)⇒ s ∈ enabled(Cn))

⇒ ∃n′ > m. s ∈ newStmt(Cn′ , Cn′+1)
�

The main drawback of the reachable statement approach is that the definition of
newStmt is somewhat ad hoc and dependent on the structure of the configuration. Also
the interplay between the definition of configurations and their evolution according to
the operational semantics changes depending on the features of the language. LAGC
semantics will provide us with a more general and modular solution.

4 LAGC Semantics

We now give an alternative semantics called LAGC to the languages in Section 2.
It requires somewhat more technical apparatus than SOS: first, the local semantics
of sequential code is parameterized over a context; second, the evaluation of some
statements creates events; third, we use well-formedness predicates ensuring that in-
stantiation and sequencing of events results in the intended semantics. While this
setup is somewhat more complex than SOS, it has two advantages: it completely
separates rules that progress, i.e. evaluate a statement, from the so-called composition
rules responsible for making a scheduling decision. Since the composition rules are for-
mulated without referring to specific statements, one can obtain different concurrent
semantics simply by varying the scheduling rules and the well-formedness constraints,
while everything else stays the same. In particular, to introduce scheduling, one needs
to change only a small number of rules.
The main principle of LAGC semantics is to strictly separate two phases. The first

phase evaluates statements to sets of local traces with parameters. The second phase
composes these local traces. Correct traces must then respect a well-formedness
predicate ensuring the consistency of the composition without referring to program
syntax or intermediate structures. Together, well-formed traces over states and events
avoid complex data structures in configurations of reduction rules as it is the case in
conventional SOS rules.

Compared to SOS, LAGC configurations contain not only the current state, but the
whole trace leading to it, including any events that occurred. This richer structure
makes it easy to extract information locally.

6:9

Provably Fair Cooperative Scheduling

The modular separation of progress and composition is also crucial for our presenta-
tion. First, it permits an incremental presentation of LAGC for the different languages
discussed here, introducing new concepts one at a time. Second, the fairness proof
of our cooperative scheduler is completely independent of the syntax of sequential
statements and only depends on events related to scheduling and synchronization.

4.1 States, Events, Traces, Continuations

For space reasons we refrain from giving full technical definitions of LAGC, but
introduce essential notions in a compact manner. A fully precise account is in [12].
In SOS states map variables to concrete values. To permit symbolic expressions

(containing variables) occurring as values in states, we use the star expression ∗ to
represent an unknown value that cannot be further evaluated. The ∗ symbol does not
occur in programs, only in the semantics. We adopt the notational convention of using
capital letters for symbolic variables; but symbolic and non-symbolic variables belong
to the same syntactic category and some operations transform a symbolic variable
into a non-symbolic one.

Definition 6 (Symbolic State, State Update). A symbolic state σ is a partial mapping
σ : Var* Sexp from variables to symbolic expressions Sexp = Exp ∪ {∗}. A symbolic
variable is a variable X bound to an unknown value σ(X) = ∗. Sexp are expressions that
contain symbolic variables. The notation σ[x 7→ se] expresses the update of state σ at x
with symbolic expression se.

In a symbolic state σ, its symbolic variables symb(σ) act as parameters, relative to
which a local computation is evaluated. They are used to represent, for example, call
parameters or task identifiers that cannot be known locally. We assume there are no
dangling references.2 States without symbolic variables are called concrete. We denote
with σ ⊆ σ′ that state σ′ extends (as a mapping) state σ.

Example 3. σ = [x 7→ Y + 42, Y 7→ ∗] is a symbolic state with symb(σ) = {Y }.

We assume an evaluation function valσ : Sexp→ Sexp for symbolic expressions se in
the context of a state σ, defined as usual for concrete expressions, and as valσ(X) = X
for symbolic variables X ∈ symb(σ). It is always possible to evaluate expressions
without symbolic variables to values and one could define a set of simplification rules
on symbolic expressions, but they are not needed in the context of this article. The
evaluation function is trivially extended to sets of expressions.

Traces are sequences over states and structured events. For example, the presence of
synchronization events makes it possible to express global communication properties
of traces via well-formedness conditions. Symbolic states imply symbolic traces, which
motivates to constrain traces by path conditions.

Definition 7 (Path Condition). A path condition pc is a finite set of Boolean expressions.
A fully evaluated concrete pc is exactly one of ;, {ff}, {tt}, {ff, tt}. It is consistent when it
does not contain ff. For any concrete state σ, path condition valσ(pc) is fully evaluated.

2A dangling reference is a reference to a variable not in the symbolic store.

6:10

Reiner Hähnle and Ludovic Henrio

Definition 8 (Event Marker, Conditioned Symbolic Trace).
An event marker over expressions e is a term of the form ev(e) .
A symbolic trace τ is defined inductively by the following rules (ϵ denotes the empty

trace): τ ::= ϵ | τ↶ t t ::= σ | ev(e) .
A conditioned symbolic trace has the form pc ▷τ, where pc is a path condition and τ

is a symbolic trace. If pc is consistent, we simply write τ for pc ▷ τ.

Traces can be finite or infinite. Let 〈σ〉 denote the singleton trace ϵ↶ σ. Concatena-
tion of two traces τ1, τ2 is written as τ1 ·τ2 and defined when τ1 is finite. The final
state of a non-empty, finite trace τ is selected with last(τ), the first state with first(τ),
respectively.

Example 4. A conditioned symbolic trace is τ= {Y > 0} ▷ 〈σ〉↶ σ[w 7→ 17], where σ
is as in Example 3.

Traces semantically model sequential composition of program statements. Assume
τr , τs are traces of statements r, s, respectively. To obtain the trace corresponding to
sequential composition r; s, traces τr and τs must be concatenated, but the first state
of the second trace should be identical to (or more precisely an extension of) the final
state of the first trace. The chop operator gets rid of the redundant intermediate state.

Definition 9 (Chop on Traces [16, 25]). Let pc1, pc2 be path conditions and τ1, τ2 be
symbolic traces, and assume that τ1 is a non-empty, finite trace. The semantic chop
(pc1 ▷ τ1) ∗∗ (pc2 ▷ τ2) is defined as follows:

(pc1▷τ1)∗∗(pc2▷τ2) = (pc1∪pc2)▷τ·τ2 where τ1 = τ↶ σ, τ2 = 〈σ′〉·τ′ and σ ⊆ σ′ .

Chop is well-defined when the first argument is a finite non-empty trace, we only
use it this way.
Events are uniquely associated with that state in a trace, where they occur. Events

do not update a state, but may extend it with new symbolic variables. To do so, an
event ev(e) is inserted into a trace after a state σ, which can be extended by fresh
symbolic variables V , using an event trace evV

σ(e) of length three:

evV
σ(e) = 〈σ〉↶ ev(valσ′(e))↶ σ′, where σ′ = σ[V 7→ ∗].

Given a trace of the form τ1 ↶ σ and event ev(e) with fresh symbolic variables
V , appending the event is achieved by the trace τ1 · evV

σ(e). Def. 9 ensures that
events in traces are joinable: τ ∗∗ evV

σ(e) is well-defined whenever last(τ) = σ. If V is
empty then the state is unchanged, in this case we omit the set of symbolic variables:
evσ(e) = ev;σ(e).

Example 5. To insert event ev(Z), introducing symbolic variable Z , into trace τ from
Example 4 at σ we use the event trace ev{Z}σ (Z) = 〈σ〉 ↶ ev(Z) ↶ σ[Z 7→ ∗]. The
resulting trace is: {Y > 0} ▷ 〈σ〉↶ ev(Z)↶ σ[Z 7→ ∗]↶ σ[Z 7→ ∗, w 7→ 17].

Traces are assumed to be well-formed, for example the domains of their states
match, variables in events are defined, and so on [12].

6:11

Provably Fair Cooperative Scheduling

Traces with symbolic variables model program executions relative to an unknown
context. The symbolic variables in such traces become instantiated when the execution
they represent is scheduled in a concrete context. At this point a symbolic trace is
concretised by instantiating all of its symbolic variables. This results in a concrete trace
with a path condition that is either consistent or not. Technically, we use the notion of
a concretisation mapping. A concretisation mapping is defined relative to a state. It
associates a concrete value to each symbolic variable of the state.

Definition 10 (State Concretisation Mapping). A mapping ρ : Var→ Val is a concreti-
sation mapping for a state σ if dom(ρ)∩ dom(σ) = symb(σ).

A concretisation mapping ρ may also define the value of variables not in the domain
of σ. Concretisation mappings are canonically extended to events and conditioned
traces [12].

Example 6. Consider σ of Example 3 with symb(σ) = {Y }. We define a concretisation
mapping ρ = [Y 7→ 3] for σ with ρ(σ) = [x 7→ 45, Y 7→ 3]. Applying ρ to the trace
in Example 4, we obtain ρ(τ) = {3 > 0} ▷ 〈ρ(σ)〉 ↶ ρ(σ)[w 7→ 17]. We adopt the
convention to strip away consistent path conditions such as here.

The LAGC semantics evaluates one single statement “locally”. Obviously, it is not
possible to fully evaluate composite statements in this manner. Therefore, local LAGC
rules perform one evaluation step at a time and defer evaluation of the remaining
statements, which are put into a continuation, to subsequent rule applications. Syn-
tactically, continuations are simply statements s wrapped in the symbol K. To achieve
uniform definitions we permit the case that no further evaluation is required (it has
been completed) and use the “empty bottle” symbol for this.

Definition 11 (Continuation Marker). Let s be a program statement or the symbol .
Then a continuation marker has the form K(s).

Local evaluation in Section 4.2 is defined such that for each statement s and sym-
bolic state σ the result of valσ(s) is a set of conditioned, symbolic traces, so-called
continuation traces, of the form pc ▷ τ · K(s′) where τ is a finite trace. We denote by
CTr the type of such traces. Let Θ be the set of traces of s′ and ρ any concretisa-
tion mapping; then the expression pc ▷ τ · K(s′) is used to describe the set of traces:
{ρ(τ) ∗∗τ′ | ρ(pc) consistent, τ′ ∈ Θ}.

4.2 LAGC Semantics of While

We now define the LAGC semantics of While. Local evaluation rules accept a single
statement in the context of a symbolic state σ and return a set of finite continuation
traces. We overload the symbol valσ with the type valσ : Stmt→ 2CTr so that statements
are also equipped with an evaluation function.

The rule for skip generates an empty path condition, returns the state it was called
in, and produces the empty continuation. The result is one singleton trace:

valσ(skip)= {; ▷ 〈σ〉 · K()} .

6:12

Reiner Hähnle and Ludovic Henrio

The assignment rule generates an empty path condition and a trace from the current
state σ to a state which updates σ at x , and produces the empty continuation.

valσ(x := e)= {; ▷ 〈σ〉↶ σ[x 7→ valσ(e)] · K()} .

The conditional statement is a complex statement and cannot be evaluated locally
in one step, so we expect it to produce a non-empty continuation. The rule branches on
the value of the condition, resulting in two traces with complementary path conditions.
The first trace is obtained from the current state and the continuation corresponding
to the if-branch, and the second trace corresponds to the empty else-branch:

valσ(if e { s })= {{valσ(e)} ▷ 〈σ〉 · K(s), {valσ(!e)} ▷ 〈σ〉 · K() } . (1)

The rule for sequential composition r; s is obtained by first evaluating r to traces of
the form pc ▷ τ · K(r ′) with continuation r ′. Then s is added to this continuation:

valσ(r; s) = {pc ▷ τ · K(r ′; s) | pc ▷ τ · K(r ′) ∈ valσ(r)} .

If r ′ happens to be the empty continuation it must be ignored. To achieve this
the rewrite rule “ ; s⇝ s” is exhaustively applied to statements inside continuations.
We use the semantics of while to illustrate that the semantics of a statement can be
expressed in terms of the semantics of other statements (here if and sequence), without
having to expose intermediate states:

valσ(while e { s })=valσ(if e { s; while e { s }}) .

Note that this definition is not circular because the evaluation of if puts the while
statement inside a continuation.

Example 7. We start evaluation of the statement sseq = (x := 1; y := x + 1) in
an arbitrary symbolic state σ. The rule for sequential composition yields valσ(sseq) =
{;▷ 〈σ〉↶ σ[x 7→ 1] ·K(y := x+1)} . It uses the result of evaluating the first assignment
in the context of σ: valσ(x := 1) = {; ▷ 〈σ〉↶ σ[x 7→ 1] · K()} .

In the composition rules below it might happen that the empty continuation is
evaluated, so there must be a rule for it. Local evaluation returns a set of traces and
the empty continuation indicates that nothing more is to be evaluated, hence its
evaluation yields the empty set of traces: valσ() = {}.
Local traces are instantiated and composed into concrete global ones. As While is

sequential and deterministic, there is exactly one trace, provided that the execution
starts in a concrete state that assigns values to all the variables of a program [12]. In
consequence, no scheduler needs to be defined for While.

The task of the composition rule for While programs is to evaluate one statement at a
time in a concrete state until the next continuation, then stitch the resulting concrete
traces together. Given a configuration with concrete trace sh having final state σ and a
continuation K(s), we evaluate s starting in σ. The result is a set3 of conditioned traces

3A singleton set in the case of While, but the same rule will be used later for non-deterministic
languages.

6:13

Provably Fair Cooperative Scheduling

from which one trace with a consistent path condition and a trailing continuation
K(s′) is chosen. The chosen trace τ is joined with the given trace sh. Afterwards, the
composition rule can be applied again to the extended concrete trace and K(s′).

σ = last(sh) pc ▷ τ · K(s′) ∈ valσ(s) pc consistent

sh, K(s)→ sh ∗∗τ, K(s′)
(2)

The rule assumes that s is evaluated to a concrete trace τ so sh ∗∗τ stays concrete.
At this stage, symbolic traces cannot occur. The global semantics of While programs
results from the transitive closure of the transition defined by rule (2).

5 Scheduling a Language with Spawn

This section presents our approach in a simple setting. We introduce concurrency via
the Spawn language in Figure 2 that spawns threads when calling a procedure, and
implements an interleaving semantics. A simple fair scheduler executes each task in a
round-robin manner. We specify and prove fairness for that case.

5.1 LAGC Semantics

We provide a semantics of Spawn based on the principles of LAGC: first a local semantics
is given that merely emits a spawn event whenever a thread is spawned, and it uses a
spawn reaction event at the points where a thread can be actually created (here, at
the beginning of the execution of a procedure). When composing the semantics of
different threads, we use a well-formedness predicate to ensure those events match.

For a stateσ, the semantics of Spawn has events callEv(m, valσ(e)), callREv(m, valσ(e)).
These events denote the call and the activation (i.e., call reaction) of a procedure m with
argument e, respectively. Recall from Section 4.1 that events in a trace are preceded
and succeeded by associated states. The local evaluation rule (3) for a call to m with
argument e has an empty path condition, inserts a call event callEv(m, valσ(e)) into
the trace at σ, and produces the empty continuation. This makes the call non-blocking:
the code following the call can be executed immediately, if scheduled.

valσ(spawn(m, e)) = {; ▷ callEvσ(m, valσ(e)) · K()} . (3)

The composition rules for Spawn combine locally evaluated traces into global ones
by exploring the multiset of continuations for each thread. In this simple setting,
procedure calls and processors are anonymous in the sense that they lack task iden-
tifiers. Consequently, it is possible that two tasks are identical. For this reason, we
represent continuation candidates as a multiset p, denoted with “⊎” the disjoint union
of multisets (and sets). We add a rewrite rule to simplify empty continuations in the
multisets of tasks—this rule is applied exhaustively when adding tasks in multisets:
p ⊎ {K()}⇝ p. The composition rules extend partial traces by one step and have the
form: sh, p→ sh′, p′ where p, p′ are multisets of continuations of the form K(s).

6:14

Reiner Hähnle and Ludovic Henrio

First we discuss the rule corresponding to rule (2). The difference between rule (2)
and rule (4) is that we no longer commit to a single continuation, because several
procedure bodies can be evaluated. The rule selects and removes one matching contin-
uation from the pool p⊎{K(s)}, executes it until the next continuation marker, exactly
like rule (2), and then puts the code remaining to be executed back into p.

σ = last(sh) pc ▷ τ · K(s′) ∈ valσ(s) pc consistent

sh, p ⊎ {K(s)} → sh ∗∗τ, p ⊎ {K(s′)}
(4)

We need a second composition rule that adds procedure bodies to the pool, and
creates a new execution thread. We select a procedure with body s from table M
and create a new continuation K(s[x ← y]) corresponding to its body, where the
call parameter x is substituted with a fresh variable y for disambiguation and a
corresponding entry is added to the state σ. This continuation is added to the pool p.

m(x){s} ∈ M σ = last(sh) wf(sh ∗∗ callREvσ(m, v)) y ̸∈ dom(σ)

sh, p→ sh ∗∗ callREvσ(m, v)↶ σ[y 7→ v], p ⊎ {K(s[x ← y])}
(5)

We must take care that rule (5) is only triggered when a corresponding spawn
happened in sh. This is ensured by combining two mechanisms: events and well-
formedness predicates. Recall that local rule (3) for spawn emits a call event with the
procedure name m and an evaluated procedure parameter v. We keep track of which
calls have been activated using these events. The third premise of rule (5) guesses
an activation event callREvσ(m, v) whose call event in sh had not been resolved yet.
The obtained matching yields procedure m that is added to the pool p, as well as
value v that is assigned to the formal parameter y (since y is fresh, it can only appear
in the continuation). Procedures are anonymous and only distinguished by name
and argument. In consequence, well-formedness (Def. 12) boils down to counting
the number of unresolved calls with the same name and argument. Rule (4) cannot
violate well-formedness and rule (5) ensures it, hence, well-formedness is an invariant
of the generated traces.

Definition 12 (Well-Formedness). Whenever a trace sh is extended with a call reaction
event callREv(m, v), there must be a corresponding call event callEv(m, v) in sh. This is
ensured by counting the number of occurrences of both events in sh with #sh(ev(e)). In all
other cases, the trace stays well-formed when it is extended with a new element. wf(sh)
is defined inductively over sh:

wf(ϵ) = t rue
wf(sh↶ σ) =wf(sh) wf(sh↶ callEv(m, v)) = wf(sh)

wf(sh↶ callREv(m, v)) =wf(sh)∧#sh(callEv(m, v))> #sh(callREv(m, v))

An execution of a Spawn program with main block smain starts from an initial config-
uration 〈σε〉, {K(smain)}; where σε is initializes variables of the program to 0.

6:15

Provably Fair Cooperative Scheduling

5.2 A Concrete Weakly Fair Scheduler for Spawn

As in Section 3.3.3, we define a notion of fairness aligned with language semantics in
the sense that it is based on reachable statements. We adapt Def. 4 to the case of LAGC,
where statements are given by continuations in the configuration. Configurations in
LAGC are pairs of traces and multisets of continuations. Only the latter are needed to
define reachable statements: newStmt((sh, p), (sh′, p′)) = p′ − p. Then enabled(sh, p),
weak and strong fairness are defined exactly as in Section 3.3.3 (Defs. 4, 5), except
that statements s are replaced with continuations K(s).

To define a concrete fair scheduler we replace the multiset representation of contin-
uations in the trace composition rules with a circular buffer. For our simple procedure
calls, this buffer just contains continuations. The buffer is implemented as a queue q
over continuations of the form K(s). We can now reformulate rules (4)–(5) as follows:

σ = last(sh) pop(q) = (q′, K(s)) pc ▷ τ · K(s′) ∈ valσ(s) pc consistent
¬wf(sh ∗∗ callREvσ(m, v)) for any m(x){s} ∈ M

sh, q→S sh ∗∗τ, push(q′, K(s′))
(6)

m(x){s} ∈ M σ = last(sh) wf(sh ∗∗ callREvσ(m, v)) y ̸∈ dom(σ)

sh, q→S sh ∗∗ callREvσ(m, v)↶ σ[y 7→ v], push(q, K(s[x ← y]))
(7)

Rule (7) eagerly starts execution of a procedure body, whenever possible, i.e. when-
ever there is an unresolved matching call event. The code in the procedure body is
pushed to the end of the queue. Only if rule (7) is not applicable then rule (6) can
be applied. This is ensured by the premise on the second line. The rule executes a
statement of the first continuation K(s) in q and pushes the remaining K(s′) to its rear.

It is possible that neither rule (6) nor (7) is applicable, but there are still continua-
tions remaining to be executed. Such a situation arises when the first element of q is
K(). In this case, valσ() = {} and rule (6) is inapplicable. If, at the same time, there
are no unresolved procedure calls, rule (7) cannot be applied either. The following
rule advances to the next queue element and disposes of the empty continuation:

pop(q) = (q′, K()) ¬wf(sh ∗∗ callREvσ(m, v)) for any m(x){s} ∈ M

sh, q→S sh, q′
(8)

The initial judgment for producing traces of a program P with a main body smain

has the form “〈σε〉, qini”, where qini = push(create(), K(smain)).
It is possible that a transition of the LAGC scheduler semantics has no counterpart in

the original LAGC semantics. This is the case for rule (8) and will get more pronounced
in the next section, where some tasks might not be able to progress.
The LAGC semantics of While is deterministic up to naming of fresh variables. This

is not the case for the Spawn language, as seen in rules (4)–(5), because of multi-
threading. However, the scheduler, defined by rules (6)–(8) is deterministic, so these
rules are a suitable basis for a scheduler implementation. The following proposition
states the determinism property.

6:16

Reiner Hähnle and Ludovic Henrio

Proposition 1. Starting with an initial judgment of the form “〈σε〉, qini”, consider a well-
formed trace sh and non-empty queue q reachable by application of rules (6)–(8). From
sh, q exactly one of the rules (6)–(8) is applicable and the result of the rule application is
deterministic up to renaming of variables. In other words, the scheduler is deterministic.

The proof is in App. B. The main result of the present section is weak fairness of
the deterministic scheduler, as stated in the following theorem, where M(q) is the
multiset of non-empty continuations inside a queue q:

Theorem 1. Starting from an initial judgment, the scheduler defined by rules (6)–
(8) is one possible weakly fair scheduler of our semantics: If 〈σε〉, qini →S sh1, q1 →S

sh2, q2→S · · · then there is a weakly fair execution 〈σε〉, {K(smain)} →∗ sh1, M(q1)→∗

sh2, M(q2)→∗ · · · that produces the same trace.

App. C proves this theorem. The proof is based on the definition of an adequate
scheduling distance of a given statement that is positive and decreases for a continuation
belonging to enabled(sh, p). There is no blocking statement, and thus every thread
admits one continuation for which the path condition is consistent. Every thread that
can be enabled will stay enabled until scheduled. Consequently, there is no difference
between strong and weak fairness and the theorem holds for strong fairness. The next
section introduces guarded statements that differentiate between weak and strong
fairness, and require additional queue manipulations to find an executable task.

6 Adding Guarded Commands

LAGC Semantics We locally evaluate a Guard statement (see Section 2) such that it only
progresses when the guard is true.⁴ All other local evaluation rules are unchanged.

valσ(:: g; s)= {{valσ(g)} ▷ 〈σ〉 · K(s)}} (9)

This rule looks innocent, but has considerable consequences: the only local eval-
uation rule introducing path conditions so far is rule (1). It produces traces with
complementary path conditions, so rule (4) is always applicable to any K(s) ∈ q
with s ̸= . In case of rule (9) and s = (:: g; s′) the sole path condition might be
inconsistent. In particular, it is possible that none of the scheduling rules defined in
Section 5.2 is applicable. More precisely, the scheduler defined there can get stuck
when K(:: g; s′) ∈ pop(q) and the path condition is inconsistent.

Scheduling Our scheduler skips a stuck continuation and puts it at the end of the
queue. To do so, we use a helper function rotate(q) that moves the first element of the

4 Different (LAGC) semantics can be chosen for this statement. In particular, a semantics with
an inconsistent path that “stutters” is discussed in [12].

6:17

Provably Fair Cooperative Scheduling

queue to its rear: rotate(q) = push(q′, k), where (q′, k) = pop(q). We use this operation
to rotate the queue when none of the previous scheduling rules are applicable:

pop(q) = (q′, K(s)) ¬wf(sh ∗∗ callREvσ(m, v)) for any m(x){s} ∈ M
�∄ pc,τ, s′. pc ▷ τ · K(s′) ∈ valσ(s)∧ pc consistent

�

s ̸=

sh, q→S sh, rotate(q)

(10)

Proving Fairness At first glance, rule (10) looks like bad news for fairness, because
rotating an unusable continuation to the end increases its distance to a scheduling
point, possibly preventing the guard statement to become ever scheduled. Consider
the following example.

Example 8. Consider a scheduling queue containing the following four statements in
the given sequence:

while true do { b = true } :: !b; s while true do { b = false } :: b; s

The guarded statements are never scheduled, because the guard is set to the complement
by the preceding assignment in the loop body.

This example illustrates that our scheduler indeed does not achieve strong fairness.
However, it achieves weak fairness because a continuation that qualifies for the weak
fairness condition is always schedulable and thus not rotated to the end of the task
queue. The example also hints that to properly reason on rotation it is necessary to
distinguish carefully between continuation statements that coincide syntactically, but
derive from different code contexts (such as s). Theorem 1 still holds, but the proof
needs to be adapted, it is detailed in App. D.

7 Cooperative Scheduling of a Language with Spawn, Suspend, and Join

This section discusses the CoopWhile language (see Section 2). As for Spawn and Guard,
its semantics is an extension of the previous sections, benefiting from the modularity
of the LAGC approach. Then we define a scheduler that provenly ensures quiescent
fairness for CoopWhile.

7.1 LAGC Semantics of CoopWhile

In the semantics of CoopWhile, the evaluation function must be aware of the task
identifier for the current task. This task identifier cannot possibly be known locally.
Hence, the form of the evaluation function becomes valFσ(s), where F is a symbolic
task identifier typed with TId. To keep track of task identifiers in configurations, we
associate a concrete task identifier f with each continuation in the composition rules,
so these take now the form K f (s).
It was shown in [14] that the semantics of cooperative scheduling can be charac-

terized with the help of four event types: callEv(e, m, f) (“call”) records spawning of
task m with argument e and task identifier f ; callREv(v, m, f) (“call reaction”) records

6:18

Reiner Hähnle and Ludovic Henrio

that task m with argument value v and task identifier f started to execute, while
compEv(f) (“completion”) signals that it finished. Finally, compREv(f) (“completion
reaction”) records the reaction of a statement waiting for the task identified by f to
finish. While the first three event types are unique for f in any trace, there could be
several (or no) completion reaction events.
The local evaluation rule for spawning a task just emits a call event. The task

identifier F ′ of the spawned task needs to be recorded in it and serves to identify the
spawned task. F ′ is a fresh symbolic variable since its value cannot be known locally.

valFσ(spawn(m, e, x)) =
{; ▷ callEv{F

′}
σ (valFσ(e), m, F ′)↶ σ[x 7→ F ′, F ′ 7→ ∗] · K() | F ′ ̸∈ dom(σ)}

(11)

The rule for evaluating a procedure body emits a call reaction event with a task
identifier that matches the current task identifier F . Well-formedness in the composi-
tion rules ensures that the call reaction event is matched to a preceding call event
that has the same value of F . To mark the syntactic end of a procedure body, which
signifies its completion, a return statement is appended to the code in the continuation.
Like in the SOS semantics, this return statement is only part of the internal syntax
introduced by the semantics does not appear in the original program.

valFσ(m(x) {s}) =
{; ▷ callREv{X }σ (X , m, F)↶ σ[x ′ 7→X , X 7→∗] · K(s[x ← x ′]; return) | x ′, X ̸∈ dom(σ)}

(12)

The presence of return now triggers a completion event for the current task identifier:

valFσ(return)= {; ▷ compEvσ(F) · K()} (13)

The semantics for suspending statements relies on the fact that any code starting
with await or suspend can be suspended. Moreover, a suspended task is only re-scheduled
when it can progress. This invariant is ensured by the trace composition rules below. In
other words, it is the composition rules that deal with suspension when encountering
the await. Local evaluation of await needs only specify how the task is re-activated.
Consequently, the semantics of await merely needs to emit a completion reaction
event. This event must match a previous completion event involving the same task
identifier in its argument, which is ensured by well-formedness. Similarly, suspend,
when re-scheduled, simply has the semantics of skip.

valFσ(await x) = {; ▷ compREvσ(valFσ(x)) · K()} (14)
valFσ(suspend) = {; ▷ 〈σ〉 · K()} (15)

Since there is only one processor, there is at most one active task, all other tasks
are suspended, a task is suspended if it is the continuation of a suspended statement:

Definition 13 (Suspended Statement, Active Task). A statement of the form “await x; s”
or “suspend; s” is called a suspended statement and can be tested with suspended(s).
The symbol Q denotes a set of suspended statements, i.e. a (possibly empty) set of

6:19

Provably Fair Cooperative Scheduling

continuations of the form K f (s) such that s is either a suspended statement or the empty
continuation .

The current task queue of a program trace is represented by a set of continuations that
is either empty or of the form Q ⊎ {K f (s)}. If s is a suspended statement then no task is
currently executing and any schedulable task can be activated. Otherwise, K f (s) is the
only continuation that can be executed and is called the active task.

Note that there is at most one active task in a valid configuration. Any statement
that is not suspended and that has a consistent path condition can be executed.
We assume the rewrite rule “Q ⊎ {K f ()}⇝ Q”, discarding empty continuations, is
applied to continuation sets whenever possible. Hence, we can assume Q consists only
of suspended statements. We define two trace composition rules. Recall that local
evaluation rules (11)–(12) contain symbolic variables, because the caller id and value
cannot be known locally. These variables need to be instantiated during application of
the trace composition rules when a procedure is spawned and executed by a suitable
concretisation mapping ρ that preserves well-formedness of the generated trace.
Rule (16) handles the case when a task progresses. Configurations have the form

sh,Q⊎{K f (s)}. If there is an active task this must be s, it is executed until it completes
or suspends. Otherwise, s is a suspended statement and rules (14)–(15) apply.

σ = last(sh) pc ▷ τ · K(s′) ∈ val f
σ(s)

ρ concretizes τ ρ(pc) consistent wf(sh ∗∗ρ(τ))

sh,Q ⊎ {K f (s)} → sh ∗∗ρ(τ),Q ⊎ {K f (s′)}
(16)

When there is no active task (only Q is present in the starting configuration of
the conclusion), rule (17) is applicable as well: it starts the execution of a new task
that matches an unresolved call event callEv(v, m, f) in sh. The evaluation function
is tagged with the concrete task identifier f , whose freshness is ensured by well-
formedness. As no task is active, the spawned task can start running immediately.

m(x){s} ∈ M σ = last(sh) f ∈ TId pc ▷ τ · K(s′) ∈ val f
σ(m(x) {s})

ρ concretizes τ ρ(pc) consistent wf(sh ∗∗ρ(τ))

sh,Q→ sh ∗∗ρ(τ), Q ⊎ {K f (s′)}
(17)

Well-formedness rules ensure the following invariants hold: (i) a unique task iden-
tifier is associated with each task (first line), (ii) each task starts only after it was
spawned (second line), and (iii) an await statement is only re-activated once the
designated task is completed (fourth line). The well-formedness rules are defined
inductively on the length of traces by case distinction on the event type to be appended
to an existing trace sh.

wf(sh↶ callEv(v, m, f)) =wf(sh)∧ ̸ ∃v′, m′. callEv(v′, m′, f) ∈ sh
wf(sh↶ callREv(v, m, f)) =wf(sh)∧ callEv(v, m, f) ∈ sh ∧ callREv(v, m, f) ̸∈ sh

wf(sh↶ compEv(f)) =wf(sh)
wf(sh↶ compREv(f)) =wf(sh)∧ compEv(f) ∈ sh

6:20

Reiner Hähnle and Ludovic Henrio

No rule for compEv(f) is required: By rule (13) compEv(f) terminates a task that was
initiated by a matching callREv(v, m, f) event and thus corresponds to a well-defined
spawn.
An execution of a program starts from an initial configuration 〈σε〉, {K f init

(smain)}
and has the form: sh0,Q0→∗ shm,Qm ⊎ {K fm(sm)} →∗ shn,Qn ⊎ {K fn(sn)} → · · · .

7.2 Fair Cooperative Scheduling of CoopWhile

The definition of reachable statements is unchanged: for LAGC semantics it is generic.
We turn to refurbishing quiescent fairness (Def. 5) for the LAGC semantics, where
enabled statements derive from the continuations in an LAGC configuration. We need
one minor change: Def. 2 of quiescent states is based on the idle configurations in the
SOS, in LAGC a quiescent state is a configuration of the form sh, Q. In addition, the
notions of enabled statement and fairness are over multisets of the form K f (s), i.e.,
take into account the task identifier.⁵
The scheduling rules need to be explicit about which task is currently active (if

any) and which tasks are waiting to be executed. Hence a scheduler configura-
tion C is either of the form (K f (s), q) or (Idle, q), where the first element is the
active task (Idle, when there is no active task) and q is a queue of elements in
�

K f (await x; s), K f (suspend; s), (m, f)
	

. Elements of q are either suspended tasks or task
creation markers of the form (m, f).
Task creation must be performed only once for each task identifier and can be

performed immediately after a call. Rule (18) creates a task marker (m, f). It is
triggered immediately once a call event involving m and f is added to sh. The doneEv
at the end of sh prevents the rule from being triggered repeatedly. The task marker
(m, f) is pushed on the queue.

lastEvent(sh) = callEv(v, m, f)

sh, (active, q)→S sh ∗∗ doneEv, (active, push(q, (m, f)))
(18)

The remaining rules do the actual scheduling and are structured along the shape
of the current scheduler configuration C, as depicted in Figure 6. We start on the
left with the case when the processor is idle with a queue q of waiting tasks. Its first
element, obtained by pop(q), determines which rule is taken. In case of (m, f), starting
a procedure is always possible and this is performed by rule (19):

∄ v, m, f ′. lastEvent(sh) = callEv(v, m, f ′) f ∈ TId σ = last(sh)
pop(q) = (q′, (m, f)) m(x) {s} ∈ M pc ▷ τ · K(s′) ∈ val f

σ(m(x) {s})
ρ concretizes τ ρ(pc) consistent wf(sh ∗∗ρ(τ))

sh, (Idle, q)→S sh ∗∗ρ(τ), (K f (s′), q′)
(19)

When q’s first element is a suspended statement s, then this may or may not be
schedulable in sh. If it is schedulable then s is evaluated as usual. By definition of q

5 Enabled statements could also be defined by forgetting the task identifier when defining
the newStmt set, with similar results.

6:21

Provably Fair Cooperative Scheduling

sh, C

lastEvent(sh) = callEv()
(18)

lastEvent(sh) ̸= callEv()

C= (Idle, q)

pop(q) = (q′, (m, f))
(19)

pop(q) = (q′, K f (s))

restore
(20)

rotate
(21)

C ̸= (Idle, q)

C= (K f (s), q)
(22)

C= (K f (), q)
(23)

suspend
(24)

Figure 6 Structure of the rules that schedule the spawn/suspend/join language

the statement s must be a suspended statement, so no explicit premise stating this
fact is needed.

∄ v, m, f ′. lastEvent(sh)=callEv(v, m, f ′) σ= last(sh)
pop(q)=(q′, K f (s)) pc ▷ τ · K(s′)∈val f

σ(s) ρ concretizes τ
ρ(pc) consistent wf(sh ∗∗ρ(τ))

sh, (Idle, q)→S sh ∗∗ρ(τ), (K f (s′), q′)
(20)

When q’s first element is not schedulable, we rotate q and the processor stays idle.
This happens when the task waits for completion of another task that has not finished.
The premise in the second line states that there is no way to find a well-formed trace
that permits the first schedulable task to continue.

∄ v, m, f ′. lastEvent(sh) = callEv(v, m, f ′) pop(q) = (q′, K f (s))
�

∃ x , s′. s = await x; s′ ∧σ = last(sh)∧ compEv(σ(x)) ̸∈ sh
�

sh, (Idle, q)→S sh, (Idle, rotate(q))
(21)

When q is empty there is no remaining task to be executed, no scheduler rule is ap-
plicable, so final configurations have the form sh, (Idle,;). In contrast, a configuration
of the form sh, (Idle, q), where q ̸= ; and no rule is applicable, indicates a deadlock.
We are left with the cases when the active task is not idle, i.e. it is a continuation

K f (s). If s is not a suspended statement it can be evaluated. The resulting rule (22) is
very similar to (16) with a different structure for configurations; it also has additional
premises to make the scheduler deterministic:

∄ v, m, f ′. lastEvent(sh) = callEv(v, m, f ′) σ = last(sh)
¬suspended(s) pc ▷ τ · K(s′) ∈ val f

σ(s) ρ concretizes τ
ρ(pc) consistent wf(sh ∗∗ρ(τ))

sh, (K f (s), q)→S sh ∗∗ρ(τ), (K f (s′), q)
(22)

If s cannot continue this can be for two reasons: either s = , i.e. the current task is
completed, the processor becomes Idle, and the empty continuation is disposed of:

∄ v, m, f . lastEvent(sh) = callEv(v, m, f ′)

sh, (K f (), q)→S sh, (Idle, q)
(23)

6:22

Reiner Hähnle and Ludovic Henrio

The last case is when s is a suspended statement. In this case, the current task is
suspended: it is pushed to the end of queue q:

∄ v, m, f ′. lastEvent(sh) = callEv(v, m, f ′) suspended(s)

sh, (K f (s), q)→S sh, (Idle, push(q, K f (s)))
(24)

It is obvious that the preconditions of the scheduling rules are mutually exclusive
and exhaustive. Moreover, it is easy to see that the rule set is deterministic, provided
a single consistent continuation can be derived from each statement. This is the case
in the CoopWhile language. To be precise, the only source of non-determinism in the
rules is the choice of fresh names for variables and task identifiers. Consequently,
rules (18)–(24) constitute a well-defined, deterministic scheduler.
To state fairness, we extend the translation M in Thm. 1 for the new scheduler

configurations. This is straightforward: M collects the set of tasks that are neither
Idle nor empty continuations and it skips task markers. Translation of traces simply
removes doneEv events. With such a translation function M the following theorem
holds, i.e. our scheduler ensures a quiescent fair execution. See App. E for details.

Theorem 2 (Quiescent Fairness). Starting from an initial judgment, the scheduler
defined by rules (18)–(24) is a quiescent fair scheduler for CoopWhile: If 〈σϵ〉, Cinit

S →S

sh1, C1→S sh2, C2→S · · · then there is a quiescent fair execution (LAGC semantic eval-
uation) 〈σϵ〉, {K f init

(main)} →∗ M(sh1), M(C1)→∗ M(sh2), M(C2)→∗ · · · that produces
the same trace up to doneEv events.

Again, the execution in the original LAGC semantics has less steps than the scheduler
execution, because the scheduler rotates tasks and inspects the tasks that are unable
to progress. The proof given in App. E relies on an extension of the scheduling distance
of a given statement used previously. The scheduling distance is minimal when a
statement is the active task and it decreases otherwise, provided that the statement
still qualifies for being scheduled later. But if it does not qualify then the condition of
quiescent fairness is violated for the statement.

8 Comparison of SOS and LAGC Semantics

We compare the SOS-style semantics of CoopWhile in Figure 4 with the LAGC-style
semantics given in Section 7.1. One can note that LAGC is more implicit and abstract:
In LAGC there is only a single progress rule (16) for any kind of statement and the
active task identifier f is implicitly given in a task queue of the shape Q ⊎ {K f (s)}. The
applicability of each “local” evaluation rule (11)–(15) is governed by well-formedness.

In contrast, there is a different SOS rule for each kind of statement s. This permits
some simplifications in the SOS rules. For example, since there is an explicit progress
rule for spawn, it is possible to combine spawning with “starting” a procedure, i.e. to
put its (renamed) body with a fresh task identifier in the task list. Consequently, no
rule corresponding to rule (17) is needed in the SOS rules and no task markers (m, f)
in the scheduler version. Accordingly, the SOS scheduler in Figure 5 has less rules
than the LAGC scheduler in Section 7.2.

6:23

Provably Fair Cooperative Scheduling

f · (:: g; s), T, σ→ Idle, push (q, (f, (:: g; s))) , σ YieldGuard

pop(q) =
�

q′, (f, s)
�

s = (:: g; s′) valσ(g) = True

Idle, q, σ→ f · s′, q′, σ
ScheduleGuardDone

pop(q) =
�

q′, (f, s)
�

s = (:: g; s′) valσ(g) = False

Idle, q, σ→ Idle, rotate(q), σ
ScheduleGuardWait

Figure 7 SOS scheduler semantics for guarded commands

This simplicity, however, is deceptive, because the number of rules in the SOS-style
semantics depends on the number of statement kinds and the scheduling policy. For
example, if one would add the guarded commands of Section 6 to CoopWhile, in LAGC it
suffices to simply add rule (9) and check that the fairness proof still goes through, while
in SOS three new rules (Figure 7) are required. Put differently, whenever a scheduling-
sensitive statement is added, then in LAGC it suffices to look at the scheduling rules,
whereas in SOS one needs to look at each rule for each such statement.

It is possible to write an SOS semantics that emulates the LAGC style if local
evaluation and composition rules are carefully separated. In this case, proofs and rules
are guided by syntax instead of events, the configurations appearing in rules need
to be decomposed in a more complex way, involving meta-notational effort. While
it would be possible to represent our approach in SOS-style, the LAGC semantics
drastically simplifies the formal arguments. Given the complexity inherent to fairness
proofs (see App. E), this is of essence.

9 Related Work

Fairness Many existing works that deal with fair scheduling reason on the reachable
actions of a system [21]. Here we are interested in the specification of fair schedulers
at the level of programming languages, which requires to reason more generically,
independently of the implemented system. This section describes related work that ei-
ther has a strong focus on generic fairness proofs, or on target programming languages
related to cooperative scheduling.
Daum et al. [9] prove strong fairness of a microkernel scheduler with priorities in

Isabelle/HOL. Progress is expressed at a low level (pid of the evolving process), not
at a high-level (small-step) semantics such as LAGC. Strong fairness is ensured except
when a high-priority process can starve lower priority ones. Apt et al. [3, Chapter 12],
following [4, 5], define a universal fair scheduler for pairs (E, i) of enabled (E) and
selected (i) actions and prove it to be fair. Unlike in our approach, the scheduler is
connected to a concrete language by way of program transformation that enforces
fairness, not via the semantics. Our method allows to study fairness at a semantic level
and removes the need for program transformation. Similarly as in our framework,

6:24

Reiner Hähnle and Ludovic Henrio

where scheduling decisions are localized in the composition rules of the semantics, one
line of work [11, 18] provides abstract local characterizations of fairness via predicate
transformers, but does not connect to concrete schedulers. Cooperative scheduling is
not considered in any of the papers cited in this paragraph.
In contrast, Muller et al. [24] design and prove responsiveness for a probabilistic

scheduler of cooperative threads with priorities. The work is based on the cooperative
suspension of threads but they interrupt threads that do not suspend; this prevents
assumptions on the finiteness of local computation but compromises the guarantees of
cooperative scheduling. Compared to us, beyond the distinction between probabilistic
fairness and deterministic scheduling. the main difference is that we are able to relate
scheduling to program semantics instead of threads.

A notion of quiescent state was defined for I/O automata [26, 27], where it denotes
states at which the automaton only expects inputs. One can define a corresponding
fairness notion where I/O automata either reach a quiescent state or loop forever.
Our notion of quiescent state shares similarities: in both cases, in a quiescent state
a non-deterministic scheduling or communication decision is to be taken, but our
notion of fairness is stronger, because it guarantees that each task that can run will
run eventually.

Semantics The present article is based on two different ways to express programming
language semantics. Small step SOS is the best established and most straightforward
approach to semantics for concurrent systems. In contrast, the LAGC semantics is still
under development, but it offers an interesting trade-off between compositionality
and reasoning on traces. Many other semantic approaches exist, we review some of
them in the light of the goals of the present paper.
Evaluation contexts [15] are used to make operational semantics easier to read

and more modular. This works by allowing the rules to focus on the reduced terms
and by separating rules that express how to reduce inside a context from rules that
have an operational effect. We do not use this mechanism here, because the CoopWhile
language is too small to benefit from the modularity provided by reduction contexts,
even though it would be perfectly possible. On the other hand, we do not think that
reduction contexts are useful in the LAGC semantics, because it realizes modularity
in a different way.

Modular semantics [23] is an update on SOS aiming at modularity. Mosses observes
that contextual elements like store, stack or other elements usually appear in a runtime
configuration at the source of the target of the reduction when writing a SOS rules.
This aspect is highly non-modular. The idea behind modular SOS is to put those
elements inside the labels of the reduction relation. The configurations then consist
only of programs to be evaluated and rules do not have to be extended when the
runtime configuration is extended. It is, however, necessary to restrict how labels
can be composed to form a valid trace. Mosses proposes a categorical foundation
to formalize this aspect. Dealing with complex concurrent semantics, where several
parts of the programs are reduced at the same time or in an interleaved manner,
seems to be substantially more complex in modular SOS that in LAGC which has been
designed for this very purpose. Specifically, LAGC features symbolic variables to deal

6:25

Provably Fair Cooperative Scheduling

with non-evaluated expressions which helps the modular design of the semantics. In
fact, abstract states with symbolic variables could be used to make “modular SOS”
more modular as well.

Interaction trees [29] are a modular and compositional semantics based on a deno-
tational approach. The semantics produces a tree where nodes are events to represent
the interactions of a given program (for example, memory reads and writes). Interac-
tion trees were extended to deal with non-deterministic events and concurrency [8]
with an application to the semantics of cooperative scheduling. Abadi and Plotkin [1]
define a denotational semantics based on partial traces and use the memory state
explicitly to define the composition of traces. However, the denotational perspective
sets these kinds of semantics apart from the small step, trace-based approach in LAGC.
Even such more modular denotational semantics as these fail to surpass the degree of
LAGC’s modularity when it comes to cooperative scheduling. This is mostly due to
the difficulty to assign semantics to a program with cooperative threads while not all
threads are known. In addition, none of the mentioned approaches tackle the problem
of fair scheduling.

10 Conclusion and Future Work

Our paper makes two novel, major contributions to the state of art in the analysis of
scheduling of concurrent programs:

1. A framework to formalize schedulers and fairness based on the programming language
semantics.
Our LAGC semantics separates local evaluation of sequential computations and
their composition into global traces. This permits to define schedulers as a refine-
ment of trace composition rules, leaving the local statement semantics completely
untouched. This modularity and the semantic approach, makes the framework
adaptable to other programming languages and concurrency paradigms. The result-
ing scheduling rules are designed in a constructive manner, such that a scheduler
implementation can be immediately derived from them. The model is precise
enough to allow for formal proofs of fairness. Together, this gives the prospect of a
general method for the design of formally proven fair schedulers.

2. A novel fairness notion adapted to cooperative scheduling.
We gave an in-depth, technical study of fairness in the context of cooperative
scheduling and the novel concept of quiescent fairness, a fairness criterion adapted
to that setting. This study is instantiated both with an SOS semantics and with the
more recent LAGC semantics. We suggest it as the most suitable fairness criterion
for programs with cooperative scheduling. This articles also provides the first formal
fairness proof in the context of cooperative scheduling.

Obvious future work is to transfer our approach to other concurrent settings and
to implement it for cooperative scheduling languages [6]. In particular, this article
should be the formal basis for the future implementation of a scheduler for the ABS
language. One could also investigate other trace (hyper-)properties beyond fairness.

6:26

Reiner Hähnle and Ludovic Henrio

Acknowledgements We thank the reviewers for their careful reading of our submis-
sion and the valuable feedback. The main part of the presented work was done during
a research stay of Hähnle at LIP in Lyon. The support from ENS Lyon in form a visiting
professorship and from TU Darmstadt in form of a granted sabbatical is gratefully
acknowledged.

A Queues

We use queues to express concrete scheduling policies. We define queues with the
following standard constructors, functions, and axioms.

Definition 14 (Queue). We define q ::= Queue of T as the type of queues over an
element type T . Queue operations are:

create()— creates an empty queue
empty(q)— is true iff q is the empty queue

push(q, k)— returns a queue q′ that is q extended with k as its final element
pop(q)— returns a pair (q′, k), where k is the first element in q and q′ the

remaining queue after k is removed; the operation is undefined iff
q is empty

The operations are defined by the following (standard) axioms:

empty(create()), pop(create()) is undefined

∀q, k¬empty(push(q, k))

∀q, k, q′, k′ pop(push(q, k)) =

�

(create(), k) if empty(q)
(push(q′, k), k′) otherwise, where (q′, k′) = pop(q)

Assume that the element type of a queue q are continuations, i.e. elements of the
form K(s). Then the operator M returns themultiset of non-empty continuations inside
a given queue:

M(q) =

{} if empty(q)
{k} ⊎M(q′) if (q′, k) = pop(q)∧ k ̸= K()
M(q′) otherwise, where (q′, k) = pop(q)

(25)

Lemma 1 (Queue properties). The main properties we use for queues are the following.
1. If a non-empty continuation can be popped then it is in M(q):

pop(q) =
�

(q′, K(s)) ∧ s ̸=
�

=⇒ K(s) ∈M(q).
2. After pushing an element, it is in M(q): M(push(q, K(s))) =M(q) ⊎ {K(s)}.
3. If pop returns an empty continuation, it does not change M(q):

pop(q) = (q′, K()) =⇒ M(q) =M(q′).

6:27

Provably Fair Cooperative Scheduling

B Scheduler for Procedure Calls Is Deterministic

We state and prove determinacy of the scheduler presented in Section 5.2. It assumes
determinacy and completeness of expression evaluation (which in a reasonable setting
can be ensured by typing).

Proof Sketch of Prop. 1. We proceed by induction on the number of rule applications
to obtain sh. The induction hypothesis is the claim, strengthened by the following
statement: there is at most one unresolved procedure call event in sh, i.e. rule (7) is
either not applicable or for at most one procedure execution up to renaming.
We need to derive from the determinacy and correctness of expression evaluation

that the local evaluation rules for statements are always applicable. For the conditional
this follows from the complementary path conditions. For the other rules it is trivial.

From Prop. 1 and the fact that all trace composition rules preserve well-formedness
of sh we obtain that for a finitely terminating program, exhaustive rule application
ends in a state of the form “sh, q” with empty(q).
Determinism follows from the semantics of the sequential While language which

ensures that when valσ(s) returns several results not equal modulo renaming of
variables, then their path conditions are always disjoint (see if statement). If the
sequential language were not deterministic the scheduled language would not be
either, even though the scheduler itself does not introduce non-determinism.

C Proof of Weak Fairness for Spawn – Thm. 1

We first define scheduling distance, then state a lemma relating to this distance and
our scheduler.

Definition 15 (Scheduling Distance). We define the position of a continuation K(s)
within q:

pos(q, K(s)) =

1 if pop(q) = (q′, K(s))
1+ pos(q′, K(s)) if pop(q) = (q′, K(s′))∧ s ̸= s′

Undefined if K(s) ̸∈M(q)

Furthermore, we define the number of unmatched call events in a trace sh as:

unmatched(sh) =
∑

m,v

(#sh(callEv(m, v))−#sh(callREv(m, v))) .

For any configuration sh with queue q, continuation K(s) ∈M(q), we define the distance
from scheduling of K(s) in q as the pair d(sh, K(s), q) = (pos(q, K(s)), unmatched(sh)).
We equip this pair with the lexicographic order. If K(s) ̸∈M(q) the distance is undefined.

Wehave d(sh, K(s), q)≥ (1, 0), whenever K(s) ∈M(q) and, whenever d(sh, K(s), q) =
(1,0), then the next applicable scheduling rule is rule (6), where pop(q) = (K(s), q′)
for some q′. The following lemma is proven by simple case analysis:

6:28

Reiner Hähnle and Ludovic Henrio

sh0, q0 shi , qi
∗

shπ(0), qπ(0) +(8)∗
S

πM

shπ(i), qπ(i)
∗

S

π
M

Figure 8 Relation between non-scheduled and scheduled executions

Lemma 2 (Scheduling Distance). Consider a scheduled execution sh0, q0→S sh1, q1→S

· · · →S shn, qn→S · · · . For all s and l ≥ 0 exactly one of the three following cases applies:
1. d(shl , K(s), ql)> (1, 0) and d(shl , K(s), ql)> d(shl+1, K(s), ql+1);
2. d(shl , K(s), ql) = (1, 0) and rule (6) is applicable with pop(ql) = (ql+1, K(s));
3. s ̸∈M(ql).

Proof of Thm. 1. Consider a scheduled execution 〈σε〉, qini →∗S sh, q→∗S · · · . First we
show existence of a derivation of the form 〈σε〉, {K(smain)} →∗ sh, M(q)→∗ · · · , then
we show that it is weakly fair.
Existence. The proof proceeds by induction on the number n of steps in→∗S. Assume
we obtained sh, q in n many→∗S steps and extend it as sh, q→∗S sh′, q′. The induction
hypothesis gives us the existence of a →∗-trace until sh, M(q). We perform a case
distinction on the kind of rule that was applied to obtain sh′, q′.
Rule (6): In this case s ̸= , hence K(s) ∈M(q) by Lemma 1, so rule (4) is applicable

to M(q) and yields sh′, M(q)⊎ K(s′). Using the conclusion of rule (6) and Lemma 1
we obtain sh, M(q)→ sh′, M(q′).

Rule (7): The rule’s premises are identical to those of rule (5), so the latter is applicable
to M(q) and yields sh′, M(q)⊎ {K(s[x ← y])}. Using the conclusion of rule (7) and
Lemma 1 we obtain sh, q→ sh′, M(q′).

Rule (8): The rule gives directly sh= sh′ and we obtain M(q) = M(q′) from its leftmost
premise by Lemma 1. Hence, sh, M(q) is already the desired→-configuration. Note
that empty continuations are automatically simplified in the→ semantics.

Mapping. From the analysis above, it is obvious that one can define an injective
mapping π : N→ N that gives the π(i)-th step in→S that corresponds to the i-th step
in→ (see illustration in Figure 8):

π(i) = i +#(applications of rule (8) to obtain shi , qi)

Fairness. Given a rule application sequence sh0, q0→S sh1, q1→∗S shn, qn→S · · · in the
scheduler we show that shπ(0), M(qπ(0))→ shπ(1), M(qπ(1))→∗ shπ(n), M(qπ(n))→ · · ·
is weakly fair, i.e.:

∀m, s.
�

∀n≥ m.
�

K(s) ∈ enabled(shπ(n), M(qπ(n))
�

⇒∃n′ > m.
�

K(s) ∈M(qπ(n′))
��

.

Let m, s be arbitrary and assume the left part of the implication holds. We proceed
by case analysis on the rule applied to obtain K(s) ∈ enabled(shπ(m), M(qπ(m)). Since
enabled(shπ(m), M(qπ(m)) is a multiset, it might contain several identical continuations
K(s) to which different rules are applied—it does not matter which one is taken,
because our notion of fairness is based on the selected continuation, not on rule

6:29

Provably Fair Cooperative Scheduling

selection. However there must be at least one rule applicable, we do a case analysis
on that rule. We start with rule (5), because this is the simpler case.

Rule (5): in this case, rule (7) is applicable, because it has the same premises as rule (5).
We obtain shπ(m), qπ(m) →S shπ(m)+1, qπ(m)+1, where qπ(m)+1 = push(qπ(m), K(s)).
By definition of π we have π(m + 1) = π(m) + 1 and with Lemma 1 we obtain
K(s) ∈M(qπ(m+1)). Hence the fairness condition is achieved for n′ = m+ 1.

Rule (4): In this case there is a s′ ∈ M(qπ(m)) such that σ = last(shπ(m)) and pc ▷ τ ·
K(s) ∈ valσ(s′). There are two subcases:

(a) Rule (6) is directly applicable on the desired statement, i.e. pop(qπ(m)) = K(s′) .
We obtain shπ(m), qπ(m)→S shπ(m)+1, qπ(m)+1, where qπ(m)+1 = push(qπ(m), K(s)),
but now K(s) derives from evaluation of the continuation of s′ in shπ(m). The
reasoning is exactly as above.

(b) The problematic case arises when rule (6) is not directly applicable, either
because pop(qπ(m)) ̸= K(s′) or rule (5) is applicable. In this case we rest our
argument on the scheduling distance of s′ in q being strictly greater than (1, 0).
Successive application of scheduling rules eventually must reach a point, where
the distance is (1, 0) and the next applicable scheduling rule is rule (6), where
pop(q) = (K(s), q′) for some q′. This follows from Lemma 2 applied to the schedul-
ing execution starting at shπm

, qπm
and by noticing that K(s′) is persistent in ql for

l ≥ π(m) except when rule (6) is directly applicable. The case of Lemma 2.1 can-
not be encountered indefinitely, because the ordering is well-founded, the case
of Lemma 2.3 is excluded by definition of weak fairness, so the case of Lemma 2.2
must apply at some l, and at this point rule (6) is applicable, with the same
result as rule (4) and reasoning as in case (a) above.

To summarize, the proof of fairness for our scheduler relies on the exhibition of a
distance measure that is bounded and decreases systematically. At each point, either
the distance reduces or the desired continuation is produced. The same proof principle
will be used in the other fairness proofs below.

D Proof of Weak Fairness for Guard

We provide a detailed proof of the weak fairness criterion for the scheduler of Guard.
As outlined in Section 6, we need to disambiguate syntactically identical statements
from differing code contexts, formally:

valσ(s1) = pc ▷ τ · K(s′1)∧ valσ(s2) = pc′ ▷ τ′ · K(s′2)∧ s1 ̸= s2 =⇒ s′1 ̸= s′2 (26)

We need a similar requirement concerning procedure bodies. The continuation
obtained by the valuation of a statement must be different from any procedure body:

valσ(s) = pc ▷ τ · K(s′) =⇒ ∄m. m(x){s′} ∈ M (27)

It is sufficient to tag each statement with a line number in the original program to
be able to distinguish two statements, so this not a restriction in practice.

6:30

Reiner Hähnle and Ludovic Henrio

We now focus on the adaptation of the proof of Theorem 1 to the extended setting.
We show that in the context of weak fairness rotations that increase the scheduling
distance cannot occur. The central insight is this: if the left part of the implication in
the weak fairness Def. 5 is fulfilled and neither rule (7) nor rule (8) are applicable,
then also the rotation rule (10) is inapplicable and, in fact, case (a) in the proof of
Thm. 1 applies. This is, because selection of rule (6) or (10) is determined by whether
the path condition is consistent. But when rule (10) is applied the path condition for
the guard is false which contradicts the requirement for weak fairness. Lemma 2 must
be adapted, because now rule (10) may be applicable when a statement cannot be
scheduled.

Lemma 3 (Scheduling Distance). Case 2 of Lemma 2. is restated as follows:
2. d(shl , K(s), ql) = (1, 0) and rule (6) or (10) is applicable with pop(ql) = (K(s), ql+1).

Observe that when rule (10) is applied the scheduling distance of s in ql increases.

Proof of fairness for scheduling with guarded commands. Following the organization
of the proof of Thm. 1, we separate existence and fairness.
Existence. The application of the rotation rule (10) gives rise to a new case that is
completely analogous to that of rule (8). The rest of the existence proof is unchanged.
Mapping. The definition of π is adapted accordingly to the small change above:

π(i) = i +#(applications of rule (8) or (10) to obtain shi , qi)

Fairness. Concerning fairness a similar analysis is performed. The cases for rules (5)
and (4)(a) are unchanged. Case (4)(b) becomes slightly more complex:
Let K(s) ∈ enabled(shπ(m), M(qπ(m)) with s′ ∈ M(qπ(m)) such that σ = last(shπ(m))

and pc ▷ τ · K(s) ∈ valσ(s′). As before we can reason on the scheduling distance for s′

in qπ(m). Due to the change in Lemma 3, it is not always the case that the scheduling
distance strictly decreases, but when it increases the premise for weak fairness is not
fulfilled.

Indeed, first suppose that for all l > m, K(s) ∈ enabled(shπ(l), M(qπ(l)). This implies
that rule (4) is applicable with statement s′ and consistent path condition, because
assumption (26) prevents it from obtaining K(s) via rule (4) from another statement
than s′, assumption (27) prevents it from obtaining s via rule (5) and a callREv(m, v)
event for some m.
By the same argument as in the proof of Thm. 1, one must obtain after a finite

number of steps d(shl , K(s), ql) = (1, 0). At this point, either the path condition is
inconsistent and K(s) ̸∈ enabled(shπ(l), M(qπ(l)) (because of the analysis of the previ-
ous paragraph) which contradicts the weak fairness hypothesis; or statement s′ is
scheduled and continuation K(s) required for weak fairness is obtained.

In contrast to Section 5.2, the requirements for strong fairness are not satisfied
here. Indeed, Example 8 would progress if strong fairness were achieved, but it loops
infinitely with the proposed scheduler.

6:31

Provably Fair Cooperative Scheduling

C
� K f (s)

Idle ,

K f (await g; s)

K f (suspend; s)

(m, f)

q′

︸ ︷︷ ︸

M0(q)

�

︷ ︸︸ ︷

M((act, q))

Figure 9 The relation between continuations in the non-deterministic semantics and the
scheduler.

E Fairness of Cooperative Scheduling

The more complex structure of configurations in the scheduler rules is reflected in
the translation function M from→S-traces to→-traces that occurs in the statement
of Thm. 2. The relation is illustrated by the diagram in Figure 9: A scheduler con-
figuration C contains a currently active task K f (s) or the marker Idle, if no task is
currently executed. The task list also contains a queue q of waiting tasks K f (await x; s),
K f (suspend; s), and task execution markers (m, f). We extend the translation function
M of equation (25). The auxiliary mapping M0 extracts a set of waiting tasks from the
task queue q by ignoring the task execution markers, which have no counterpart in
the non-deterministic semantics. Mapping M adds the active task, if there is one.

M0(q) =

{} if empty(q)
{k} ⊎M0(q′) if (q′, k) = pop(q)∧ k ̸= (m, f)
M0(q′) otherwise, where (q′, k) = pop(q)

M((act, q)) =

�

M0(q) act = Idle∨ act = K f ()
M0(q)⊎ {act} otherwise

We also define a translation for the traces by simply removing doneEv events:

M(ϵ) = ϵ

M(τ↶ doneEv) =M(τ)

M(τ↶ t) =M(τ)↶ t when t ̸= doneEv

The following lemma relates configurations in→ and→S:

Lemma 4. Let C occur in a→S-trace.
1. If C= (K f (s), q) for some f , s ̸= and q, then M(C) = {K f (s)} ⊎M0(q).
2. If C= (K f (), q) for some f or C= (Idle, q) and ¬empty(q), then M(C) =M0(q).

In this case, there is q′, f ′, and s such that pop(q) = (q′, K f ′(s)) for some suspended
statement s and M0(q) = {K f ′(s)} ⊎M0(q′).

The scheduling distance for cooperative scheduling needs to take into account a
feature not present in Def. 15: the explicit→S-step needed for suspending a task that
cannot be activated.

6:32

Reiner Hähnle and Ludovic Henrio

Definition 16 (Scheduling Distance: Cooperative Scheduling). For any configuration
sh, C and continuation K f (s) ∈M(C) we define the distance from scheduling of K f (s) as
the lexicographically ordered triple

d(sh, K f (s), C) = (pos1(C, K f (s)), Idle(C), unmatched(sh)) , where:

pos1(C, K f (s)) =

1 if C=(K f (s), q)∧¬suspended(s)
leng th(q) + 2 if C=(K f (s), q)∧ suspended(s)
1+ pos0(q, K f (s)) if C=(K f (s′), q) ∧ s ̸= s′

pos0(q, K f (s)) if C=(Idle, q)

Observe that the third line above includes the case when s′ = .

pos0(q, K f (s)) =

1 if pop(q) = (q′, K f (s))
1+ pos0(q

′, K f (s)) if pop(q) = (q′, (m, f ′))∨
�

pop(q)=(q′, K f ′(s′))∧ (s ̸=s′∨ f ̸= f ′)
�

Undefined if K f (s) ̸∈M0(q)

Idle((act, q)) =

�

1 if act = Idle
0 else

unmatched(sh) =

�

1 if lastevent(sh) = callEv(v, m, f) for some v, m, f
0 else

Observe that d(sh, K f (s), C) ≥ (1, 0,0), whenever K f (s) ∈ M(C). If K f (s) ̸∈ M(C)
the distance is undefined. Also, if d(sh, K f (s), C) = (1,0, 0) then the next applicable
scheduling rule is (22). If d(sh, K f (s), C) = (1, 1,0) then the next applicable scheduling
rule is (20) or (21).

In addition to computing the scheduling distance of a continuation, we also need to
compute the scheduling distance of a task activation (m, f). To this end we overload
d, pos0, and pos1 such that we can measure the distance before a task can start in a
given configuration. The definition of pos0(q, (m, f)) is obvious. The definition of pos1

is:

pos1(C, (m, f)) =

�

1+ pos0(q, (m, f)) if C= (K f ′(s), q)
pos0(q, (m, f)) if C= (Idle, q)

Lemma 5 (Called Procedures). Consider a →S execution sh0, C0 →∗S sh, C. Assume
callEv(v, m, f) ∈ sh and lastevent(sh) ̸= callEv(v, m, f), then either C= (act ive, q) and
(m, f) ∈ q or callREv(v, m, f) ∈ sh.

Proof Sketch. The proof of this lemma is a straightforward induction on the scheduler
rules. Once a procedure is called and the call event has been taken into account, the
task activation (m, f) is in the queue until the task is started and the call reaction
event is triggered.

For the purpose of the proof of fairness we introduce an extended reduction relation
with a configuration that is augmented with an integer c ≤ 0, used to count the number

6:33

Provably Fair Cooperative Scheduling

of steps between two quiescent states. The absence of infinite local computations
ensures that c cannot decrease indefinitely. Now→S has the following signature:

sh, C, c→S sh′, C′, c′

In the initial state cini t = 0. The scheduling rules now update the value of c. Rule (18)
does not change the value of c, i.e. c′ = c. In rule (22) we have c′ = c − 1 (we count
the number of local steps). In rules (19) and (20) we must reset the counter to c′ = 0.
Finally, for (21), (24), and (23) the value of the counter does not matter, we arbitrarily
choose c′ = c.
The scheduling distance also needs to be extended by one more element in the

distance tuple: it is of the form d(sh, K f (s), C, c) where c is the counter defined
above. We overload the definition of the distance so that d(sh, K f (s), C, c) = (i, j, k, c)
whenever d(sh, K f (s), C) = (i, j, k). The order on the scheduling distance still is the
lexical order and the natural integer order on each component.

Lemma 6 (Bounded Distance). If a program has no infinite local computation, then for
any scheduling computation of this program and any sequence of rule applications in the
scheduler sh0, C0, c0→S sh1, C1, c1→∗S shn, Cn, cn→S · · · : For any statement s the chain
of scheduling distances d(shπ(n), s, Cπ(n), cπ(n)) does not (strictly) decrease indefinitely. For
any task activation (m, f) the chain of scheduling distances d(shπ(n), (m, f), Cπ(n), cπ(n))
does not (strictly) decrease indefinitely.

Proof Sketch. From the existence proof below we observe there is an→-execution of
the form M(shπ(n)), M(Cπ(n)) that mimics the scheduling execution. The first three
elements of the distance quadruple are positive so they cannot decrease indefinitely.

If there were an infinitely decreasing chain of scheduling distances then there would
be N , such that from a configuration shN , CN , cN only cN decreases indefinitely, i.e.
there exist i, j, k, such that:

∀m≥ N . d(shπ(m), s, Cπ(m), cπ(m)) = (i, j, k, cπ(m))

where cπ(m) = cπ(N) − (m− N).
This implies that only rule (22) is applied at each step and that the active continua-

tion is always a non-suspended task. Consequently, for all m ≥ N , M(Cπ(n)) is not a
quiescent state which contradicts Definition 3.

To proof Thm. 2 we show a more general variant using counters, from which it
immediately follows. Let Cinit = (K f init

(main),;).

Theorem 3 (Quiescent Fairness with Counter). Starting from an initial judgment, the
scheduler defined by rules (18)–(24) augmented with counters is one possible quiescent
fair scheduler of our semantics: If 〈σϵ〉, Cinit, c→∗S sh, C, c′→∗S · · · then there is a quiescent
fair execution 〈σϵ〉, {K f init

(main)} →∗ M(sh), M(C)→∗ · · · that produces the same trace
except for doneEv events.

Proof. As before, the proof consists of two parts: first we show the existence of a
derivation of the form 〈σϵ〉, {K f init

(main)} →∗ M(sh), M(C), then we show that it is
quiescent fair.

6:34

Reiner Hähnle and Ludovic Henrio

Existence. The proof proceeds by induction on the number n of steps in→∗S. Assume
we obtained sh, C, c in n many →S steps and extend it as sh, C, c →S sh′, C′, c′. The
induction hypothesis gives us the existence of a→-trace until M(sh), M(C). We perform
a case distinction on the kind of rule that was applied to obtain sh′, C′, c′.
Rule (18): The rule pushes (m, f) on the queue in C, but by definition of M0 this has no

effect on M(C′) =M(C). Moreover, by definition, M(sh) =M(sh′), because they differ
only in the doneEv. Hence, M(sh), M(C) is already the desired→-configuration.

Rule (19): We can apply rule (17) on the configuration M(C), because the premises
are a subset of those of rule (19). This yields M(sh), (M(C)⊎ {K f (s′)}). Using the
conclusion of rule (19) we obtain M(sh), M(C)→ M(sh′), M(C′) by rule (17) and
the fact that M0(q) =M0(q′).

Rule (20): We are in the second case of Lemma 4, all continuations in M(C) are
suspended statements (there is no currently active continuation) and one of them
is K f (s) with a consistent path condition, so rule (16) is applicable to M(sh), M(C).
We obtain M(sh), M(C)→M(sh′), M(C′) by a direct comparison of rules (16) and
(20).

Rule (21): Obviously, M0(q) = M0(rotate(q)), hence M(C′) = M(C), also sh is un-
changed. Hence, M(sh), M(C) is already the desired→-configuration.

Rule (22): Here C′ = (K f (s′), q). We are in the first case of Lemma 4, M(C) has an active
continuation K f (s), rule (16) is applicable to M(sh), M(C) and yields M(sh′), (M(C)⊎
{K f (s′)}). Because rule (22) is applicable and no doneEv event can be added to the
trace we obtain M(sh), M(C)→M(sh′), M(C′) by a direct comparison of rules (16)
and (22).

Rule (23): The rule gives directly M(sh) =M(sh′) and we observe that M(C′) =M(C)
by definition of M (case where is the active continuation), thus M(sh), M(C) is
already the desired→-configuration.

Rule (24): By definition of M we have that M(C) =M(C′), also sh is unchanged, thus
M(sh), M(C) is already the desired→-configuration.

Mapping. As before, we define an injective mapping π : N→ N, giving the π(i)-th step
in→S that corresponds to the i-th step in→:

π(i) = i +#(applications of rules (18), (21), (24), (23) to obtain shi , Ci , ci)

Fairness. Given a sequence of rule applications in the scheduler

sh0, C0, c0→S sh1, C1, c1→∗S shn, Cn, cn→S · · ·

we need to show that the sequence

M(shπ(0)), M(Cπ(0))→M(shπ(1)), M(Cπ(1))→∗ M(shπ(n)), M(Cπ(n))→ ·· ·

is quiescent fair, i.e.:

∀m, s, f .
�

∀n> m.
�

∃Q. M(Cπ(n)) =Q⇒ K f (s) ∈ enabled
�

M(shπ(n)), M(Cπ(n))
�

�

⇒∃n′ > m.
�

K f (s) ∈M(Cπ(n))
�

�

6:35

Provably Fair Cooperative Scheduling

Let m, s, f be arbitrary and assume the left part of the top-most implication
holds, i.e. a continuation can be produced. We need to prove that the continuation
for statement s is eventually produced, i.e. the scheduler rule producing this state-
ment occurs. We proceed by case analysis on the rule applied to obtain K f (s) ∈
enabled
�

M(shπ(n)), M(Cπ(n))
�

. Depending on the rule used to produce the statement
s, either it is the consequence of the evaluation of a statement s′ (first case below,
rule (16)), or it is the consequence of a task creation rule characterized by (m, f)
(second case below, rule (17)). We thus need to prove that either the statement s is pro-
duced, or the precondition for quiescent fairness is broken or the scheduling distance
associated with the statement s′ or the task activation (m, f) decreases. Lemma 6
states that there cannot be an infinite chain of descending scheduling distances, thus
s′ or (m, f) must eventually be scheduled and the statement s produced.
For each possible rule involved, supposing the precondition for quiescent fairness

is not broken and thus the continuation K f (s) is reachable, we now merely need to
show that one of the two cases applies: (case 1) statement s is produced or (case 2)
the scheduling distance associated with the statement s′ or the task activation (m, f)
decreases.
Rule (16): Recall rule (16) applied to our current configuration M(shπ(n)), M(Cπ(n)):

M(Cπ(n)) =Q ⊎ K f (s′) σ = last(M(shπ(n))) pc ▷ τ · K(s) ∈ val f
σ(s
′)

ρ concretizes τ ρ(pc) consistent wf(M(shπ(n)) ∗∗ρ(τ))

M(shπ(n)), M(Cπ(n))→M(shπ(n)) ∗∗ρ(τ), Q ⊎ {K f (s)}

In this case a statement is considered for scheduling, but it might be at any position
in the queue of the scheduler. By definition of M, the continuation K f (s′) is in
the configuration and the distance d(shπ(n), K f (s′), Cπ(n), cπ(n)) is well-defined. If
lastevent(shπ(n)) is a call event, we first execute rule (18) and consider the configu-
ration shπ(n)+1, Cπ(n)+1, cπ(n)+1 as the starting point of our reasoning instead (rule
(18) has no impact on→, it must be the first executed rule in any case, and after
its application the scheduling distance is well-defined). The remaining proof is by
case analysis on the reduction shπ(n), Cπ(n), cπ(n)→S shπ(n)+1, Cπ(n)+1, cπ(n)+1.
Rule (19) decreases the scheduling distance (case 2):
d(shπ(n), K f (s′), Cπ(n), cπ(n)) = (k, 1, 0, cπ(n)), for some k > 1 and
d(shπ(n)+1, K f (s′), Cπ(n)+1, cπ(n)+1) = (k, 0, 0, 0).
Rule (20):
d(shπ(n), K f (s′), Cπ(n), cπ(n)) = (k, 1, 0, cπ(n)) for some k, then either k = 1 and the
statement s is produced (rule (20) can be applied similarly to rule (16) producing
the same statement – case 1), or else k > 1 and the scheduler may schedule a
different task than the one selected by rule (16).
However, we obtain d(shπ(n)+1, K f (s′), Cπ(n)+1, cπ(n)+1) = (k, 0, 0, 0) so the schedul-
ing distance decreases (case 2).
Rule (21):
d(shπ(n), K f (s′), Cπ(n), cπ(n)) = (k, 1, 0, cπ(n)) for some k, it means that s′ starts with
an await statement followed by statement s, and the continuation K f (s) must be
possible to schedule, i.e. the awaited task has completed. Indeed, we are in a

6:36

Reiner Hähnle and Ludovic Henrio

quiescent state, so if K f (s) were not schedulable, it would not be in enabled(. . .).
Consequentially k > 1, and we have d(shπ(n)+1, K f (s′), Cπ(n)+1, cπ(n)+1) = (k −
1,1, 0, cπ(n)), the scheduling distance of s′ decreases (case 2).
Rule (22):
d(shπ(n), K f (s′), Cπ(n), cπ(n)) = (k, 0, 0, cπ(n)) for some k. Either k = 1, in which case
we are executing the targeted continuation and s′ is not a suspended statement. It
is sufficient to compare the premises of rule (22) and rule (16) to conclude (case 1).
If k > 1 then s′ is not the statement evaluated by rule (22) and the obtained con-
tinuation cannot be {K f (s)}. But in this case d(shπ(n)+1, K f (s′), Cπ(n)+1, cπ(n)+1) =
(k, 0, 0, cπ(n) − 1) and the scheduling distance of s′ decreases (case 2).
Rule (23):
if d(shπ(n), K f (s′), Cπ(n), cπ(n)) = (k, 0, 0, cπ(n)), then it must be for some k > 1 and
d(shπ(n)+1, K f (s′), Cπ(n)+1, cπ(n)+1) = (k− 1,1, 0, cπ(n)), so the scheduling distance
of s′ decreases (case 2).
Rule (24):
Two cases are possible. Either Cπ(n) = (K f (s′), q) and s′ is a suspended statement.
In this case d(shπ(n), K f (s′), Cπ(n), cπ(n)) = (length(q) + 2,0, 0, cπ(n)) and
d(shπ(n)+1, K f (s′), Cπ(n)+1, cπ(n)+1) = (length(q) + 1, 1,0, cπ(n)), so the scheduling
distance of s′ decreases (case 2).
Otherwise, we obtain d(shπ(n), K f (s′), Cπ(n), cπ(n)) = (k, 0, 0, cπ(n)) with 1 < k <
length(q)+2 and, consequently, d(shπ(n)+1, K f (s′), Cπ(n)+1, cπ(n)+1) = (k−1,1, 0, cπ(n)),
the scheduling distance decreases (case 2).

Rule (17): In this case a new task can be spawned. We show that rule (19) can be
applied on the correct procedure. First we recall rule (17) applied to our current
configuration M(shπ(n)), M(Cπ(n)):

m(x){s} ∈ M
σ = last(M(shπ(n))) f ∈ TId pc ▷ τ · K(s′) ∈ val f

σ(m(x) {s})
ρ concretizes τ ρ(pc) consistent wf(shπ(n) ∗∗ρ(τ))

M(shπ(n)), M(Cπ(n))→M(shπ(n)) ∗∗ρ(τ), M(Cπ(n)) ⊎ {K f (s′)}

We notice that val f
σ(m(x) {s}) starts with a callREv(v, m, f) event. Because of well-

formedness, we know that the procedure had been called, callEv(v, m, f) occurs in
M(shπ(n)), and no callREv(v, m, f) event occurs in M(shπ(n)). If lastevent(shπ(n)) is
a call event, we first execute rule (18) and consider shπ(n)+1, Cπ(n)+1, cπ(n)+1 as the
starting point of our reasoning instead (rule (18) has no impact on the→, it must
be first executed rule in any case, and after its application the scheduling distance
is well-defined).
From Lemma 5 we have that (m, f) is in the queue of suspended tasks and the
scheduling distance d(shπ(n), (m, f), Cπ(n), cπ(n)) is defined and greater or equal to⁶
(1, 1,0, cπ(n)). As before, the remaining proof proceeds by case analysis on the rule
application shπ(n), Cπ(n), cπ(n)→S shπ(n)+1, Cπ(n)+1, cπ(n)+1.

6Case (1, 0,0, cπ(n)) is not possible, because (m, f) is not a valid active continuation.

6:37

Provably Fair Cooperative Scheduling

Rule (18): This can only be applied to the creation of a task with a different identifier,
and thus we have d(shπ(n), (m, f), Cπ(n), cπ(n)) = (k, i, 1, cπ(n)) for some k ≥ 1 and
i ≥ 0 before its application and d(shπ(n), (m, f), Cπ(n)+1, cπ(n)+1) = (k, i, 0, cπ(n)+1)
with cπ(n)+1 = cπ(n) after the application of the rule, which decreases the scheduling
distance (case 2).
Rule (19):
Either d(shπ(n), (m, f), Cπ(n), cπ(n)) = (1, 1,0, cπ(n)) and the right continuation is
produced, or the distance is (k, 1, 0, cπ(n)) for some k > 1, in which case we have
d(shπ(n)+1, (m, f), Cπ(n)+1, cπ(n)+1) = (k, 0, 0, cπ(n)+1) with cπ(n)+1 = 0, which de-
creases the scheduling distance (case 2).
Rule (20):
We have d(shπ(n), (m, f), Cπ(n), cπ(n)) = (k, 1, 0, cπ(n)) for some k, then
d(shπ(n)+1, (m, f), QS,π(n)+1, cπ(n)+1) = (k, 0, 0, cπ(n)+1) with cπ(n)+1 = 0, the schedul-
ing distance of (m, f) decreases (case 2).
Rule (21):
We have d(shπ(n), (m, f), Cπ(n), cπ(n)) = (k, 1, 0, cπ(n)) for some k, then
d(shπ(n)+1, (m, f), Cπ(n)+1, cπ(n)+1) = (k− 1, 1,0, cπ(n)+1) with cπ(n)+1 = cπ(n), which
decreases the scheduling distance of the task activation (case 2).
Rule (22):
We have d(shπ(n), (m, f), Cπ(n), cπ(n)) = (k, 0, 0, cπ(n)) for some k.
There is a currently active task with a non-suspended statement, so procedure m can-
not be started, however, the distance decreases: d(shπ(n)+1, (m, f), Cπ(n)+1, cπ(n)+1) =
(k, 0, 0, cπ(n) − 1) (case 2).
Rule (23):
d(shπ(n), (m, f), Cπ(n), cπ(n)) = (k, 0, 0, cπ(n)) for some k, and we have
d(shπ(n)+1, (m, f), Cπ(n)+1, cπ(n)+1) = (k− 1,1, 0, cπ(n)+1) with cπ(n)+1 = cπ(n) which
decreases the scheduling distance of the task activation (case 2).
Rule (24):
There is k such that d(shπ(n), (m, f), Cπ(n), cπ(n)) = (k, 0, 0, cπ(n)), then
d(shπ(n)+1, (m, f), Cπ(n)+1, cπ(n)+1) = (k − 1, 1,0, cπ(n)+1) with cπ(n)+1 = cπ(n), the
scheduling distance of (m, f) decreases (case 2).

References

[1] Martín Abadi and Gordon D. Plotkin. “A model of cooperative threads”. In:
Logical Methods in Computer Science 6.4 (2010), pages 1–39. issn: 18605974.
doi: 10.2168/LMCS-6(4:2)2010.

[2] ABS Documentation. 1.9.3. ABS Development Team. Apr. 2021. url: https:
//abs-models.org/manual (visited on 2023-09-28).

[3] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification of
Sequential and Concurrent Programs. Texts in Computer Science. Heidelberg:
Springer, 2009. isbn: 978-1-84882-744-8. doi: 10.1007/978-1-84882-745-5.

6:38

https://doi.org/10.2168/LMCS-6 (4:2) 2010
https://abs-models.org/manual
https://abs-models.org/manual
https://doi.org/10.1007/978-1-84882-745-5

Reiner Hähnle and Ludovic Henrio

[4] Krzysztof R. Apt and Ernst-Rüdiger Olderog. “Proof Rules and Transforma-
tions Dealing with Fairness”. In: Science of Computer Programming 3.1 (1983),
pages 65–100. doi: 10.1016/0167-6423(83)90004-7.

[5] Krzysztof R. Apt, Amir Pnueli, and Jonathan Stavi. “Fair Termination Revisited-
With Delay”. In: Theoretical Computer Science 33 (1984), pages 65–84. doi:
10.1016/0304-3975(84)90103-8.

[6] Frank de Boer, Crystal Chang Din, Kiko Fernandez-Reyes, Reiner Hähnle, Lu-
dovic Henrio, Einar Broch Johnsen, Ehsan Khamespanah, Justine Rochas, Vlad
Serbanescu, Marjan Sirjani, and Albert Mingkun Yang. “A Survey of Active
Object Languages”. In: ACM Computing Surveys 50.5 (Oct. 2017). Article 76,
76:1–76:39. doi: 10.1145/3122848.

[7] Denis Caromel, Ludovic Henrio, and Bernard P. Serpette. “Asynchronous and
deterministic objects”. In: Proc. 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL, Venice, Italy. Edited by Neil D.
Jones and Xavier Leroy. ACM, 2004, pages 123–134. doi: 10.1145/964001.964012.

[8] Nicolas Chappe, Paul He, Ludovic Henrio, Yannick Zakowski, and Steve Zdancewic.
“Choice Trees: Representing Nondeterministic, Recursive, and Impure Programs
in Coq”. In: Proc. ACM Program. Lang. 7.POPL (2023), pages 1770–1800. doi:
10.1145/3571254. url: https://doi.org/10.1145/3571254.

[9] Matthias Daum, Jan Dörrenbächer, and Burkhart Wolff. “Proving Fairness
and Implementation Correctness of a Microkernel Scheduler”. In: Journal of
Automated Reasoning 42 (2009), pages 349–388. doi: 10.1007/s10817-009-9119-
8.

[10] Edsger W. Dijkstra. “Guarded Commands, Nondeterminacy and Formal Deriva-
tion of Programs”. In: Commun. ACM 18.8 (1975), pages 453–457. doi: 10.1145/
360933.360975. url: https://doi.org/10.1145/360933.360975.

[11] Rutger M. Dijkstra. “Computation calculus bridging a formalization gap”. In:
Science of Computer Programming 37.1-3 (2000), pages 3–36. doi: 10.1016/S0167-
6423(99)00021-0.

[12] Crystal Chang Din, Reiner Hähnle, Ludovic Henrio, Einar Broch Johnsen, Vi-
olet Ka I Pun, and Silvia Lizeth Tapia Tarifa. LAGC Semantics of Concurrent
Programming Languages. 2022. arXiv: 2202.12195 [cs.PL].

[13] Crystal Chang Din, Reiner Hähnle, Einar Broch Johnsen, Ka I Pun, and Silvia
Lizeth Tapia Tarifa. “Locally Abstract, Globally Concrete Semantics of Concur-
rent Programming Languages”. In: Proc. 26th Intl. Conf. on Automated Reasoning
with Analytic Tableaux and Related Methods (TABLEAUX). Edited by Renate A.
Schmidt and Cláudia Nalon. Volume 10501. LNCS. Cham: Springer, 2017,
pages 22–43. doi: 10.1007/978-3-319-66902-1_2.

[14] Crystal Chang Din and Olaf Owe. “Compositional reasoning about active objects
with shared futures”. In: Formal Aspects of Computing 27.3 (2015), pages 551–
572. doi: 10.1007/s00165-014-0322-y.

6:39

https://doi.org/10.1016/0167-6423(83)90004-7
https://doi.org/10.1016/0304-3975(84)90103-8
https://doi.org/10.1145/3122848
https://doi.org/10.1145/964001.964012
https://doi.org/10.1145/3571254
https://doi.org/10.1145/3571254
https://doi.org/10.1007/s10817-009-9119-8
https://doi.org/10.1007/s10817-009-9119-8
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1016/S0167-6423(99)00021-0
https://doi.org/10.1016/S0167-6423(99)00021-0
https://arxiv.org/abs/2202.12195
https://doi.org/10.1007/978-3-319-66902-1_2
https://doi.org/10.1007/s00165-014-0322-y

Provably Fair Cooperative Scheduling

[15] Matthias Felleisen and Daniel P. Friedman. “Control operators, the SECD-
machine, and the λ-calculus”. In: Formal Description of Programming Concepts -
III: Proceedings of the IFIP TC 2/WG 2.2Working Conference on Formal Description
of Programming Concepts - III, Ebberup, Denmark, 25-28 August 1986. Edited by
Martin Wirsing. North-Holland, 1987, pages 193–222. isbn: 978-0444702531.

[16] Joseph Y. Halpern, Zohar Manna, and Ben C. Moszkowski. “A Hardware Seman-
tics Based on Temporal Intervals”. In: Automata, Languages and Programming,
10th Colloquium, Barcelona, Spain. Edited by Josep Díaz. Volume 154. LNCS.
Berlin, Heidelberg: Springer, 1983, pages 278–291. doi: 10.1007/BFb0036915.

[17] Gary J. Henry. “The UNIX system: The fair share scheduler”. In: AT&T Bell
Labs Technical J. 63.8 (1984), pages 1845–1857. doi: 10.1002/J.1538-7305.1984.
TB00068.X.

[18] Wim H. Hesselink. “Complete assertional proof rules for progress under weak
and strong fairness”. In: Science of Computer Programming 78.9 (2013), pages 1521–
1537. doi: 10.1016/j.scico.2012.10.013.

[19] Gerard J. Holzmann. The SPIN Model Checker. Boston, MA, USA: Pearson
Education, 2003. isbn: 978-0-321-22862-8,

[20] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin
Steffen. “ABS: A Core Language for Abstract Behavioral Specification”. In: Proc.
9th International Symposium on Formal Methods for Components and Objects
(FMCO 2010). Edited by Bernhard K. Aichernig, Frank de Boer, and Marcello M.
Bonsangue. Volume 6957. LNCS. Heidelberg: Springer, 2011, pages 142–164.
doi: 10.1007/978-3-642-25271-6_8.

[21] Leslie Lamport. “Fairness and hyperfairness”. In: Distributed Computing 13.4
(2000), pages 239–245. doi: 10.1007/PL00008921.

[22] John C. Mitchell. Foundations for programming languages. Foundation of com-
puting. Boston, MA, USA: MIT Press, 1996. isbn: 978-0-262-13321-0.

[23] Peter D. Mosses. “Modular structural operational semantics”. In: The Journal of
Logic and Algebraic Programming 60–61 (2004). Structural Operational Seman-
tics, pages 195–228. issn: 1567-8326. doi: https://doi.org/10.1016/j.jlap.2004.
03.008.

[24] Stefan K. Muller, Sam Westrick, and Umut A. Acar. “Fairness in Responsive
Parallelism”. In: Proc. ACM Program. Lang. 3.ICFP (July 2019). doi: 10.1145/
3341685.

[25] Keiko Nakata and Tarmo Uustalu. “A Hoare logic for the coinductive trace-
based big-step semantics of While”. In: Logical Methods in Computer Science
11.1 (2015), pages 1–32. doi: 10.2168/LMCS-11(1:1)2015.

[26] Roberto Segala. “Quiescence, Fairness, Testing, and the Notion of Implemen-
tation”. In: Information and Computation 138.2 (1997), pages 194–210. doi:
10.1006/inco.1997.2652.

6:40

https://doi.org/10.1007/BFb0036915
https://doi.org/10.1002/J.1538-7305.1984.TB00068.X
https://doi.org/10.1002/J.1538-7305.1984.TB00068.X
https://doi.org/10.1016/j.scico.2012.10.013
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/PL00008921
https://doi.org/https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.1145/3341685
https://doi.org/10.1145/3341685
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.1006/inco.1997.2652

Reiner Hähnle and Ludovic Henrio

[27] Frits W. Vaandrager. “On the relationship between process algebra and in-
put/output automata”. In: Proceedings Sixth Annual IEEE Symposium on Logic
in Computer Science. 1991, pages 387–398. doi: 10.1109/LICS.1991.151662.

[28] Peter Y. H. Wong, Elvira Albert, Radu Muschevici, José Proença, Jan Schäfer,
and Rudolf Schlatte. “The ABS tool suite: modelling, executing and analysing
distributed adaptable object-oriented systems”. In: STTT 14.5 (2012), pages 567–
588. doi: 10.1007/s10009-012-0250-1.

[29] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Ben-
jamin C. Pierce, and Steve Zdancewic. “Interaction Trees: Representing Recur-
sive and Impure Programs in Coq”. In: Proc. ACM Program. Lang. 4.POPL (Dec.
2019). doi: 10.1145/3371119. url: https://doi.org/10.1145/3371119.

6:41

https://doi.org/10.1109/LICS.1991.151662
https://doi.org/10.1007/s10009-012-0250-1
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119

Provably Fair Cooperative Scheduling

About the authors

Reiner Hähnle is a Professor of Computer Science at TU Darm-
stadt, reach him at reiner.haehnle@tu-darmstadt.de. OrcId 0000-
0001-8000-7613

Ludovic Henrio is a researcher at LIP laboratory in Lyon, reach
him at ludovic.henrio@ens-lyon.fr. OrcId 0000-0001-7137-3523

6:42

mailto:reiner.haehnle@tu-darmstadt.de
mailto:ludovic.henrio@ens-lyon.fr

	1 Introduction
	2 Languages
	3 Fair Scheduling Based on Structural Operational Semantics
	3.1 SOS for [language=simple,columns=fullflexible,mathescape=true,inputencoding=latin1,extendedchars,keywordstyle=,basicstyle=]|CoopWhile|
	3.2 SOS of [language=simple,columns=fullflexible,mathescape=true,inputencoding=latin1,extendedchars,keywordstyle=,basicstyle=]|CoopWhile| with Scheduling
	3.3 Fairness
	3.3.1 Using Task Identifiers to Define Fairness
	3.3.2 A Fairness Criterion for Cooperative Scheduling
	3.3.3 Fairness Based on Reachable Statements

	4 LAGC Semantics
	4.1 States, Events, Traces, Continuations
	4.2 LAGC Semantics of [language=simple,columns=fullflexible,mathescape=true,inputencoding=latin1,extendedchars,keywordstyle=,basicstyle=]|While|

	5 Scheduling a Language with Spawn
	5.1 LAGC Semantics
	5.2 A Concrete Weakly Fair Scheduler for [language=simple,columns=fullflexible,mathescape=true,inputencoding=latin1,extendedchars,keywordstyle=,basicstyle=]|Spawn|

	6 Adding Guarded Commands
	7 Cooperative Scheduling of a Language with Spawn, Suspend, and Join
	7.1 LAGC Semantics of [language=simple,columns=fullflexible,mathescape=true,inputencoding=latin1,extendedchars,keywordstyle=,basicstyle=]|CoopWhile|
	7.2 Fair Cooperative Scheduling of [language=simple,columns=fullflexible,mathescape=true,inputencoding=latin1,extendedchars,keywordstyle=,basicstyle=]|CoopWhile|

	8 Comparison of SOS and LAGC Semantics
	9 Related Work
	10 Conclusion and Future Work
	A Queues
	B Scheduler for Procedure Calls Is Deterministic
	C Proof of Weak Fairness for [language=simple,columns=fullflexible,mathescape=true,inputencoding=latin1,extendedchars,keywordstyle=,basicstyle=]|Spawn| – Thm. 1
	D Proof of Weak Fairness for [language=simple,columns=fullflexible,mathescape=true,inputencoding=latin1,extendedchars,keywordstyle=,basicstyle=]|Guard|
	E Fairness of Cooperative Scheduling
	References
	About the authors

