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Mapping expectancy-based appetitive
placebo effects onto the brain in women

Iraj Khalid1, Belina Rodrigues 1, Hippolyte Dreyfus1, Solène Frileux1,
Karin Meissner 2,3, Philippe Fossati1,4, Todd Anthony Hare 5 &
Liane Schmidt 1

Suggestions about hunger can generate placebo effects on hunger experi-
ences. But, the underlying neurocognitivemechanisms are unknown. Here, we
show in 255 women that hunger expectancies, induced by suggestion-based
placebo interventions, determine hunger sensations and economic food
choices. Functional magnetic resonance imaging in a subgroup (n = 57/255)
provides evidence that the strength of expecting the placebo to decrease
hunger moderates medial prefrontal cortex activation at the time of food
choice and attenuates ventromedial prefrontal cortex (vmPFC) responses to
food value. Dorsolateral prefrontal cortex activation linked to interference
resolution formally mediates the suggestion-based placebo effects on hunger.
A drift-diffusion model characterizes this effect by showing that the hunger
suggestions bias participants’ food choices andhowmuch theyweigh tastiness
against the healthiness of food, which further moderates vmPFC–dlPFC psy-
chophysiological interactions when participants expect decreased hunger.
Thus, suggestion-induced beliefs about hunger shape hunger addressing
economic choices through cognitive regulation of value computation within
the prefrontal cortex.

A fundamental aspect of human cognition is the ability to extract
patterns from noisy sensory information to form prospective beliefs
(expectations). Statistical frameworks propose that the brain achieves
such integration through a computational process that continuously
updates prospective beliefs based on prior beliefs and new belief-
confirming or disconfirming evidence1. This idea has been shared
and challenged for centuries2,3. Interestingly, the combination of pro-
spective beliefs with sensory information coming from the outside
in the form of verbal suggestions has been shown to mediate
placebo effects, which are a famous example of mind-brain-body
interactions4–7.

Placebo effects aremuch known from clinical research as a source
of noise, which can obscure the benefits of an active treatment, which
is then commonly inferred to be non-effective. However, basic

research in cognitive neuroscience has provided evidence for active
neural and cognitive processes under placebo effects on bodily
responses and a person’s judgment of experience4–10. These interven-
tions combine the administration of an inactive substance (a placebo)
with a verbal suggestion about its effectiveness, which are sometimes,
but not always, reinforced by conditioning to generate acute placebo
effects in the laboratory. Much of this previous basic science work has
used aversive outcomes, such as pain combined with functional
magnetic resonance imaging (fMRI), to map placebo hypoalgesia onto
the brain (for review11).

But, placebos combined with verbal suggestion can also affect
appetitive outcome measures. Research on consumption behavior has
shown for example that the taste of more expensive wines is experi-
enced as more pleasant and is encoded more strongly in the brain’s
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valuation system than identicalwines suggested tobe less expensive12,13.
Similar findings showed that verbal suggestions about caloric ingre-
dients or the homeostatic effectiveness of an inactive substance can
influence the release of satiety signaling hormones14, interoceptive
hunger experiences15, and digestion-related autonomous nervous sys-
tem responses16. Similar to placebo effects in aversive domains, such
appetitive placebo effects are mediated by a participant’s positive
expectations about consumption or effectiveness17.

Despite the ample evidence for appetitive placebo effects on the
behavioral side, there is, however, no direct empirical evidence for
when, where, or how, in the brain, a placebo intervention that com-
bines the administration of an inactive substance with a verbal sug-
gestion about its effectiveness influences the experience of appetitive
interoceptive outcomes, such as hunger and associated economic
behavior. Addressing these questions is important, because it provides
an opportunity to understand the effects of higher-order cognitive
factors, such as prognostic beliefs, more broadly and how the brain
integrates them to make inferences about signals from the body and
shape economic behavior that addresses interoceptive and exter-
oceptive signals.

To address this question, this study builds on literature from
decision neuroscience that has shown that a person’s goals and
internal bodily states can affect economic choice behavior. More
specifically, genericmodels of economic choicepropose thatdecision-
making involves valuation and action selection (decision) stages18.
During valuation, various attributes of alternative choices are weighed
and integrated into stimulus values that approximate hidden pre-
ferences and are then compared during the decision stage to select the
most preferred alternative (i.e., with the higher stimulus value). The
underlying neural mechanisms have been shown to involve regions of
the brain’s valuation system, such as the ventromedial prefrontal
cortex (vmPFC), and cognitive regulation system, such as the dorso-
lateral prefrontal cortex (dlPFC)19–29. Furthermore, a person’s goals can
influence the valuation anddecision stages and the underpinningbrain
responses through cognitive regulation in the form of attentional fil-
tering and value modulation19,20,30,31 of relevant information. However,
it is unknown whether verbal suggestions about the effectiveness of a
placeboon interoceptive states cangenerate suchcognitive regulation
at the valuation and/or at the decision stages of economic choices.
Moreover it is unknown, where and how in the brain such potential
effects take place.

Given that placebos together with suggestion can affect hunger
experiences and that economic decision-making addresses hunger, we
used a placebo intervention that involved the administration of an
identical drink (water), together with the verbal suggestion that the
water either increased or decreased hunger. We also tested a control
group that drank the water without suggestions about its potential
effect on hunger. We hypothesized that the placebo intervention
would induce prognostic beliefs about the effectiveness of the drink’s
effect on hunger and through them, affect the experience of hunger,
dietary decision-making, and its cognitive regulation. We combined
fMRI in a subgroup of the two hunger suggestion groups (e.g.,
decreased vs. increased) with a dietary decision-making task per-
formed by participants in all groups, and fitted economic choices and
reaction times obtained from all participants to a drift diffusionmodel
(DDM)32,33. This approach allowedus to assesswhere in the brain, when
during economic choice formation, and how the placebo intervention
affected hunger-addressing economic behavior.

In accordance with our hypotheses, amain effects test conducted
across the entire sample found that the placebo intervention gener-
ated hunger expectations that were stronger in the hunger suggestion
groups than in the control group, and then determined how hungry
participants felt at the end of the experiment. The strength of
expecting the water to decrease hunger moderated activation of the
medial prefrontal cortex at the time of food choice. Consistent with

these effects, participants in the increased-hunger suggestion group
valued food more highly and displayed stronger vmPFC activation in
response to food value than participants in the decreased-hunger
suggestion group. The suggestion-based placebo effect on hunger
ratings was further formally mediated by the recruitment at time of
food choice of a dlPFC region that was associated with interference
resolution. Drift diffusion modeling then revealed that the hunger
suggestion influenced the dynamics of the decision stage. Participants
in the increased-hunger suggestion group were initially more biased
toward yes food choices, and considered the tastiness of the food
more strongly. In contrast, participants in the decreased-hunger sug-
gestion groupwere less initially biased toward yes, and considered the
healthiness of the food more strongly during the decision stage. The
relative drift weights of these two food attributes on the accumulation
of evidence toward a yes/no food choice thenmoderated how strongly
the vmPFC and the interference-resolution associated dlPFC regions of
interest interacted during choice formation.

Results
Expectancy ratings
We first checked whether the placebo intervention was successful in
generating prognostic beliefs about the drink’s effectiveness on hun-
ger and whether these expectations were different in their strength
relative to the no-suggestion control group. Note, all groups used the
same scale from 1 (no expected effect) to 10 (maximum expected
effect), but the framing of the scale was different. The decreased
expectancy groupwasasked to rate howmuch they expected thedrink
to decrease their hunger. The participants in the increased expectancy
group were asked to rate how much they expected the drink to
increase their hunger. The control group was asked to rate how much
they expected the drink to affect their hunger. Thus, we inferred that
the intervention aimed at inducing different beliefs should not vary in
strength between the two hunger suggestion groups, but rather
between the hunger suggestion and no hunger suggestion control
groups.

A mixed effects linear regression analysis of expectancy ratings
showed a significant andpositive intercept (ß =6.1, SE =0.8,p =6.7e−13,
95% CI [4.5–7.7]), indicating that these ratings across the entire sample
were different from zero in their magnitude (n = 255). We then found a
significant negative main effect of group (ß = −0.75, SE = 0.16,
p =6.6e06, 95% CI [−1.1 to −0.43]), controlled for BMI, which had a non-
significant effect (ß = 0.04, SE =0.03, p =0.18, 95% CI [−0.02 to 0.1]).
Posthoc independent t-tests then showed that the two hunger sugges-
tion groupsdidnotdiffer in howmuch they expected thedrink to effect
their hunger (mean expectancy ratingdecreased = 5.6 ±0.2 [n = 88] vs
mean expectancy ratingincrease = 5.3 ±0.2 [n =84], t(169) = 1.12, p=0.26,
two-tailed, BF10 =0.29). However, the strength of the hunger expecta-
tions significantly differed in both hunger suggestion groups from that
of the control group (control < decreased: t(169) = −4.6, p <0.001,
Cohen’s d = −0.7, BF10 = 1863; control < increased t(165) = −3.6,
p <0.001, Cohen’s d = −0.6, BF10 = 56, two-tailed, Fig. 1a).

These findings confirm that the placebo intervention success-
fully induced stronger expectations about the drink’s effectiveness
on hunger in the two suggestion groups than in the no-suggestion
control group. Moreover, the more participants in the decreased-
hunger suggestion group (n = 88) expected the drink to efficiently
decrease their hunger, the less their hunger increased over the
course of the experiment (Pearson’s R = −0.24, p = 0.03, Fig. 1c).
By contrast, this correlation was non-significant among participants
in the increased-hunger suggestion group (n = 84, Pearson’s
R = −0.08, p = 0.44).

Expectancy encoding in the brain at the time of food choices
We then investigated where in the brain these prognostic beliefs were
encoded within each suggestion group of the fMRI sample. We found
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that, at time of choice, the strength of expecting the drink to decrease
hunger correlated significantly with activation of the superior frontal
partof themedial prefrontal cortex (mPFC) extending into the anterior
cingulate cortex (MNI = [2, 58, 22], pFWE < 0.05, family-wise error cor-
rected on the cluster level, Fig. 1d, SI Table 1). This finding was sig-
nificant only for the participants assigned to the decreased-hunger

suggestion group. The more these participants expected the water to
decrease their hunger (n = 28), themore themPFCwas activated at the
time of the food choice. No significant moderation of choice-related
brain responses was observed for the increased-hunger suggestion
group (n = 29) after correction for multiple comparisons at the cluster
level across the entire brain.
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Fig. 1 | Placebo effects on expectancy ratings. All boxplot graphs display the 95%
confidence intervals with boxes indicating the interquartile range from Q1 25th
percentile to Q3 75th percentile. The gray and black lines indicate medians and
whiskers range from minimum to maximum values and span 1.5 times the inter-
quartile range. The dots in the rainclouds above each boxplot correspond to
individual participants. Light red corresponds to the decreased hunger suggestion
group, gray to control group and blue to the increased hunger suggestion group.
a expectancy ratings following the question: Howmuch do you expect the drink to
decrease/increase/affect your hunger?, andb for the change in hunger ratings from
baseline to the end of the experiment. The hunger ratings were averaged for each
participant between three composite ratings addressing hedonic (How pleasant
would it be to eat right now?), homeostatic (Howmuch could you eat right now?),
and subjective general hunger ratings (How hungry are you right now?). Dots
correspond to individual ratings in each group. *p <0.05. P-values were obtained

with two-sampled, two-tailed t-tests. c Pearson’s correlation between expectancy
ratings and the change in hunger ratings from baseline to the end of the experi-
ment. Each dot corresponds to a participant in the decreased-hunger suggestion
group. The p-value indicates a two-tailed difference from zero correlation.
d Statistical parametric maps of significant group level, random effect moderation
of brain activation at the time of food choice by expectations about the drink’s
effectiveness to decrease hunger (n = 28). Voxels in yellow are displayed for
visualization purposes at an uncorrected threshold of p <0.001, with an extended
threshold of k = 44 voxels, which corresponded to pFWE < 0.05 cluster-wise cor-
rection for family-wise errors across the whole brain. Activation was taken at the
localmaxima (MNI x = 6) on the sagittal slice, showing the extent of the activation in
mPFC from the superior frontal gyrus to the anterior cingulate cortex. SPMs are
superimposed on the average anatomical brain image. Source data and exact p
values are provided as a Source Data file.
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Suggestion-based placebo effects on hunger experiences
Consistent with the effects on prognostic beliefs about hunger, we
conducted main effects tests across the entire sample (n = 255) by fit-
ting a linear mixed effects model (LME) to hunger ratings. Note, these
hunger ratings corresponded to an average between subjective ratings
of three aspects of hunger for each participant: hedonic (how pleasant
would it be to eat right now?), homeostatic (how much could you eat
right now?), and subjective (how hungry are you right now?).

The LME showed a significantmain effect ofmeasurement time (ß =
0.71, SE =0.07,p= 1.7e-21, 95%CI [0.57–0.85]), a significantmaineffect of
group (ß=−0.34, SE =0.15, p=0.02, 95%CI [−0.64 to −0.04]), and a sig-
nificant group by measurement time interaction (ß = 0.37 ±0.08,
p=2.1e-05, 95% CI [0.20–0.54]). These effects were controlled for con-
founding due to BMI, which had a significant negative effect on hunger
ratings (ß =−0.03, SE =0.01, p=0.03, 95% CI [−0.07 to −0.004]). They
were also non-different between behavioral pilot sample and the smaller
subset of participants, who underwent the experiment during fMRI (SI
section 1, SI Fig. 1).

Post-hoc t-tests then indicated that participants were hungrier at
the end of the experiment than at the beginning in all groups (baseline
vs end of the experiment: t(87)decreased = −2.53, p =0.01, Cohen’s
d = −0.3; (t(83)increased = −8.99, p <0.001, Cohen’s d = −0.98; and
t(82)controls = −6.21, p <0.001, Cohen’s d = −0.68 paired two-tailed t-
test; Fig. 1b).

In accordance with the main effect of group, participants in the
increased-hunger suggestion group reported being hungrier at the
end of the experiment than those in the control group (t(165) = 2.37,
p =0.02, Cohen’s d =0.37, BF10 = 2.2, two-tailed) and decreased-
hunger suggestion group relative to baseline (t(170) = −4.08,
p <0.001, Cohen’s d = −0.62, BF10 = 289.3, two-tailed) (Fig. 1b). On the
contrary, participants in the decreased-hunger suggestion group
reported being less hungry at the end of the experiment relative to
baseline than the control group (t(169) = −1.99, p =0.04, Cohen’s
d = −0.31, BF10 = 1.03, two-tailed).

Suggestion-based placebo effects on food valuation
We then tested the effects of the placebo intervention on hunger-
addressing value-based decision-making and related brain responses.
A linear mixed effects model fitted to stimulus value ratings (i.e., how
muchparticipants wanted to eat the food items) found amain effect of
group (ß = 0.10, SE = 0.03, p =0.003, 95% CI [0.03–0.16]), controlled
for BMI, which had a borderline significant effect on stimulus value
ratings (ß = 0.01, SE = 0.006 p =0.05, 95% CI [−0.0002 to 0.02]).

Post-hoc t-tests showed that participants in the decreased-hunger
suggestion group (n = 88) assigned less value to food stimuli in terms
of how much they wanted to eat the different snack food items than
participants in the control group (n = 83, t(169) = −3.03, p =0.003,
Cohen’s d = −0.44, BF10 = 10.9, two-tailed) and increased-hunger sug-
gestion group (n = 84, t(170) = −2.92, p = 0.004, Cohen’s d = −0.45,
BF10 = 8.1, two-tailed), with no difference between the increased sug-
gestion and control groups (t(165) = −0.24, p =0.81, Cohen’s d = −0.04,
BF10 = 0.2; Fig. 2a).

Amultilevel general linear regressionmodel fitted to stimulus value
ratings then showed a positive prediction by the tastiness of food across
all three groups (βdecreased =0.54 ±0.03, t(87)) = 16.42, p<2.22e-16;
βincreased = 0.67 ±0.03, t(83) = 24.64; p< 2.22e-16; βcontrols = 0.67 ±0.03,
(t(82) = 20.3, p< 22.22e-16, one-sample t-tests, SI Tables 2–4). Impor-
tantly, the effect of tastiness on food valuationwasmuch stronger in the
increased-hunger suggestion group than in the decreased-hunger sug-
gestion group (t(170)= −2.81, p=0.005, Cohen’s d=−0.46, two-sample,
two-tailed t-test, SI Table 5) and between the decreased-hunger sug-
gestion and control groups (t(169) =−2.92, p=0.004, Cohen’s d= −0.47,
two-sample, two-tailed t-test, SI Tables 6–8).

We further tested if stimulus value ratings correlated to calorie
density. To this aim dietary decision making trials were split into low

and high calorie level trials using a median split of the calorie density
values that were provided by the food stimuli database (see also SI
table 11). Stimulus value ratings correlated significantly more with
calorie density in high- (average Pearson’s R =0.17) than in low-
(average Pearson’s R = −0.12) calorie level trials (z = 3.25, p =0.0012,
two-tailed Fisher’s r-to-z transformation, t(254) = −16.22, p <0.001,
paired-sample two-tailed t-test). This finding indicated that partici-
pants preferred high caloric food more than low caloric food (SI sec-
tion 2.1). To test if this preference for high calorie food differed
between groups, a linear mixed effects model revealed a small, bor-
derline non-significant main effect of calorie level (high vs. low) on
stimulus value ratings (βcalorie level = 0.02 ± 0.01, t(506) = 1.95,
p =0.052, 95% CI [2.20e-4 to 0.05]) and a significant main effect of
group (βgroup = 0.09 ±0.03, t(506) = 2.71, p <0.001, 95% CI
[0.02–0.15]). There was no significant interaction calorie level (high vs.
low) by group on food valuation. Post-hoc t-tests showed that parti-
cipants in the increased-hunger suggestion group preferred both the
low- (SVlow = 2.23 ± 0.04) and the high-calorie foods (SVhigh =
2.30 ±0.06) more than participants in the decreased-hunger sugges-
tion group (SVlow = 2.08 ±0.05, t(170) = 2.31, p = 0.02, two-sample two-
tailed t-test; SVhigh = 2.10 ± 0.05, t(170) = 2.63, p = 0.009, two-sample
two-tailed t-test, Fig. 2b). Similarly, participants in the control group
chose both low- (SVlow = 2.27 ± 0.05, t(169) = 2.69, p =0.008, two-
sample two-tailed t-test) and high-calorie foods (SVhigh = 2.33 ± 0.06,
t(169) = 2.89, p =0.004, two-sample two-tailed t-test) more than those
in the decreased-hunger group (Fig. 2b). Note, these effects were not
interacting with the tastiness of food (see SI section 2.2).

Suggestion-based placebo effects on valuation-related brain
responses
The observed behavioral effects of suggestion on valuation were
underpinned by stronger activation of the ventromedial prefrontal
cortex (vmPFC), nucleus accumbens, posterior cingulate cortex,
bilateral posterior insula, and precuneus in response to stimulus value
ratings. Activationof thesebrain regions correlatedmore stronglywith
the food stimulus value in the increased-hunger suggestion group than
the decreased-hunger suggestion group (pFWE < 0.05, family-wise error
corrected at the cluster and voxel level, Fig. 2c, d, SI Table 9). This
difference was specific for the encoding of stimulus values. No dif-
ferences between the two hunger suggestion groups were found for
the encoding of tastiness or healthiness in the brain (see SI section 3, SI
Tables 10, 11).

Brain mediators of suggestion-based placebo effects on hunger
We next tested for formal neural mediators of observed suggestion-
based placebo effects on hunger. We reasoned that if the hunger
suggestion affects hunger via suggestion-consistent attentional
mechanisms, brain regions associated with cognitive regulation
such as attentional filtering should mediate such an effect. Atten-
tional filtering can be measured by interference resolution during a
Stroop effect. We thus first used a localizer task such as the Multi-
Source-Interference task (MSIT) to identify the brain regions
recruited when participants allocated attentional resources to solve
interference from task-irrelevant information and to filter task-
relevant information (SI section 6). Three regions, the dACC, dlPFC,
and insula, were more strongly activated during incongruent than
congruent blocks of trials (SI table 12). We then used this activation
to functionally define regions of interest (ROIs), and tested whether
the activation of the conflict resolution-related ROIs at the time of
food choice during the dietary decision-making task mediated the
behavioral placebo effects on hunger ratings. The results showed
mediation to be significant for voxels located in the dlPFC ROI
(Bonferroni corrected path a * b, p = 0.008), with a non-significant
total effect of hunger suggestion on the hunger ratings after con-
trolling for the mediator (path c’: beta = 0.21, SE = 0.17, p = 0.26,
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Fig. 3a, SI section 5). These findings suggest that the group differ-
ence between increased- and decreased-hunger suggestions on
hunger ratings can be formally explained by the activation of
interference-resolution regions located in the dlPFC at the time of
decision.

Suggestion-based placebo effects on the decision stage of
economic choice
To gain more insight into whether and how suggestions affected the
dynamics of the decision stage, choices and reaction times were fitted
using a drift diffusion model that assumed that choice formation
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source data file. c Neural placebo effect on food valuation in n = 57 participants.
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suggestion group. Note, the psth line graphs are an illustration of the activations
shown in the SPMof (c). The coordinates correspond to theMontreal-Neurological-
Institute (MNI) coordinates. Source data are provided as a Source Data file.
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during the decision stage is the noisy accumulation of evidence in
favor of a yes food choice over an alternative no food choice.

The drift rate of the noisy accumulation of evidence is influenced
by a series of hidden latent parameters, such as the relative drift
weights of healthiness and tastiness, the initial starting bias toward a
yes or a no choice, or the sensorimotor integration to select a choice
button (i.e., the non-decision time parameter).

Bayesian model comparisons showed that a standard 2 weight
DDM, which assumed that the drift rate is influenced by both tastiness
and healthiness evidence (Deviance Information Criterion (DIC) =
122,170) outperformed two alternative standard DDMs that either
assumed the drift rate is solely influenced by tastiness (DIC = 123,299)
or by healthiness information (DIC= 145,413).

Parameter comparisons between groups then showed that the
strongest effects were observed for the tastiness drift weight. The
values were overall, which indicated that tastier foodwas chosenmore
often, in linewith similar results foundby theGLManalyses of stimulus
value (SI tables 2–8). Importantly, the influence of tastiness on the drift
rate was stronger in participants of the increased hunger suggestion
group compared to the decreased-hunger suggestion group (mean

(Dincreased – decreased) = 0.20, PP = 0.99, pmcmc = 0.01, Fig. 3b, SI
table 13a). In participants of the control group the tastiness was
stronger compared to the decreased hunger suggestion group (mean
(Dcontrol – decreased) = 0.16, PP = 0.99, pmcmc = 0.01, Fig. 3b, SI table 13b),
and non-different from the increased hunger suggestion group (SI
table 13c).

In comparison to taste, healthiness had a relatively small influence
on the drift rate, but still differed between the hunger suggestion
groups. Healthiness weighted more positively on the drift rate in the
decreased hunger suggestion group compared to the increased hun-
ger suggestion group (mean (Ddecreased – increased) = 0.06, PP =0.95,
pmcmc = 0.05, SI table 13a). The control participants were non-different
from the decreased hunger suggestion group (SI table 13b), but were
significantly different compared to the increased hunger suggestion
group (mean (Dcontrols – increased) = 0.10, PP = 0.99, pmcmc = 0.01, SI
table 13c).

Beyond the relative weights on taste and healthiness, a similar
pattern was observed for the initial starting point bias in the DDM. The
starting point bias was overall positive, and indicated an initial bias
toward a yes food choice in all three groups. However, the yes initial
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Fig. 3 | Suggestion-based placebo effects on the decision stage of dietary
decision-making. a Brain mediation of suggestion-based placebo effectsRegion-
of-interest (ROI)-based single-level mediation results for N = 57 participants of the
fMRI experiment. SPMs display the significant voxels of the dlPFC ROI that were
activated in response to interference resolution during the multi-source inter-
ference task (MSIT) atpFWE < 0.05 corrected formultiple comparisons using family-
wise error correction on the whole brain at the peak level. They are superimposed
on the average anatomical image. Average path coefficients (a*b (SEM)) denote
joint activation in paths a and b, and through it significant mediation. Boxplots
display 95% confidence intervals for dlPFC MSIT ROI activation at time of food
choice during the dietary decision-making task, and the change in hunger ratings
from baseline to end of the experiment in decreased and increased hunger sug-
gestion groups, respectively. Boxes correspond to the interquartile range from Q1
25th percentile toQ375th percentile. The gray andblack lines indicatemedians and
whiskers range from minimum to maximum values and span 1.5 times the inter-
quartile range. Horizontal lines indicate medians. b Individual parameters for tas-
tiness, and healthiness drift weights and the starting point bias. The boxplots show
95% confidence intervals for the drift weights of healthiness, tastiness, and the

initial starting point bias between the decreased-, control, and increased-hunger
suggestiongroups. Theboxes of eachboxplot show the interquartile range fromQ1
25th percentile to Q3 75th percentile, horizontal lines indicate medians, the whis-
kers range fromminimum to maximum values and span 1.5 times the interquartile
range. ***pmcmc =0.01, **pmcmc =0.02, *pmcmc = 0.01. The pmcmc-values were
obtained by comparing the proportion of posterior parameter differences from
zero between groups. c Psycho-physiological interaction analysis. SPMs show sig-
nificant voxels located in the dlPFC that interacted more strongly with the vmPFC
seed ROI at the time of making the food choice. The yellow voxels are super-
imposed on a 3D anatomical brain image and survived small volume correction
among the brain regions that were activated in response to interference resolution
during the MSIT task. d Pearson’s correlation between the vmPFC – dlPFC PPI and
drift weight of healthiness relative to the drift weight of tastiness obtained in the
decreased-hunger suggestion group (N = 28) from a separate 2 weight drift diffu-
sion model (DDM). r –Pearson’s correlation coefficient against zero, p values are
two-tailed, BF Bayes factor. [x, y, z] coordinates correspond to the Montreal Neu-
rological Institute space. Source data and exact p-values are provided as a Source
Data file.
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starting bias was weaker under the decreased hunger suggestion com-
pared to the increased hunger suggestion- (mean (Dincreased – decreased) =
0.04, PP =0.99, pmcmc =0.01, Fig. 3b, SI table 13a) and control groups
(mean (Dcontrol – decreased) = 0.05, PP =0.99, pmcmc = 0.01, Fig. 3b, SI
table 13b). The increased hunger suggestion and control groups did not
differ, significantly (SI table 13c).

Placebo effects on decision stage-related brain responses
To localize where in the brain the placebo intervention affected the
decision stage, we searched for the psychophysiological interaction
(PPI) of the vmPFC at the time of food choice.We focused on the dlPFC
based on previous work that provided evidence for the implementa-
tion of action selection during the decision process by a vmPFC–dlPFC
interaction19,20,27,30,31,34. Moreover, we found that a dlPFC ROI activation
at time of food choice formation, and linked to interference resolution
in an independent localizer task, mediated the suggestion effects on
hunger (Fig. 3a). In accordance with the literature and our mediation
results, the PPI analysis indicated significant covariance of the vmPFC
with the dlPFC at the time of choice formation for all participants and
groups (pFWE < 0.05 small volume corrected, Fig. 3c, SI Table 20 for
whole brain activation). Average beta coefficients were extracted from
this vmPFC – dlPFC PPI activation and then correlated with the relative
drift weights of healthiness and tastiness. We observed a significant
positive correlation (R =0.42, p =0.02, BF10 = 3.1) for participants of
the decreased-hunger suggestion group (Fig. 3d). Participants in the
decreased-hunger suggestion group, who considered the healthiness
more during evidence accumulation, were also those who displayed
stronger vmPFC – dlPFC PPI connectivity during the decision stage of
choice formation. The moderation of vmPFC – dlPFC connectivity by
healthiness (relative to tastiness)was non-significant for participants in
the increased-hunger suggestion group (R = –0.008, p >0.05).

Discussion
This study combined computational approaches with brain imaging
and behavioral testing to provide insight into the putativemechanisms
of suggestion-based placebo effects on appetitive interoceptive hun-
ger experiences and hunger-addressing value-based decision-making.
We used a validated placebo intervention that consisted of the
administration of an inactive substance (i.e., a glass of water) together
with the suggestion that the substance either increases or decreases
hunger15. We then characterized the directionality of hunger sugges-
tion effects on behavior and judgments by comparing them to the
effects observed in a control groupofparticipantswhodrank a glass of
water without receiving information about its potential effects on
hunger. In accordance with the results of a previous study15, the
intervention was successful in persuading participants about how
efficiently the drink would decrease or increase hunger with an effect
that was stronger in the two hunger-suggestion groups than the con-
trol group. Consistent with these stronger expectations and their
framing, the decreased-hunger suggestion group reported feeling less
hungry over the course of the experiment than the control group. On
the contrary, the increased-hunger suggestion group reported to be
hungrier than the control group. These findings indicate that the
suggestion successfully induced prognostic beliefs about hunger and,
through them, biased how participants sensed their hunger over the
course of the experiment.

Importantly, we provide evidence for the underlying putative
neurocognitive processes of such suggestion-based appetitive placebo
effects. The strength of the prognostic belief in the effectiveness of the
drink to decrease hunger moderated mPFC activation during food
choice formation. Consistent with this finding, computational model-
ing further dissected this effect by showing that the suggestions about
hunger influenced the valuation and decision stages of choice forma-
tion and the implementation of these two stages during economic
choice formation by the vmPFC and dlPFC.

Past studies have reported mPFC activation in encoding35 and
computing belief-guided contextual reward expectations36,37 or in
representing lower pain expectations under placebo hypoalgesia38.
Our results provide evidence for recruitment of the mPFC during
decision-making as a function of participants’ higher order beliefs
about the effectiveness of a placebo drink to halt falling energy stores.
The moderation was located within the anterior part of the dlPFC on
the medial frontal gyrus, encompassing Brodmann’s Area 10 and
extending into the dorsal anterior cingulate cortex midway between
the vmPFC and more posterior regions of the dlPFC, which have been
shown to be part of the brain’s valuation and cognitive regulation
system that selects actions under the influence of self-
control19,20,30,31,39,40. Our finding may thus suggest that participants in
the context of a decreased-hunger suggestion made more self-
controlled food choices. Indeed, we initially pre-registered this study
under the hypothesis that cognitive regulation, such as self-control,
would play amediating role for the placebo effects on hunger. We also
initially found evidence for a mediating role of regulatory success,
which was defined by the propensity to make more restrained food
choices (i.e., choose healthy, untasty food more often than tasty,
unhealthy food, see pre-registered hypotheses).

However, dietary self-control is commonly measured by a parti-
cipant’s propensity to successfully stick to an a-priori set up goal, such
as losing weight or healthier dieting, when being tempted by
immediate tasty, unhealthy food reward. In this study, participants
were asked to rate their natural food preferences under the suggestion
that they had been administered a substance that was designed to
either decrease or increase their hunger. The experimental design of
our study was different from studies of dietary self-control19,20,30,31,39.
The participants were not explicitly instructed to remember making
choices tomeet their personal goalunder conflict.Moreover,we found
that a slightly more posterior dlPFC region, which was linked to
interference resolution, mediated the observed suggestion-based
placebo effects. However, it mediated these effects in the opposite
direction than what is known about the recruitment of more anterior
dlPFC regions (including the mPFC) under dietary self-
control19,20,30,31,39. The dlPFC interference resolution ROI activated
more at time of food choice in the increased than decreased hunger
suggestion group, and predicted positively the increase in hunger
from baseline to the end of the experiment. Given both, the difference
in our experimental design to dietary self–control studies and this
mediation result, it cannot be fully inferred that participants in the
decreased-hunger suggestion group were more self-controlled.

Following an information-theoretical approach to cognitive
regulation40, the placebo interventionmay have generated othermore
contextual and/or perceptual forms of control. For example, it may
have generated a form of contextual control that consisted in a mod-
ulation of value assigned to food during dietary decision-making. We
directly tested this idea by building on generic models of economic
choices and on evidence that the vmPFC is a central hub of the brain’s
valuation system that computes expected and experienced values
across different decision-making problems and domains23–26,41–44. Our
results converged on the finding that different contextual suggestions
about hungermodulated hunger-addressing foodchoices andhow the
vmPFC computed the values assigned to food to guide these choices.

Another, mechanisms of cognitive regulation involved under the
observed placebo effects consists in perceptual attentional filtering
during the decision-making process28. Attentional filtering can be
defined by reducing the cost of processing task-irrelevant information,
such as overcoming interference during a Stroop effect45. During
dietary decision-making under the influence of higher order prog-
nostic beliefs about hunger, attentional filtering could consist of
considering belief-relevant information more and neglecting belief-
irrelevant information. For example, tastiness information might
become more relevant for food choices in the increased hunger
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suggestion group, and healthiness more relevant in the decreased
hunger suggestion group.

Our computational modeling results provided some direct evi-
dence for this idea. A drift diffusion model fitted to choices and
reaction times disentangled several alternative hypotheses about how
the placebo intervention shaped the decision stage of food choice
formation. Direct evidence for considering belief relevant information
is reflected by the result that the participants in the decreased-hunger
suggestion group were less initially biased toward a yes food choice,
and considered the healthiness more than participants in the
increased-hunger suggestion group. On the contrary, the increased-
hunger suggestion group was more initially biased toward yes food
choices, and considered the tastiness more during choice formation.

These computational findings were underpinned at the neural
level by moderation of the interaction between the vmPFC and dlPFC
during the decision stage. The vmPFC has been reported to implement
action selection in connectionwith other fronto-parietal brain regions,
such as the dorsolateral prefrontal cortex19,20,27,34. That is why we used
the vmPFC as a seed region of interest for searching for interactions
with the dlPFC during food choice formation. We found that the more
healthiness information weighed on the drift rate relative to tastiness,
the more the vmPFC specifically interacted with the dlPFC during
choice formation for participants of the decreased-hunger suggestion
group. This study thus shows that placebo interventions generated
higher order beliefs about hunger states and, potentially through
them, shaped how extensively healthy participants weighed choice
attributes and the brain implemented this biased action selection.

Most of themoderation results were specific to participants in the
decreased-hunger suggestion group, which also showed differences in
the behavioral and computational parameters from the control, no-
suggestion group. The increased hunger suggestion group was in
many findings non-different from the control, no-suggestion group. It
is, therefore, possible that the decreased hunger suggestion group
displayed a placebo effect, whereas the increased-hunger suggestion
group reflected thenaturalfluctuationofhungerover the course of the
experiment, similar to the control group. However, expectations and
hunger ratings were significantly greater in the increased-hunger
suggestion group than the control group. On the contrary, the health
drift weight influenced the accumulation of evidence toward a food
decision similarly in the control and the decreased hunger suggestion
groups, and different to the increased hunger suggestion group. More
research is therefore needed to characterize the increased-hunger
suggestiongroup relative to the control group at theneural, hormonal,
and cognitive levels.

Moreover, hunger and food choices were not fully independent. It
may be that the beliefs instilled by the placebo intervention first
changed hunger sensations and, subsequent to this change, the par-
ticipant’s propensity to pay attention to information during food
choice formation that was more congruent (relevant) to their hunger
sensation. More direct evidence is needed to fully disentangle the
causal links between these nested effects. At the behavioral level
interference resolution tasks unrelated to food choices, but sensitive
to detect inter-individual differences could be used to test the causal
links between attentional mechanisms, hunger sensations and food
choices. Similarly, at the neural level, the use of brain imaging tools
such as electroencephalograms can gain a better temporal resolution
for detecting fast, perceptual attentional mechanisms at work under
placebo conditions and early during the decision stage.

Interoception corresponds to the sensing of bodily states46. Here,
we used a measurement of interoceptive sensitivity by asking partici-
pants to self-evaluate their hunger after self-reported fasting. The
question is still open as to the extent hunger can be objectively sensed
and whether a person’s beliefs about her hunger can affect other
dimensions of interoception, such as behavioral and neural inter-
oceptive accuracy and metacognitive confidence in bodily signal

detection. A limitation of our results is also associated with potential
biases induced by inter-individual differences in hormonal patterns
and self-reported fasting. This study did not collect data on objective
hormonal markers of hunger or information about the phase of the
participant’s menstrual cycle. Although similar suggestion-based pla-
cebo interventions have been demonstrated to affect ghrelin
release14,15, it is still unknown how hormonal variables would have
affected hunger-addressing economic behavior and the effects of the
suggestion-based placebo interventions. Future studies should
explore potential hormonal effects on dietary decision-making under
the influence of idiosyncratic higher order beliefs about the body.

Overall, our findings provide insights into the basic mechanisms
of suggestion-based, appetitive placebo effects, and through them,
contribute new knowledge to better understand placebo effects more
broadly, notably, suggestion-based placebo effects on non-aversive
domains of behavior and experiences beyond the pain and clinical
domains. This is important for building a valid neurocognitive model
of placebo effects across multiple domains. In the real world, it is
irrelevant to provide false information about the ingredients of a
substance to steer individuals towards a healthier diet or elicit a
behavioral change. However, our findings provide the promise for the
development of interventions to openly and non-deceptively target
the cognitive processes of preference-based eating behavior. For
example, they contribute to the neurobiological validation of
communication-based interventions that act on higher-order beliefs
about the body, reinforce personal reasons for behavioral change, and
through them, might favor active treatment effects on altered hunger
sensations and eating disorders.

Methods
Ethical considerations
The research in this study complied with all relevant ethical regula-
tions. The study protocol followed the Declaration of Helsinki and was
approved by the local ethics committee (Comité de Protection des
Personnes Ile de France VI no 1204 and EST III no 19.12.05). All parti-
cipants have provided written, informed consent.

Study-pre-registration
The fMRI part of the study was initially pre-registered on the Open
Science Framework before the start of data collection (https://osf.
io/nw8c9).
The deviations from the pre-registered protocol involved:
(1) Our initial pre-registered sample size for the fMRI study of n = 70

was not possible to attain due to the challenges of in-person data
collection during the COVID-19 pandemic. We recruited n = 62,
which is a sufficiently representative sample to replicate a one-
sided effect of suggestion on hunger (Cohen’s d =0.6) and follows
recommendations for fMRI studies (see paragraph on
sample size).

(2) A no-suggestion control group was added to better characterize
the directionality of suggestion effects on the behavioral level.

(3) Moreover, we chose to more carefully position our results with
respect to the initial hypothesis about the mediating role of
cognitive regulation in terms of self-control, and provide ratio-
nales for this more careful positioning in the discussion.

Participants
In total, 278 participants (mean age = 34.66 ± 0.80 years) were
recruited for the study via a public advertisement in the Paris area. Of
the 278 participants, 62 underwent functional magnetic resonance
imaging.

All participants were screened for normal to corrected-to-normal
vision, no history of substance abuse or any neurological or psychiatric
disorders, and no medication. Participants of the fMRI experiment
were additionally screened for the absence of metallic devices and
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right-handedness. Participants were allotted to three experimental
groups (see below), whichwerematched in age, level of education, and
body composition (see SI table 15 for sociodemographic information).

All participants were tested in the morning between 8 am and
12 pmafter overnight fasting (see SI table 16 and section 2.6 for healthy
eating indexes (HEI) on the day before the experiment). Participants
were asked to fast overnight and to not drink tea or coffee within least
2 h before arriving for the experiment.

Inclusion was restricted to self-identified female participants for
the following reasons. Studies of placebo effects on pain have pro-
vided robust evidence that women display higher levels of positive
expectations and greater placebo effects than men47–49. Importantly,
we used a suggestion-based placebo intervention on hunger from a
previous behavioral study of placebo effects on objective (i.e., hor-
monal) and subjective (i.e., self-reports) markers of hunger15. A sec-
ondary finding of this study was a significantly stronger placebo effect
for women than men, which further motivated the recruitment of
women for the current study. Empirical findings from another stream
of research also provided convergent evidence that the physiology of
appetite and eating behavior differs between men and women50–54.
Women have been shown to display stronger brain activation to
appetite-enhancing food stimuli, which they also likedmore52,53. At the
same time, women also show a stronger propensity for dietary self-
restraint, which is potentially linked to sociocultural and psychological
factors, such as perceived pressure to be thin52. To reduce these
sources of variance, solelywomenwere recruited for the current study.

Exclusion criteria were a baseline hunger rating <2 (no hunger),
pregnancy, claustrophobia, permanent make-up or metallic implants
that were not reported at the time of recruitment, and technical pro-
blems with the fMRI scanner. Based on these exclusion criteria, 23
participants were excluded from the data analysis due to problems
with the fMRI scanner (n = 1) and not being hungry after overnight
fasting at baseline (n = 5 in the decreased-hunger suggestion group,
n = 10 in the increased-hunger suggestion group, and n = 7 in the
control group).

Following the application of these exclusion criteria, 88 (28/88
with fMRI data) participants in the decreased-hunger suggestion
group, 84 (29/88 with fMRI data) in the increased-hunger suggestion
group, and 83 in the control, no-suggestion groupwere included in the
analyses.

Participants were paid 15 euros for their participation in the
behavioral experiment and 60 euros for their participation in the fMRI
experiment.

Sample size calculation
The sample size for the behavioral experiment was determined based
on a moderate suggestion-based placebo intervention effect (Cohen’s
d =0.5) on subjective hunger ratings reported by ref. 15. The software
G*power (version 3.1) indicated that a sample between 102 and 118
participants (n = 51–59 within each hunger-suggestion group) was
necessary to replicate a significant difference between the two
extreme groups (enhanced satiety vs appetite suggestions) with a
Cohen’s d =0.5, a statistical power between 80 and 85%, and a 5%
chance of type I error (alpha = 0.05).

The sample size for the fMRI experiment was based on the find-
ings from the prior behavior only experiment (Meandecreased vs baseline =

0.21 ± 1.2 <Meanincreased vs baseline = 0.96 ± 1.068), which had an effect
size of Cohen’s d = 0.6. To replicate this one-sided effect of hunger
suggestions (increased > decreased) on hunger ratings with a statis-
tical power equal to 70% and a 5% risk for type I error, a minimum
sample of 62 (n = 31 in each group) was necessary. We initially pre-
registered the fMRI studywith a planned sample size of 70participants
for the fMRI sample (n = 35 in each suggestion group) for a two-sided
contrast of these two independent suggestion groups. Participants for
the fMRI experiment were recruited between June 2020 and June 2021

in the midst of the COVID-19 pandemic, which was challenging for in-
person testing, with frequent last-minute cancellations. We therefore
stopped recruitment at 62 participants (n = 31 in each group). This
sample size was a compromise between meeting the sample size
recommendations for conducting task-based fMRI studies54–56 and
feasibility in terms of participant recruitment and the cost of fMRI.

Note that the suggestion-based placebo effects on hunger ratings
were replicated in the smaller fMRI sample (see SI Fig. 1) and the effects
were not significantly different in magnitude between the pilot and
fMRI sample, as indicated by a non-significant hunger suggestion
groupincreased vs decreased by testing timebaseline vs end of experiment by
sample behavioral pilots vs fMRI interaction: F(2,343) = 0.4; p =0.67. We
therefore pooled the two groups for the comparison of the decreased-
and increased-hunger suggestion groups.

The sample size (n = 90) of the control group was defined to
match the decreased- and increased-hunger suggestion groups
combined.

Randomization
The probability of being assigned to one of the two hunger suggestion
arms was set to p =0.5 and remained the same for the duration of the
study. Randomization was performed before participants were enrol-
led using standard permutation algorithms implemented in MATLAB.
The algorithm drew one of the two integers 1 and 2. If the integer was
‘1’, the participant was assigned to the suggestion group 1 (decreased-
hunger suggestion). If it was ‘2’, the participant was assigned to sug-
gestion group 2 (increased-hunger suggestion). To ensure an equal
number of participants in each suggestion group the permutation was
repeated 63 times for the behavioral pilots and 31 times for the fMRI
participants.

Note, the initial pre-registration of the study did not foresee a
control group, which was added a-posteriori. The randomization was
therefore conducted on the two hunger suggestion groups.

Placebo intervention
All participants were administered a glass of mineral water at the
beginning of the experiment (®Eau minérale Evian Naturelle). The
control group was told that the drink was just mineral water. For the
two hunger-suggestion groups, the label on the water bottle was spe-
cifically designed to provide information about the water’s ingredients
to either decrease or increase hunger (Fig. 4). In addition, for the two
suggestion groups, the experimenter explained the labels and all
participants read an information booklet about the water’s ingredients
and their respective effects on hunger (for further details on the pla-
cebo intervention, see SI section 7).

Briefly, after rating their baseline hunger, the participants were
assigned to the decreased- or increased-hunger suggestion group
according to the randomization.

Participants in the increased-hunger suggestion group were told
that the drink (water) was enriched with zinc, iron, and plant-based
supplements, such as St. John’s Wort, because these ingredients are
known for their powerful stimulating effect on appetite through the
potentiation of hunger-stimulating hormones, such as ghrelin. By
contrast, participants in the decreased-hunger suggestion group were
told that the water was enriched with vitamin B12, iron, and riboflavin,
because these ingredients had a powerful effect on appetite to curb
food cravings through the potentiation of hunger hormones, such as
leptin.

The experimenters made sure that the participants understood
the information about the drink before pouring it into a 25ml glass
(0.845 oz). Participants were then required to drink the whole glass
within approximately 2–5min. The experimenters were both female
and male, and not blind to the placebo interventions. They left the
room when participants of the behavioral experiment performed the
dietary decision-making task.
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Expectancy ratings
After drinking the glass of water and before performing the dietary
decision-making task, participants rated their expectation about how
efficiently they believed the water drink would decrease or increase
their hunger. Thus, they answered the following question: On a scale
from 1 to 10, 1 being theminimum, howmuch do you expect this water
to decrease (for the decreased-hunger suggestion group) / increase
(for the increased-hunger suggestion group)/affect (control group)
your hunger? All participants rated their expectations about the
water drink.

Hunger ratings
Hunger was assessed by three factors: (1) overall experienced hunger
(i.e., Howhungrydoyou feel?), (2) homeostatichunger (i.e., Howmuch
food could you eat right now?), and (3) hedonic hunger (i.e., How
pleasant would it be to eat, now?). Responses were given on a 7-point
Likert scale from 1 (not at all) to 7 (very much) and averaged to a
common score across the three questions. Hunger ratings were col-
lected at two times during the behavioral study: (1) at baseline, before
the placebo intervention, and (2) at the end of the experiment. They
were collected three times during the fMRI experiment: (1) at baseline,
(2) after the placebo intervention but before starting the fMRI session,
and (3) at the end of the experiment.

Dietary decision-making task
All participants performed a dietary decision-making task19,20,30,31,39

and a sub-group of 61 performed the task during fMRI. The task
consisted of the participants choosing whether they wanted to eat
snack foods of varying tastiness and healthiness on a trial-by-trial
basis. The task counted 200 trials (behavioral pilot) or 152
trials (fMRI sub-group) for a total duration of 20–30min (Fig. 4).
Each trial started with the display of a food item on a computer
screen and participants indicated whether they wanted to eat the
food item using a 4-point-Likert scale, from a strong no to a
strong yes.

All food stimuli were selected from adatabase of 500 food images
validated for tastiness and healthiness ratings by 300 participants
from a non-published Mturk study conducted in-house (SI table 17).
The food images were presented on a computer screen in the form of
high-resolution images (72 dpi) as 100 g or 100ml servings of the
snack and its packaging following the protocol of past studies39,57.
MATLAB and Psychophysics Toolbox extensions58 were used for pre-
sentation of the stimulus and recording of the responses.

Participants of the fMRI experiment saw the stimuli via a head-
coil-based mirror and indicated their responses using an fMRI com-
patible response box system.

After the dietary decision-making task, participants rated each
food for its tastiness and healthiness using the same 4-point Likert
scale used for the dietary decision-making task. These ratings were
collected for all participants and outside the fMRI scanner.

The dietary decision-making task was incentive compatible,
becauseone foodwas chosen by chance for consumption at the end of
the experiment following similar approaches adopted by studies of
value-based dietary decision-making19,20,30,31,39. Inmore detail, to ensure
that participants’ choices were close to their real preferences, they
were told that at the end of the experiment, one of the food items
would be randomly selected to count among all the items presented
during the task. If the subject responded Yes or Strong Yes, they could
eat that food before leaving the laboratory. Because only one random
trial was selected to count, the optimal strategy was to treat each
decision as if it were the only one. The foods that were eventually
presented to the participant for consumption at the end of the
experiment comprised chocolate bars, fruits (e.g., banana, clem-
entine), or dairy-based drinks. Participants did not know what food
theywere going tobepresentedduring the experiment andonly found
out at the very end before leaving the laboratory.

MRI data acquisition
T2*-weighted multi-echoplanar images (mEPI) were acquired using a
Siemens 3.0 Tesla VERIO MRI scanner with a 32-channel phased array

Fig. 4 | Experimental procedure.The scheme illustrates the temporal organization
of the experiment with the different steps indicated by the numbers 1–4. The black
panels correspond to computer screenshots of individual events for thehunger and
expectancy ratings given before and after fMRI (outside the MRI scanner) and the

dietary decision-making task and multi-source interference task performed during
fMRI. The duration of the two fMRI tasks is shown in seconds. Created with
Biorender.com.
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coil. Three echos were acquired for the best compromise between
spatial resolution and signal quantity in the orbitofrontal cortex
(OFC)59,60. To further reduce signal drop out in the OFC, we used an
oblique acquisition orientation of 30° above the anterior–posterior
commissure line61. This correction for signal dropout was applied
because the ventromedial prefrontal cortex, a brain region of interest,
encompasses the medial portions of the orbitofrontal cortex. Each
volume comprised 48 axial slices collected in an interleaved manner.
To cover the entire brain, the acquisition sequence involved the fol-
lowing parameters: echo times of 14.8, 33.4, and 52ms; FOV= 192mm;
voxel size = 3 × 3mm; slice thickness = 3mm; flip angle = 68°; and
TR = 1.25 s.Whole-brainhigh-resolutionT1-weighted structural scans (1
× 1 × 1mm) were acquired for all 61 subjects and co-registered with
their mean mEPI images and averaged together to permit anatomical
localization of the functional activation at the group level.

fMRI preprocessing
Image analysis was performed using SPM12 (Welcome Department of
Imaging Neuroscience, Institute of Neurology, London, UK). Pre-
processing involved the following steps: segmentation of the anato-
mical image into gray matter, white matter, and cerebrospinal fluid
tissue using the SPM12 segmentation tool. The three echo images of
each fMRI volume were summed into one EPI volume using the SPM12
Image Calculator62–64. Then, the summed EPIs were spatially realigned
and motion corrected, co-registered to the mean image, and normal-
ized to theMontreal Neurological Institute (MNI) space using the same
transformation as for the anatomical image. All normalized images
were spatially smoothed using a Gaussian kernel with a full-width-at-
half-maximum of 8mm.

Behavioral analyses
Statistical tests were conducted using the MATLAB Statistical
Toolbox (MATLAB 2018b, MathWorks), R (3.3.2 GUI 1.68) within
RStudio (RStudio 2022.02.3 + 492), and JASP (JASP 0.16.4). We con-
ducted main effects tests using linear mixed effects (LME) models
fitted to expectancy ratings, hunger ratings, and stimulus value
ratings, controlling for BMI at the fixed effects level. Post-hoc two-
tailed and one-tailed frequentist and Bayesian t-tests were used to
further characterize the directionality of detected main effects and
interactions, respectively.

Suggestion-based placebo intervention effects on expectancy
ratings
To test whether the placebo intervention successfully induced
expectations about the drink’s effectiveness to increase or decrease
hunger, a linear mixed effects model was fitted to expectancy ratings
following Eq. 1:

expectancy ratings = β0Intercept + βGroupGroup+βBMIBMI

+ ðInterceptjParticipantÞ: ð1Þ

This model included fixed effects for the intercept, suggestion
group (coded −1 for decreased, 1 for increased, and0 for control), BMI,
and random intercepts nested by participant number.

Suggestion-based placebo effects on hunger ratings
For each session (baseline, end of experiment) hunger ratings were
averaged for the three hunger questions to form one hunger score for
each participant. A linear mixed effects model was fitted to these
average hunger ratings following Eq. 2:

hunger ratings = β0Intercept +βGroupGroup+ βTimeTime+βBMIBMI

+βGroup×TimeGroup×TimeðInterceptjParticipantÞ:
ð2Þ

The model included the following fixed effects regressors: inter-
cept, suggestion group (i.e., coded −1 for decreased hunger, 1 for
increased hunger, and 0 for control), measurement time (i.e., coded −1
for baseline and 1 for the end of the experiment), BMI, and the main
interest suggestion group by measurement time interaction. The
model controlled for individual differences in hunger ratings by
including a random intercept nested by participant number. Post-hoc
paired and two-sample t-tests were conducted to characterize the
main effects (of group, time) and interaction (group by time). Pearson
correlations were performed for both hunger suggestion groups to
assess how the hunger ratings were associated with the expectancy
ratings.

Suggestion-based placebo effects on dietary decision-making
A linearmixed effects model was fitted to the mean centered stimulus
value ratings from the dietary decision-making task following Eq. 3:

SV= β0Intercept + βGroupGroup+βBMIBMI+ ðInterceptjParticipantÞ:
ð3Þ

Themodel included fixed effects for the intercept, themain effect
of group (coded −1 for the decreased-hunger suggestion group, 1 for
the increased-hunger suggestion group, and 0 for the control group)
and BMI. It also controlled for individual differences in food valuation
by a random intercept nested by participant number. Two sampled,
two-tailed t-tests, along with Bayesian independent sample t-tests,
were conducted to compare the average stimulus value ratings (SV)
between groups.

Moreover, to also test how the hunger suggestions affected the
computation of food preferences at the valuation stage, a multilevel
general linear model (GLM) was fitted to stimulus value ratings (SV)
following Eq. (4):

SV = β0 + βHRHR+ βTRTR+βtrialtrial +βHR*TRHR*TR+βHR*trialHR*trial

+βTR*trialTR*trial + ε

ð4Þ

At the individual level, the GLM assumed that the food SV was
determined by the linear integration of tastiness (TR) and healthiness
(HR) attributes of the food, with the rate of integration (beta weights, β)
varying idiosyncratically between participants. This assumption is
consistent with many other decision-making problems and at the core
of the valuation phase proposed by models of economic choices. The
GLM also included a trial number (trial) regressor to control for fatigue
effects and three interactions (TR*HR, TR*trial, HR*trial) to assess how
much change occurred in the weights given to the tastiness and heal-
thiness attributes across trials and relative to each other. The SV, TR,
and HR regressors were mean centered (i.e., coded –2 (strong no), –1
(no), 1 (yes), or 2 (strong yes)). Individual beta weights for each
regressor (i.e., β) were then fitted into a second-level random effects
analysis using two-tailed, two-sample t-tests to compare the two sug-
gestion groups. More fine-grained analyses on dietary decision-making
are reported in the Supplement (SI section 2 and SI tables 2–8).

To determine whether the placebo intervention also affected how
calorie content moderated dietary decision-making, the calorie den-
sity (i.e., calories / 100 g or 100ml serving) for each food item was
providedby the fooddatabase, andused todivide thedietarydecision-
making trials into two trial categories, i.e., low-calorie and high-calorie
food choices using a median split over the calorie densities for each
participant (averagemedian= 1.48, SEM=0.13, range = 5.99). Pearson’s
correlations were then computed within each participant between
calorie density and stimulus value for lowandhigh calorie choice trials,
respectively.Moreover, a linearmixed effectsmodelwasfit to stimulus
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value ratings following Eq. 5:

SV∼ 1 + group+ calorie level + group*calorie level + ð1 j sub IDÞÞ ð5Þ

The LME tested whether the stimulus value (SV) assigned to food
was determined by the group (decrease: −1, control: 0, increase: −1)
and/or the calorie level (low: −1 vs high: 1), and importantly, whether
group and calorie level interacted on food valuation.

Computational modeling
To test how and when suggestions about hunger influenced latent
variables of the action selection (decision) stage of the decision-
making process, SVs were collapsed into binary yes/no choices and
fitted togetherwith reaction times using adrift diffusionmodel (DDM),
which has been validated by two independent studies for dietary
decision-making32,33.

Similar to traditional sequential sampling frameworks65–67, the
model assumed that committing to a choice results from the noisy
accumulation of evidence up to a certain threshold in favor of one
choice (say a yes) over an alternative choice (say a no). The DDM
further assumed two sources of evidence: The tastiness (TD) and the
healthiness (HD) of the food, which linearly scaled (ωtastecp, ωhealthcp)
the drift rate (Ecpt(t)) of evidence accumulation within the interval
between the reaction time and the non-decision time (DT = RT - nDT).
For example, the drift rate (δcpt = Ecpt(t)) was determined at each
timestep (t with dt = 8ms) by Eq. 632:

Ecpt = Ecpt�1 + ðωtastecp* TD+ωhealthcp*HDÞ * dt +noise ð6Þ

The differences in the tastiness and healthiness ratings for
choosing a food item (yes response) versus not (no response) for given
trials were denoted by TD and HD. Their respective weights on the
updating of the evidence (the drift rate) were denoted by ωtastecp and
ωhealthcp.

Overall, fitting the choices and reaction times with this 2 separate
weight DDM allowed us to break down the action selection phase into
the following hidden latent variables that were then compared
between groups to test how they were influenced by the contextual
hunger suggestion: (1) the respective influence of tastiness and heal-
thiness on the evidence accumulation toward a yes over a no choice
(e.g. drift rate weights), (2) the initial starting bias toward a yes or no
food choice, and (3) the non-decision time, which approximated the
time taken to initiate a choice and the correspondingmotor response.

Model specification
The model was specified using the RWiener package via the run.jags
function of the JAGS package in RStudio. More specifically, a one-
dimensionalWiener process implemented theDDM,where the state of
evidence (dEt) at each timestep (dt) evolved stochastically following
differential Eq. (7):

dEt=dt∼NðEt,σ
2Þ ð7Þ

Et was the evidence accumulation defined by Eq. 6 above. In
practice, a stochastic node (y) reflected a certain state of evidence at a
specific timestep (dt) (or the predicted choice data and reaction times)
and was distributed according to a univariate Wiener distribution (8):

ycpt ∼dwieners ðαt = 2, τcpt,βcpt, δcpt,αcpÞ ð8Þ

Choice and reaction time (RT) data were coded in a way that no
food choices were given negative RT values and yes food choices
positive RT values.

The evidence accumulation started with an initial value of evi-
dence equal to the value of the starting bias parameter (ßcpt), which

was allowed to vary between participants as a random effect (more
details about the priors for ß are provided in SI section 4.1). The
boundary separation parameter (αt) was fixed to amaximumvalue of 2
on a trial-by-trial basis but varied between participants as a random
effect. Since each participant was allowed to still have their own
boundary separation parameter, the prior for the participant specific
alpha (αcp) was drawn from a joint normal distribution: αcp =N(μαcp,
σ2

αcp), with a mean μαcp, that was itself drawn from a continuous uni-
form distribution between 0.001 and 2 and a varianceσ2

αp drawn from
a gamma distribution with a shape of 1 and a rate of 0.1.

The model estimated the noise in the drift rate (δcpt), which dif-
fered on a trial-by-trial basis and between participants. The prior for
the drift rate was drawn from each trial (t) from a normal distribution:
δcpt =N(Ecpt, e.p. Ƭcp), with a trial-specific mean that corresponded to
the evidence (Ecpt) accumulated up to this trial following Eq. 6 and a
variance (e.p. Ƭcp) drawn from a gamma distribution with a shape and
rate determined by the error terms of the regression function (see SI
section 4.1) that was truncated between 0.001 and 2. The priors for the
tastiness (wtastecpt) and healthiness drift weights (whealthcpt) were
defined by uniform distributions between –5 and 5. Both drift weight-
free parameters were allowed to vary between participants as random
effects.

The non-decision time (τcpt) was also allowed to differ between
participants as a random effect, with a mean drawn from a uniform
distribution between 0 and 10 and a variance drawn from a gamma
distribution with a shape of 1 and a rate of 0.1 (see SI section 4).

Model estimation
Groups were estimated, separately. The five free parameters of the
model (αp, ß,ωtaste,ωhealth, τ)wereestimatedbyGibbs sampling via the
Markov Chain Monte-Carlo method (MCMC) in JAGS to generate
posterior inferences for each parameter. A total of 5000 samples was
drawn from an initial burn-in step and then three chains of
10,000 samples were run. Each chain was derived from three different
random number generators with different seeds (see SI table 18). We
applied a thinning of 10 to the final sample, which resulted in a final set
of 30000 samples for each parameter. Gelman-Rubin tests were con-
ducted for each parameter to test for the convergence of chains. The
potential scale reduction factor (psrf) did not exceed 1.02 for any
parameter at the participant or population level, and the deviance (the
log posterior) had a prsf ~ 1. The autocorrelation between the chains
was low in all three groups and for all five parameters (AC, 100~0.0).

Model selection criteria
Choice and reaction time data were fitted using a standard two weight
DDM, which was compared to two alternative DDMs with one weight,
respectively: A health weight DDM, and a taste weight DDM. Deviance
information criteria were used to compare the model fits. The DIC was
defined following Gelman et al.68 by Eq. 9:

DIC=0:5* var ðdevianceÞ+mean ðdevianceÞ ð9Þ

DICs were smaller for the 2 weight DDM (DIC = 12.2170) than the
taste weight DDM (DIC = 12.3299) and the health weight DDM (DIC =
14.5413). Parameter recovery, reported in supplementary information
(SI section 4.2), provided evidence that the parameter estimates were
identifiable (SI table 19).

Comparison of free parameters between groups
To determine whether latent, hidden parameters of the tDDM were
different between groups, the posterior probability of potential group
difference was calculated following Eq. 10.

PP =mean ððdincreased ddecreasedÞ>0Þ ð10Þ
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Inmoredetail, a total of 3 posterior parameter distribution chains,
counting each 10,000 samples, were concatenated for eachparameter
into one chain per parameter counting each 3,000 values (e.g.,
PPincreased, PPdecreased, PPcontrols). For each parameter a difference
between groups was calculated leading to a binary vector of the length
30,000. The values in this vector were coded 0 if the difference
between groups was smaller then zero, and 1 if the difference was
greater then zero (i.e., Ddecreased vs. increased suggestion group, Ddecreased vs.

controls, Dincreased vs. controls). Themeanof those 30000binaryoutcomes
for each parameter corresponds to the posterior probability (PP) that
the population parameter distributions differed between groups.

Note, except for the healthiness drift weight, all comparisons
were made with the prior prediction (H1) that the difference in the
posterior parameter distributions were the following:
Dincreased – decreased suggestion group >0; Dcontrols – decreased suggestion group >0;
Dincreased – controls > 0.

For the healthiness drift weight the opposite was assumed
decreased > controls > increased (see SI Table 13a, b, c for group-level
mean posterior distributions, and posterior distributions of para-
meters in each group).

Brain imaging analyses
fMRI data were analyzed using Statistical Parametrical Mapping
(SPM12, Welcome Department of Imaging Neuroscience, Institute
of Neurology, London, UK)58. Analogous to the behavioral
analyses, we searched for suggestion effects on brain responses
related to the valuation and action-selection phases of dietary
decision-making.

fMRI timeseries were fitted using multilevel general linear
models (GLMs). A first GLM (GLM1) included the following regres-
sors at the first level: an onset regressor at the time of food image
display (boxcar duration: reaction time) that was parametrically
moderated by the stimulus value and an onset regressor for missed
trials (boxcar duration: 3 s). Regressors of non-interest included six
realignment parameters (x, y, z, roll, pitch, and yaw) to correct for
head movement. Boxcar functions for each trial were convolved
with the canonical hemodynamic response function. Individual
contrast images for onset choice and the parametric modulator, the
stimulus value, were then fitted into a second-level random effects
analysis that used two-sample t-tests to localize brain voxels that
were activated differently at the time of choice formation and in
response to the stimulus value in the decreased-hunger suggestion
group (N = 28) relative to that in the increased-hunger suggestion
group (N = 29). Moreover, to test whether brain responses at the
time of choice were moderated by expectations about hunger out-
comes, expectancy ratings were added as second-level covariates of
the choice onset regressor in a separate GLM (GLM2). GLM2 inclu-
ded the onset regressor at the time of choice, with a duration cor-
responding to the reaction time and a missed trials onset regressor
of a boxcar duration of 3 s at the first level. At the second level, one-
sample t-tests were used to test how much expected hunger
modulated brain responses at the time of choice onset in each
suggestion group.

Statistical thresholds for the second level random effects com-
parisons were corrected for multiple comparisons using family wise
error corrections (FWE) on the cluster and voxel level (pFWE<0.05). For
cluster wise correction for family wise errors a non-liberal initial
uncorrected threshold of p <0.001 was considered.

Time courses
We extracted the activation time courses at the maxima of interest for
all reported time course analyses. This was the vmPFC value-encoding
region defined by MNI = [0, 52, −12] (SI table 3). The response time
courses were estimated using a flexible basis set of finite impulse
responses separated by one TR of 1.25 s.

ROI-based mediation analysis
To test whether the activation of interference resolution-related brain
regions during dietary decision-making mediated the effect of the
placebo intervention on hunger experiences, beta estimates were
extracted at the time of food choice onset (GLM1) from the following
regions of interest: dACC = [−4, 10, 52], right insula = [32, 22, 4], and
dlPFC [40, 42, 26] (SI Table 6). The activation in these regions survived
small volume correction (SVC) using 10-mm spheres centered on the
dACC [3, 10, 47], insula [32, 23, 10], dlPFC [47, 33, 27], which were
reported by Bush et al. 20031 to be a robust and reliable neural cor-
relate for interference resolution in humans.

Three ROI-based single-level mediation analyses were conducted,
one per ROI, and corrected for multiple comparisons using a Bonfer-
roni corrected p-value of p =0.05/3 = 0.02 to infer significance. The
initial X variable in each mediation model was the suggestion group
(coded −1 for the decreased hunger group and 1 for the increased-
hunger group). The outcome Y variable was the difference in the
hunger ratings (Δhunger = end of experience – baseline), with positive
differences indicating greater hunger at the end than at the beginning
of the experiment. Path a of the regression for each mediation model
tested for a linear effect of suggestion (increased > decreased hunger)
on ROI activation at the time of food choice formation. Path b tested
for the correlation between this brain activation and hunger by con-
trolling for the effect of suggestion (path a). The path c regression
tested for the direct effect of suggestion on hunger and c’ for the total
effect controlled for the effect of the mediator variable. Finally, med-
iation was tested by the product of the path a and path b regression
coefficients using the formula: a * b = c – c′ (see SI section 5 for more
details on each path’s coefficients).

Bootstrappingwasperformed to test the significanceof eachpath
coefficient69,70. This involved estimating the distribution of individual
path coefficients by randomly sampling, by replacement, 10,000
observations from thematrix of [a, b, c, c′, a * b] path coefficients. Two-
tailed weighted p-values were calculated from the bootstrap con-
fidence intervals.

Psycho-physiological-interaction (PPI) analysis
PPI analysis aimed to localize the brain regions that exhibited choice
formation-related functional connectivity within the brain and how
such connectivity was linked to free parameters of the tDDMmodel in
each suggestion group.

As the seed region,wechose the vmPFC regionof interest that also
correlated more strongly with food stimulus values in the increased-
versus decreased-hunger suggestion group (MNI = [0, 52, −12], SI
table 3).

Functional timeserieswerefittedbya thirdGLM(GLM3),with three
onset regressors at the first level: the time of fixation (duration = 0.5 s),
choice (duration = reaction time), and missed trials (duration = 3 s).
Realignment parameters were included as regressors of non-interest to
control for head movement. We then extracted average BOLD activity
timeseries from a 5-mm sphere centered around the vmPFC ROI (MNI
coordinates = [0, 52, −12]) for the contrast choice versus fixation and
estimated a fourth GLM (PPI-GLM4), which included a psychological
regressor that modeled the choice formation as: reaction time - long
boxcars at the time of food choice onset, the physiological regressor of
the BOLD activity timeseries of the vmPFC seed region, and the inter-
action of the psychological and physiological regressors, which was the
PPI regressor of interest. Individual betas for this PPI regressor were
fitted into a second-level random effects analysis using one-sample t-
tests (See whole brain PPI activations in SI table 14).

Definition of regions of interest (ROI)
We used a theory-driven approach to determine regions of interest for
(1) the mediation analysis and (2) to threshold second-level statistical
parametric maps (SPMs) for PPI regressor-related brain activation.
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Previous work has shown that the decision (action selection) stage of
value-based decision-making is implemented by the vmPFC in con-
nection with other prefrontal brain regions, such as the dorsolateral
prefrontal cortex (dlPFC)27–31. Importantly, this work showed that the
dlPFC plays a moderating role for value encoding within the vmPFC
under cognitive regulation, such aswhenparticipants forgo short-term
rewarding tasty foods in favor of more abstract and long-term
rewarding healthy foods19,20,31. We reasoned that this type of cogni-
tive regulatory success requires more attentional resources, similar to
overcoming interference during a Stroop effect. We therefore defined
the dlPFC functionally using an independent interference–resolution
localizer task, the MSIT task45 (see SI section 6). In more detail, to
extract beta values of this region at time of food choice, and to make
small-volume corrections of the PPI SPM, a 10-mm sphere was cen-
tered on the dlPFC MNI coordinates ([40, 42, 26]) that were more
strongly activated in incongruent than congruent MSIT trials (see SI
table 21). Note, the vmPFC–dlPFC PPI connectivity also survived small-
volume correction when using an anatomically defined dlPFC ROI that
comprised gray matter from Brodmann areas 9 and 46 built using the
SPM wfupickatlas.

Linking tDDM drift weights to vmPFC-dlPFC implementation of
evidence accumulation
Averagebeta coefficients,which reflected the vmPFC–dlPFC interaction
strength at the time of food choice, were then extracted from a very
localized 5-mm radius sphere centered around the significant voxels
located within the dlPFC activation. These beta coefficients were then
correlated across participants to the difference between the healthiness
and tastiness drift weights from the tDDM (whealthiness – wtastiness) using
Pearson’s correlations for both hunger-suggestion groups.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source data file for conclusions of figures and tables has been
deposited on figshare (https://doi.org/10.6084/m9.figshare.24088152)
and is provided in the Supplementary Information/Source Data file.
The raw fMRI and behavioral data files (MATLAB datasets) can be
provided upon request by contacting the corresponding author
pending scientific review and a completed material transfer
agreement.

Code availability
The codeused for the dietarydecision-making task, formodel-free and
model-based analyses is available on theOSF repository (https://osf.io/
2fnmj/?view_only=9aa6dbee396540408579d47a9e72dc66).
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