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Abstract

This paper extends sublaminate-based variable kinematics plate finite elements towards the buck-

ling analysis of composite structures. Robust locking-free 4-node and 8-node interpolations are

used to build the finite element matrices in terms of fundamental nuclei, invariant with respect to

the employed kinematic model of the composite plate. Geometric nonlinearities are accounted for

in the von Kármán sense. The classical linearised stability analysis is mainly conducted for sand-

wich panels, for which different kinematic assumptions are employed for the skins and the core.

Global buckling of the sandwich panel as well as short-wavelength wrinkling of the skins are inves-

tigated by referring to a variety of case studies, including homogeneous and laminated skins as well

as isotropic and orthotropic cores. Convergence studies are performed to establish the minimum

number of elements for the local instabilities to be grasped. The proposed computational frame-

work requires a simple 2D mesh and is capable of providing quasi-3D response patterns. This is as

demonstrated by numerous case studies that address the transition from global to local buckling, the

onset of wrinkling in flat sandwich panels with anisotropic skins under various loading conditions

as well as the local face sheet instability occurring in sandwich panels working in bending. It is

concluded that he proposed FEM-based tool is computationally efficient and can be advantageously

employed in pre-sizing design phases without resorting to full 3D models.

Keywords: Variable kinematics plate model, unified formulation, finite element method, sandwich

plate, linear buckling analysis, global/local instabilities, face sheet wrinkling,

1Corresponding author. Dr.-Ing. Girolamo Di Cara, Email: dicarag@parisnanterre.fr

Preprint submitted to Composite Structures



1. Introduction

Sandwich structures are widely employed in weight-sensitive applications du to their outstand-

ing specific bending stiffness obtained by separating two stiff skins through a thick though lightweight

core [1]. By virtue of their high bending rigidity, sandwich panels show thus an improved resis-

tance to buckling [2, 3]. However, it is important to account for the transverse shear deformation

occurring in the mechanically weak core because it reduces the critical loads related to the simple

bending stiffness [4]. Furthermore, the thin skins are prone to local instabilities referred to as wrin-

kling, in which the face sheets buckle in a short-wavelength of the order of the core thickness [5].

An outstanding contribution to the understanding of the wrinkling phenomenon has been given by

Fagerberg [6–9], ranging from the effects of anisotropy in the face sheets up to the transition from

wrinkling to the pure compression failure. It is worth emphasising that this instability does not only

arise in compressed struts, but it is likely to occur also in the skin under compression under a global

bending deformation [10].

This failure mechanism is often catastrophic because it comes along an important stiffness loss

due to the weak mechanical properties of the core and the onset of delamination between the core

and the buckled face sheet. Therefore, it is important to accurately calculate the critical wrinkling

loads for a reliable sizing of sandwich panels.

The short-wavelength of the wrinkling has called for a representation of this mechanism as

a material failure: given the geometric and constitutive properties of skins and core, analytical

formulas for the critical loads have been proposed irrespective of the actual loading and boundary

conditions of the panel. This approach proves effective inasmuch as it can be employed within large

scale models of built-up structures, such as the Global FE Model of an aircraft [11]. An extensive

literature review over the analytical wrinkling formulae can be found in [12] and in the more recent

critical assessment by Ginot et al. [13]. It turns out that the validity of such analytical expressions

is confined to specific classes of problems and that they prove rather inaccurate when applied on

configurations that do not meet the assumptions upon which they are based.

Three-dimensional (3D) FE models have been developed for investigating the wrinkling failure

[14–16], which are, however, too computationally intensive to be used in a preliminary design phase.

So-called “unified” approaches based on high-order structural models have been also proposed that

are capable of predicting both global buckling and local wrinkling [17–20]. These approaches are

attractive because they open the possibility of investigating the interaction between global and local
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instabilities [21, 22].

By introducing his “Unified Formulation”, Carrera paved the way for the development of com-

putational tools based on a so-called variable kinematics approach, in which high-order structural

models can be tailored depending on the considered problem and the desired accuracy [23]. Ded-

icated to composite structures, Equivalent Single Layer (ESL) as well as Layer-Wise (LW) mod-

els of variable order can be all used by simply selecting an appropriate input. The Sublaminate

Generalized Unified Formulation (SGUF) is a formal development of the original Carrera Unified

Formulation (CUF) and of Demasi’s Generalized Unified Formulation (GUF) [24] allowing to meet

the specific requirements for efficient models of sandwich panels, for which different models are

conveniently used to model the thin face sheets and the thick core [25].

CUF models accounting for geometrical nonlinearities, have been developed by Pagani and

Carrera for buckling and post-buckling analyses of laminated composite beams and isotropic plates

[26–28]. CUF-based beam models have been developed by Hui et al. towards post-buckling analy-

ses of sandwich beams accounting for the occurrence of coupled global-local instability [29]. CUF

and SGUF models have been also applied successfully to sandwich buckling and wrinkling prob-

lems by referring to Navier-type [30] and to Ritz solutions [31]. The Ritz method does in particular

allow to broaden the studies towards anisotropic panels with arbitrary boundary conditions. By

resorting to high-order in-plane functions, it has been shown that very refined SGUF models are

capable of grasping the short wavelength response even in configurations involving anisotropic face

sheets and multi-axial loads. These findings are the encouraging starting points for the develop-

ments proposed in this paper, in which the Finite Element (FE) implementation of SGUF presented

in [32] is extended towards the linearized buckling analysis.

The paper is organized as follows: Sec. 2 briefly recalls the modelling of multilayered panels

by variable kinematics plate theories within the framework of Finite Element Method (FEM) and

Sec. 3 presents its extension towards geometrical nonlinearities for the linearized stability analysis;

in Sec. 4 the numerical tool is assessed by investigating a number of case studies: symmetric cross-

ply laminates and sandwich panels with homogeneous as well as anisotropic composite skins under

uniaxial compression loads, the onset of local instabilities in the face sheets of sandwich structures

which work in bending and the transition from global to local instabilities in symmetric sandwich

panels under combined shear and compression loads. Finally, Sec. 5 summarizes the main outcomes

and proposes potential future developments.
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2. Problem statement

2.1. Geometry description

Let us consider a composite plate occupying the volume V = Ω × [−H/2 ≤ z ≤ H/2], where

H represents the total thickness, and Ω = [0, a] × [0, b] denotes the reference surface on the

(x, y)−plane. The composite plate consists of p = 1, 2 . . .Np homogeneous and perfectly bonded

plies stacked along the thickness direction z, with each ply having a thickness of hp, as illus-

trated in Fig. 1. The composite cross-section is further idealized into k = 1, 2 . . .Nl numerical
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Figure 1: Global z, layer-specific zk and ply-specific zp coordinates and non-dimensional layer- and ply-specific coor-

dinates ζk and ζp within the SGUF formalism.

layers (also named sublaminates) within the SGUF formalism. Each sublaminate has a uniform

thickness hk and it is composed of Nk
p adjacent plies. Local coordinates zp ∈

[
−hp/2, hp/2

]
and

zk ∈ [−hk/2, hk/2] are introduced along with their corresponding non-dimensional counterparts

ζk ∈ [−1, 1] and ζp ∈ [−1, 1], in order to define the interpolations across the thickness of the kth

sublaminate and the pth ply, respectively:

ζ� =
2
h�

z −
z�t + z�b
z�t − z�b

with � = p, k (1)
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The following relation between the non-dimensional ply-specific and layer-specific coordinates

holds:

ζp =
hk

hp
ζk +

2
hp

(
z0k − z0p

)
(2)

where z0� denotes the mid-plane coordinates of the kth sublaminate (� = k) and the pth ply (� = p),

respectively.

2.2. Variable kinematics modelling in SGUF

Within the SGUF approach, the behavior along the thickness direction (z− direction) of the

generic variableUk ∈
{
uk

x, u
k
y, u

k
z

}
in the kth sublaminate is defined using a polynomial expansion of

order Nk
U

as follows

Uk (x, y, zk) =

Nk
U∑

τU=0

FτU (ζ) Ûk
τU

(x, y) (3)

The thickness functions FτU are defined by Legendre polynomials and are evaluated in terms of

non-dimensional sublaminate specific coordinate ζk if the generic variable Uk is described in ESL

sense, otherwise they must be expressed in terms of non-dimensional ply specific coordinate ζp if a

LW description is employed. It is emphasised that the SGUF notation Eq. (3) implies that arbitrary

expansion orders can be used independently for the three displacement components and in different

layers. More details about the definition and properties of the thickness functions as well as about

the assembly procedures for both ESL and LW descriptions can be found in [25, 32].

2.2.1. Models acronyms

The SGUF approach allows to adopt different kinematic models for individual sublaminates, the

overall model is thus denoted by specifying individual sublaminate models. For each sublaminate,

the adopted model is uniquely identified by an acronym that is constituted of the letter “D” that

states the displacement-based framework, followed by 3 subscripts that identify the approximation

used for each of the 3 displacement variables ui: the letter “L” or “E” is used for LW or ESL

descriptions, respectively, and is complemented by the polynomial order Nui . For example, the

acronym DL3 L1 E0 signifies that the sublaminate adopts an LW description with cubic and linear

polynomials for the in-plane displacement variables ux and uy, respectively, while the out-of-plane

displacement uz remains constant throughout the whole stack of the sublaminate.

Simplified acronyms can be employed when the same expansion order or multilayer description

is used for more than one displacement variable. It is frequently the case that the in-plane displace-
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ments uα(α = 1, 2) are modeled in the same way, in which case one subscript can be dropped out

without loss of clarity. For instance, if a linear ESL approximation is used for the in-plane variables

u1, u2 and a quadratic LW approximation is employed for transverse displacement u3, the acronym

is simplified to DE1 L2. Additionally, if all displacement variables are approximated in the same

manner, the classical CUF models are obtained and its corresponding notation is used, e.g., ED2 for

an ESL description with quadratic polynomials or LD4 for a fourth-order LW approximation.

2.3. FE approximate solution

Within FEM, the unknown functions Ûk
τU

of Eq. (3) are expressed as a linear combination of

basis functions that span the space in which the solution is sought in terms of interpolation of nodal

unknowns:

Ûk
τU

(x, y) =

n∑
i=1

Ni (ξ, η)Uk
τU i (4)

where n is the number of FE nodes and Ni are the shape functions over the 2D elementary domain.

Four-node Lagrange and eight-node Serendipity quadrilateral elements are used to discretize the

reference surface Ω and approximate the solution (see Fig. 2 and Fig. 3).

The C0
Ω

isoparametric interpolation is employed for all the variables of the formulation except

for the z-constant term of the transverse shear strains γµ3. Knowing this term to be responsible of

the so-called shear locking pathology for thin plates, the field-compatible approximations QC4 (4-

node) and CL8 (8-node) have been used to interpolate it over the element [33, 34]. It is worthwhile

noticing that the QC4 interpolation is equivalent to MITC4 proposed by Dvorkin and Bathe in [35]

and applied to CUF-based FEs by Cinefra et al. [36].
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Figure 2: Four-node quadrilateral in the physical Cartesian frame (x, y) and in the natural frame (ξ, η).
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Figure 3: Eight-node quadrilateral in the physical Cartesian frame (x, y) and in the natural frame (ξ, η).

3. Governing equations for the linearized stability analysis

3.1. Variational statement for bifurcation problems

Within the classical Euler’s method, the geometrical nonlinearity is introduced to provide the

possibility of a system to have multiple equilibrium solutions under a given load, i.e., to charac-

terise a “bifurcation point”. In this framework, the “small perturbation” represents the possible

equilibrium configuration adjacent to the “initial” one under the same external actions. Therefore,

the incremental form of the Principle of Virtual Work written within the Total Lagrangean approach

is linearized as [37]:

∫
V0
δη′i j σi j(I) + δe′i j Ci jkl e′kldV = 0 (5)

Einstein notation is here employed which implies summation over the repeated Latin indices

that range in the set {1, 2, 3} related to the 3D space as x1 ≡ x, x2 ≡ y, x3 ≡ z. The subscript (I)

denotes the initial (equilibrium) state characterised by a stress state of finite magnitude, while the

superscript ′ refers to the perturbed configuration. The strains e′i j and η′i j are the contributions to

the Green-Lagrange strains E′i j that are linear and quadratic in the perturbation displacements u′i ,

respectively:

E′i j = e′i j(u
′
i) + η′i j(u

′
i
2) (6)

The following additional simplifying assumptions are conveniently introduced to focus on the

bifurcation buckling of panels under initial in-plane stresses.

• von Kármán approximation: since the principal buckling mode of in-plane stressed panels

concerns the out-of-plane deflection, it is convenient to retain only the nonlinear contribution

of the transverse displacement u3 to the in-plane strains E′αβ. Greek indices are taken in the set
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{1, 2} to identify quantities related to the in-plane directions (x, y). Therefore, the perturbation

strains reduce to

E′αβ = e′αβ(u
′
i) + η′αβ(u

′
3

2); E′i3 = ε′i3 =
1
2

(
u′i,3 + u′3,i

)
(7a)

where

e′αβ =
1
2

(
u′α,β + u′β,α

)
+ u3,αu

′
3,β = ε′αβ + u3,αu

′
3,β; η′αβ =

1
2

u′3,αu
′
3,β (7b)

and εi j = (ui, j + u j,i)/2 is the classical linear strain measure.

• Undeformed pre-stressed configuration: the approximation is next introduced that neglects

the changes of geometrical configuration that may be induced by the initial stress state, i.e.,

ΩI ≈ Ω0 with, in particular, u3 ≈ 0 in Eq. (7). Therefore the nonlinear perturbation strains are

further reduced to

E′αβ =
1
2

(
u′α,β + u′β,α

)
+

1
2

u′3,αu
′
3,β = ε′αβ + η′αβ (8)

• Nonlinear strains are discarded from the definition of the initial in-plane stresses, which are

independent of the perturbation:

σαβ (I) = Cαβkl Ekl (I) ≈ Cαβkl εkl (I) (9)

The initial stress is as usual defined as a reference stress state σ0
αβ (I) that is scaled by a load factor

λ. The variational formulation eventually yields the following classical linear eigenvalue problem:

find λ such that a non-trivial adjacent configuration exists that satisfies∫
V0
δη′αβ λσ

0
αβ (I) + δε′i j Ci jkl ε

′
kl dV = 0 (10)

In this paper, the reference stress state σ0
αβ (I) = σP(I) is defined by referring to a plane stress

setting as

σP(I) = Q̃PQ εQ(I) (11)

where P,Q ∈ {1, 2, 6} are the indices of the compact Voigt notation identifying the in-plane stress

and strain components, and Q̃PQ = CPQ −CP3C3Q/C33 are the reduced stiffnesses of the constitutive

law accounting for the condition σ33 = 0. The initial strain field εQ(I) is given either directly as an

input (uniform strain), or defined from a previous FE computation. It is worth recalling that the
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perturbation is computed for the undeformed geometry, i.e., the strain field is used only to define

the initial stress and not for updating the geometry under the initial load. This approximation may

come along a certain inaccuracy in particular if the out-of-plane deflection is not small at the onset

of the bifurcation.

3.2. Definition of the initial stress matrix

Introducing the plate model assumptions Eq. (3) and the FE discretization Eq. (4) into the vari-

ational formulation Eq. (10), and carrying out all integrations and the assembly steps, the discrete

form of the eigenvalue problem is obtained:

{δU′}T [K + λKσ] {U′} = {0} (12)

The linear stiffness matrix K has been already presented in [32], further details will be here

omitted for the sake of brevity. The “initial stress” or “geometric stiffness” matrix Kσ is expressed

from Eq. (10) as

{δU′}T [Kσ] {U′} =

∫
V0
δη′αβσ

0
αβ(I)dV =

∫
V0
δη′PQ̃PQεQ(I)dV (13)

Substituting the definition of the initial membrane stress∫
V0
δη′PQ̃PQεQ(I)dV =

∫
V0
δη′1

(
Q̃11ε1(I) + Q̃12ε2(I) + Q̃16ε6(I)

)
+

+δη′2
(
Q̃12ε1(I) + Q̃22ε2(I) + Q̃26ε6(I)

)
+

+δη′6
(
Q̃16ε1(I) + Q̃26ε2(I) + Q̃66ε6(I)

)
dV

(14)

The virtual variations of the incremental strain that is quadratic in the perturbation displacements

U′ read

δη′1 = δu′3,1u
′
3,1; δη′2 = δu′3,2u

′
3,2; δη′6 = δu′3,1u

′
3,2 + δu′3,2u

′
3,1 (15)

The linear strain field of the initial pre-buckling configuration (I) is

ε1(I) = u1(I),1 ; ε2(I) = u2(I),2; ε6(I) = u1(I),2 + u2(I),1 (16)
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Thus, dropping out the subscript (I) from the pre-buckling strains

{δU′}T [Kσ] {U} =

∫
V0
δu′3,1

(
Q̃11ε1 + Q̃12ε2 + Q̃16ε6

)
u′3,1+

+δu′3,2
(
Q̃12ε1 + Q̃22ε2 + Q̃26ε6

)
u′3,2+

+δu′3,1
(
Q̃16ε1 + Q̃26ε2 + Q̃66ε6

)
u′3,2+

+δu′3,2
(
Q̃16ε1 + Q̃26ε2 + Q̃66ε6

)
u′3,1dV =

=

∫
V0
δu′3,1

{
Q̃11u1,1 + Q̃12u2,2 + Q̃16u1,2 + Q̃16u2,1

}
u′3,1+

+δu′3,2
{
Q̃12u1,1 + Q̃22u2,2 + Q̃26u1,2 + Q̃26u2,1

}
u′3,2+

+δu′3,1
{
Q̃16u1,1 + Q̃26u2,2 + Q̃66u1,2 + Q̃66u2,1

}
u′3,2+

+δu′3,2
{
Q̃16u1,1 + Q̃26u2,2 + Q̃66u1,2 + Q̃66u2,1

}
u′3,1dV

(17)

Note that only the initial in-plane displacements uα(I) are required to define the initial stress

matrix. The plate approximation given in Eq. (3) is used for the virtual displacement increments

δur and the corresponding unknowns us (r, s ∈ {1, 2, 3}). The summation indexes for the through-

thickness expansion of the virtual variation and of the unknown will be µur and τus , respectively.

Analogous expressions are hence introduced for the displacements at the initial configuration (I),

for which the summation index γuα is used:

uk
x(I) (x, y, z) =

Nk
ux∑

γux =0

Fγux
(z) ûk

γux
(x, y) ; uk

y(I) (x, y, z) =

Nk
uy∑

γuy =0

Fγuy
(z) ûk

γuy
(x, y) (18)

where the subscript (I) has been dropped out from the in-plane functions ûγ without loss of clarity.

These expressions are substituted into Eq. (17), and the integration over the thickness coordinate

z is carried out explicitly (note that only in-plane derivatives occur in the initial stress matrix).

Following the notation proposed in [32], the through-thickness integrals involved in Kσ are of

the form

Zµur τusγuα
urusuα =

∫ ztop
p

zbot
p

Fµur
Fτus

Fγuα
dz (19)

The integration is intended to be carried out over the thickness hp =
[
zbot

p , ztop
p

]
of each ply separately

since the stresses will depend on the ply-specific stiffness coefficients Q̃p
PQ.
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The initial stress matrix thus reads{
δû′µ

}T [
Kσ
µτ

] {
û′τ

}
=

∫
Ω0

∂ δû′zµuz

∂y

{
[
Q̃12Zµuzτuzγux

uzuzux

∂ûxγux

∂x
+ Q̃22Z

µuzτuzγuy
uzuzuy

∂ûyγuy

∂y
+

+Q̃26Zµuzτuzγux
uzuzux

∂ûxγux

∂y
+ Q̃26Z

µuzτuzγuy
uzuzuy

∂ûyγuy

∂x

]∂û′zτuz

∂y
+

+

[
Q̃16Zµuzτuzγux

uzuzux

∂ûxγux

∂x
+ Q̃26Z

µuzτuzγuy
uzuzuy

∂ûyγuy

∂y
+

+Q̃66Zµuzτuzγux
uzuzux

∂ûxγux

∂y
+ Q̃66Z

µuzτuzγuy
uzuzuy

∂ûyγuy

∂x

]∂û′zτuz

∂x

}
+

+
∂ δû′zµuz

∂x

{
[
Q̃16Zµuzτuzγux

uzuzux

∂ûxγux

∂x
+ Q̃26Z

µuzτuzγuy
uzuzuy

∂ûyγuy

∂y
+

+Q̃66Zµuzτuzγux
uzuzux

∂ûxγux

∂y
+ Q̃66Z

µuzτuzγuy
uzuzuy

∂ûyγuy

∂x

]∂û′zτuz

∂y
+

+

[
Q̃11Zµuzτuzγux

uzuzux

∂ûxγux

∂x
+ Q̃12Z

µuzτuzγuy
uzuzuy

∂ûyγuy

∂y
+

+Q̃16Zµuzτuzγux
uzuzux

∂ûxγux

∂y
+ Q̃16Z

µuzτuzγuy
uzuzuy

∂ûyγuy

∂x

]∂û′zτuz

∂x

}
dx dy

(20)

The FE interpolation Eq. (4) is next introduced for the virtual increments δu′r, the unknowns

u′s and the initial displacements uα (I), with the summation indices i, j and l, respectively. Since

no transverse shear appears in the initial stress matrix, the classical isoparametric interpolation is

used for the FE approximation of Kσ. Differentiation and integration with respect to the in-plane

coordinates x, y as they occur in Eq. (20) are carried out according to following notation:

I
de f ghn
urusuα i jl =

∫
Ω

∂d+eNuri

∂xd∂ye

(
∂h+nNuαl

∂xh∂yn

)
∂ f +gNus j

∂x f∂yg dx dy (d, e, f , g, h, n = 0, 1) (21)
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The fundamental nuclei of the geometric stiffness matrix have finally the following expression:

{
δU′µi

}T [
Kσ
µτi j

] {
U′τ j

}
= δU′zµuz i

[
Q̃11Zµuzτuzγux

uzuzux I101010
uzuzuxi jlUxγux l + Q̃12Z

µuzτuzγuy
uzuzuy I101001

uzuzuyi jlUyγuy l+

+Q̃16Zµuzτuzγux
uzuzux I101001

uzuzuxi jlUxγux l + Q̃16Z
µuzτuzγuy
uzuzuy I101010

uzuzuyi jlUyγuy l+

+Q̃12Zµuzτuzγux
uzuzux I010110

uzuzuxi jlUxγux l + Q̃22Z
µuzτuzγuy
uzuzuy I010101

uzuzuyi jlUyγuy l+

+Q̃26Zµuzτuzγux
uzuzux I010101

uzuzuxi jlUxγux l + Q̃26Z
µuzτuzγuy
uzuzuy I010110

uzuzuyi jlUyγuy l+

+Q̃16Zµuzτuzγux
uzuzux I011010

uzuzuxi jlUxγux l + Q̃26Z
µuzτuzγuy
uzuzuy I011001

uzuzuyi jlUyγuy l+

+Q̃66Zµuzτuzγux
uzuzux I011001

uzuzuxi jlUxγux l + Q̃66Z
µuzτuzγuy
uzuzuy I011010

uzuzuyi jlUyγuy l+

+Q̃16Zµuzτuzγux
uzuzux I100110

uzuzuxi jlUxγux l + Q̃26Z
µuzτuzγuy
uzuzuy I100101

uzuzuyi jlUyγuy l+

+Q̃66Zµuzτuzγux
uzuzux I100101

uzuzuxi jlUxγux l + Q̃66Z
µuzτuzγuy
uzuzuy I100110

uzuzuyi jlUyγuy l]
U′zτuz j

(22)

It is finally noticed that the summation convention over repeated indices implies the sum over the

expansion indices γ and l to be carried out for each couple of indices (µ, τ) and (i, j). As customary

in Unified Formulation models, the model-dependent matrix is thus obtained from the fundamental

nuclei by cycling over all indices and appropriately assembling all ply-specific contributions.

4. Numerical results

The global and local instability phenomena of multilayered structures under different loading

conditions are discussed in this section. A first validation of the proposed FE solution is given by

addressing the overall buckling of a symmetric cross-ply laminate under a uniaxial compression, for

which an exact 3D elasticity solution has been provided by Noor [38]. Global as well as local insta-

bilities (wrinkles) occurring in sandwich panels are subsequently addressed. The effect of geometric

and stiffness ratios on the instability pattern is first investigated by referring to a wide sandwich strut

subjected to a uniform compressive strain. Present FE results are here compared against the semi-

analytical solution obtained by the Navier-type solution [12]. The skew wrinkling occurring in a

sandwich plate with anisotropic laminated skins subjected to uniaxial compression is subsequently

addressed. Present FEM solutions are compared with respect to analytical results by Fagerberg and

Zenkert [8] as well to Ritz-based solutions given by Vescovini et al [31]. The one-sided wrinkling

12



occurring in the compressed skin of a wide sandwich plate in three-point-bending is then consid-

ered by referring to a configuration studied by Yuan et al [39]. The nonuniform initial stress field is

here obtained from a preliminary linear static FE simulation. Results are compared against full 3D

FEM simulations obtained with the commercial package Abaqus. A last case study investigates the

buckling under combined compression and shear loading, including the transition from global to

local instability dependent on the core thickness of a sandwich structure representative of modern

aircraft constructions.

4.1. Uniaxial compression of symmetric cross-ply laminates

A preliminary validation of the proposed FE solution is conducted on the overall buckling of

uniaxially compressed symmetric laminates. This case study will be labelled Noor-TestCase (No-

TC) because it refers to the configuration for which Noor has given a 3D elasticity solution [38]. It

consists of a simply-supported square plate composed of a symmetric cross-ply stack [0◦/90◦/0◦]

and subjected to a uniform compressive strain along the longitudinal x direction, see Fig. 4. The

geometric and elastic properties are given in Tab. 1. Two width-to-thickness ratio are investigated,

namely a moderately-thick (b/H = 10) plate and a thin (b/H = 100) plate. The total thickness of

the plies at 0◦ and 90◦ is the same: h0◦ = H/4 and h90◦ = H/2.

b

aH

x

y

z

ε0xx

ε0xx

Figure 4: No-TC: Cross-ply laminate geometry.

Table 1: No-TC: Geometric and material data.

a = b = 10 mm

b/H = {10, 100} ⇒ H = {1, 0.1} mm

Material 1

EL [MPa] 10

ET [MPa] 1

νLT 0.25

νTT 0.25

GLT [MPa] 0.6

GTT [MPa] 0.5

In order to be consistent with the solution of Ref. [38], the initial stress is purely axial and

computed in each ply as

σ
p
0xx = C̃p

11ε0xx (23)
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where the imposed initial strain ε0xx is assumed to be unitary. The non-dimensional buckling load

is defined as

N̄ = Ncr
b2

ET H3 with Ncr = λcr ε0xx

Np∑
p=1

(C̃p
11 hp) (24)

4.1.1. Convergence study

This case study has been used in a previous work to assess various plate models, including CUF-

based models, in the framework of a quasi-analytical Navier-type solution [40]. In the following,

the No-TC is used to examine the convergence of the proposed FE solution towards the Navier

solution obtained by the same plate models, i.e., the attention is restricted to the discretization error.

To this aim, the isoparametric 8-node FE are used for the moderately-thick plate (b/H = 10) and

the CL8 FE are employed for the thin plate case (b/H = 100). Given the symmetry of the problem

and of the intended response, the computational domain is restricted to one quarter of the plate, for

which regular meshes with N = 1, 2, 4, 6, 8, 10 elements along the edges are considered.

LD4

EDZ4

ED3

FSDT

10
−4

10
−2

10
0

10
2

1 10 100 10001 10 100 1000

N̄
−

N̄
a

N̄
a

[%
]

Nodes Nodes

a/h = 10 a/h = 100

Figure 5: No-TC: Convergence of 8-node FE for selected CUF-models towards the corresponding Navier solution:

non-dimensional buckling loads for the quarter plate model.

Fig. 5 reports the convergence curves of the present FE results for several CUF models towards

the Navier solution N̄a obtained by the corresponding models for the orthotropy ratio EL/ET = 10.

The results in Fig. 5 show that the present FE is insensitive to the kinematic model of the plate:

more specifically, a quadratic convergence rate is achieved for both the thick and the thin plate

and for ESL, Zig-Zag or LW models, irrespective of the polynomial order. Very similar behaviors

are obtained for different orthotropy ratios EL/ET , whose results are not reported for the sake of

conciseness.
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Table 2: No-TC: Non-dimensional uniaxial buckling load N̄ = Ncrb2/ET H3 of a three-ply symmetric square plate

loaded in compression with an imposed uniform strain: influence of different boundary conditions for a moderately-

thick (b/H = 10) and thin (b/H = 100) plate and varying the orthotropy ratio EL/ET . Results obtained with 10 × 10

8-node elements for the quarter plate.

Model EL/ET

3 20 40

Boundary conditions Boundary conditions Boundary conditions

SF SS SC SF SS SC SF SS SC

a/h = 10

LD4 2.1575 5.3052 9.2446 10.9448 15.0197 22.3841 17.6416 22.8812 32.3409

LD3 2.1575 5.3052 9.2447 10.9448 15.0197 22.3845 17.6416 22.8812 32.3417

LD2 2.1577 5.3067 9.2595 10.9464 15.0464 22.6827 17.6460 22.9690 33.0632

LD1 2.1696 5.3583 9.3663 11.0832 15.2144 22.8904 18.0010 23.3474 33.4903

EDZ4 2.1579 5.3054 9.2491 10.9558 15.0468 22.6097 17.6711 22.9740 32.9270

ED4 2.1580 5.3058 9.2505 10.9564 15.0513 22.6664 17.6718 22.9923 33.1022

ED3 2.1582 5.3061 9.2534 10.9592 15.0552 22.6825 17.6782 23.0022 33.1372

ED2 2.1756 5.3557 9.4139 11.4075 15.6459 24.2536 18.8590 24.4817 34.9639

ED1 2.2387 5.6321 9.8844 11.4412 15.8102 24.5099 18.8753 24.5912 37.1383

FSDT (κ = 5/6) 2.1789 5.3992 9.3751 11.0325 15.3514 23.5703 17.7343 23.4529 35.0266

a/h = 100

LD4 2.2889 5.7489 10.6568 14.4829 19.6494 31.6866 28.7411 35.9422 56.3383

LD3 2.2889 5.7489 10.6568 14.4829 19.6495 31.6866 28.7411 35.9422 56.3383

LD2 2.2889 5.7489 10.6571 14.4830 19.6498 31.6943 28.7413 35.9436 56.3676

LD1 2.2983 5.7994 10.7663 14.4940 19.6964 31.7946 28.7595 35.9967 56.4735

EDZ4 2.2890 5.7489 10.6573 14.4834 19.6499 31.6934 28.7428 35.9440 56.3639

ED4 2.2891 5.7489 10.6575 14.4838 19.6499 31.6955 28.7428 35.9443 56.3721

ED3 2.2892 5.7489 10.6577 14.4839 19.6499 31.6960 28.7430 35.9443 56.3726

ED2 2.2894 5.7495 10.6600 14.4916 19.6600 31.7266 28.7732 35.9804 56.4775

ED1 2.3622 6.0718 11.2957 14.5657 19.9422 32.2725 28.8487 36.2580 57.0139

FSDT (κ = 5/6) 2.2892 5.7500 10.6377 14.4854 19.6553 31.6994 28.7463 35.9554 56.4184

4.1.2. Influence of boundary conditions

Based on the accuracy of the present FE solution, a set of new results is next proposed that

extend the No-TC towards different boundary conditions. The square plate is considered simply-

supported (S) along the edges parallel to the y−axis, whereas the edges parallel to the x−axis may
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be simply-supported (S), clamped (C) or free (F). The symmetry of the fundamental buckling mode

is again exploited and the computational model reduced to the quarter plate. The fine mesh with

10 × 10 8-node elements is used.

Tab. 2 reports the non-dimensional buckling load defined in Eq. (24) for the moderately-thick

and thin three-plies laminate and for three different values of the orthotropy ratio EL/ET . Increasing

the orthotropy ratio is shown to affect the modeling error: for the thick plate in SC configuration,

the quadratic ESL model ED2 has an error of approximately 2% for EL/ET = 3 with respect to the

most refined model LD4, which increases to approximately 8% if EL/ET = 40. The modeling error

is shown to be affected to a minor extent by the boundary conditions. It is worth noticing that the

ED1 model substantially overestimates the critical load, with errors ranging from 3% (thin plate, SF

configuration) up to nearly 15% (thick plate, SC configuration): this is due to the Poisson locking

pathology originated by the constant transverse normal stretch in conjunction with the conventional

3D constitutive law [41]. The FSDT kinematics ED10 is obviously free from this pathology, and the

use of a shear correction factor κ = 5/6 allows to match the LD4 solution with remarkable accuracy.

4.2. Global and local buckling of sandwich struts

The capability of the present FE to accurately compute both global buckling and local (wrin-

kling) loads is next demonstrated by referring to the case study proposed by D’Ottavio and Polit

[12], which will be labelled D’Ottavio TestCase (DO-TC) hereinafter. A simply-supported sand-

wich panel subjected to uniaxial compression along the longitudinal x−direction is considered as

shown in Fig. 6. The plane strain assumption is exploited to confine the problem to the (xz)−plane;

this is accomplished in the present FEM by using only one element along the width and constraining

the displacement uy at all nodes. The boundary conditions applied to the sandwich panel are thus:

uz (x = ±a/2, y, z) = uy (x, y, z) = 0 (25)

The geometric and material properties are listed in Tab. 3. The sandwich strut has a total thick-

ness H = 2 f + 2c = 50 mm, a length of a = 5H for promoting the short-wavelength wrinkling

instability, and a unit width (b = 1 mm). The role of geometric and material properties on the

buckling instability of the sandwich is highlighted by introducing the following three characteristic

parameters: the face-to-core thickness ratio R f = f /H, the core-to-face stiffness ratio k = Ec
x/E

f
x

and the core orthotropy ratio χ = Ec
x/E

c
z . It is noticed that all Poisson’s ratios are set to zero, which

ensures a purely axial stress state from the uniformly strained initial condition.
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ε0xx

ε0xx

Figure 6: DO-TC: Sandwich beam-plate geometry.

Table 3: DO-TC: Geometric and material data.

a = 5H; b = 1 mm; H = 50 mm

f = R f H; 2c = H − 2 f

Core (c) Facesheet ( f )

θ [◦] 0 0

Ex [GPa] χEc
z 70

Ey [GPa] χEc
z 70

Ez [GPa] kE f
x 70

ν 0 0

Gxy [GPa] 0.5Ec
x 35

Gxz [GPa] 0.5Ec
z 35

Gyz [GPa] 0.5Ec
z 35

4.2.1. Convergence study

A preliminary analysis is carried out to establish the convergence behavior of the proposed 4-

and 8-node FE. The in-plane discretization involves N = 32, 64, 128, 256 QC4 or N = 16, 32, 64, 128

CL8 elements along the x−direction, while only one element is used along the width direction of

the panel.

Tab. 4 lists the critical buckling load Ncr, defined as in Eq. (24), and the corresponding buckling

modes for different combinations of the three parameters R f , k and χ. In order to establish an

“honest” correlation between QC4 and CL8 results, the number of nodes is appended, in subscript,

to the number of elements. The high-order LD4 model has been used in the convergence study

and the FE convergence is defined with respect to the Navier-type solution obtained with the same

kinematic model.

The convergence rate for the buckling loads obtained by the QC4 and CL8 elements is displayed

in Fig. 7 and Fig. 8, respectively, for different sandwich configurations defined by the three charac-

teristic ratios R f , k and χ. The buckled shape obtained with the most refined mesh is also depicted,

which shows that the different configurations can trigger overall buckling (one half-wave of length

a) or local wrinkling (several half-waves of length ≤ c). Quadratic and cubic convergence rates are

found for the QC4 and CL8 elements, respectively. This high rate is attributed to the plane strain

assumption and the absence of mesh refinement along the width. Despite the same convergence
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rate is found irrespective of the global or local buckling mode, it is noticed that short-wavelength

patterns come along with a generally higher error value.

Figure 7: DO-TC: QC4 convergence for critical buckling load Ncr for different sandwich configurations (LD4 model).
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Figure 8: DO-TC: CL8 convergence for critical buckling load Ncr for different sandwich configurations (LD4 model).
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Further insight about the convergence behavior of the proposed elements is obtained with the

numerical data reported in Tab. 4. Here, the buckling mode is identified by specifying in the super-

script appended to the buckling load, the number of half-waves along the x−direction and whether

the buckled shape is antisymmetric (A) or symmetric (S). Percent differences with respect to the

Navier solution are also reported in parentheses. The results show that the discretization error

comes along an incorrectly resolved buckling mode. For all the configurations studied in this case

study, a percent difference of < 0.5% in the buckling load is found to provide the correct number of

wrinkles of the buckling mode. The results suggest the following additional considerations.
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Table 5: DO-TC: Uniaxial buckling loads Ncr [N/mm] of a sandwich panel loaded in compression with an imposed

uniform strain: influence of core model for different sandwich configurations. Bold values identify the converged

solution asking for the lowest number of nodal DOFs.

Model (nDOF) R f (k = 0.002, χ = 1.0) k
(
R f = 0.02, χ = 1.0

)
χ

(
R f = 0.02, k = 0.02

)
0.01 0.1 0.001 0.1 0.001 0.1

Ansys [12] 818.8031,A 3528.01,A 945.9313,A 197921,A 2767.623,S 6464.933,A

Navier (LM4) [12] 813.4732,A/S 3528.01,A 945.0213,A 197911,A 2758.024,S 6426.933,A/S

LD4 (39) 840.2531,A 3528.01,A 948.5012,A 197911,A 2773.623,S 6702.930,S

FSDT/ED7 (28) 815.6331,A 3528.21,A 945.4013,A 197921,A 2776.723,S 6461.233,A

FSDT/ED76 (27) 815.6331,A 3528.21,A 945.4013,A 197921,A 2776.823,S 6461.233,A

FSDT/ED75 (26) 818.1931,S 3528.21,A 945.4013,A 197921,A 2776.823,S 6468.133,S

FSDT/ED74 (25) 828.9530,A 3528.21,A 945.4013,A 197921,A 2777.123,S 6476.232,A

FSDT/ED73 (24) 875.9729,S 3528.21,A 949.3713,S 197921,A 2777.123,S 6695.730,S

FSDT/ED72 (23) 1029.126,A 3528.21,A 960.1212,A 197921,A 2807.223,S 7734.625,A

FSDT/ED67 (26) 816.9131,S 3528.21,A 945.5113,A 197921,A 2776.723,S 6467.433,S

FSDT/ED6 (25) 818.1931,S 3528.21,A 945.5113,A 197921,A 2776.823,S 6468.133,S

FSDT/ED65 (24) 818.1931,S 3528.21,A 945.5113,A 197921,A 2776.823,S 6468.133,S

FSDT/ED64 (23) 830.8431,A 3528.21,A 945.5113,A 197921,A 2777.123,S 6486.632,A

FSDT/ED63 (22) 875.9729,S 3528.21,A 949.3713,S 197921,A 2777.123,S 6695.730,S

FSDT/ED62 (21) 1029.326,A 3528.21,A 960.1512,A 197921,A 2807.223,S 7736.925,A

FSDT/ED57 (24) 819.7031,A 3528.21,A 945.5113,A 197921,A 2776.723,S 6481.932,A

FSDT/ED56 (23) 819.7031,A 3528.21,A 945.5113,A 197921,A 2776.823,S 6481.932,A

FSDT/ED5 (22) 825.5831,S 3528.21,A 945.5113,A 197921,A 2776.823,S 6486.632,A

FSDT/ED54 (21) 830.8431,A 3528.21,A 945.5113,A 197921,A 2777.123,S 6486.632,A

FSDT/ED53 (20) 877.9229,S 3528.21,A 949.8813,S 197921,A 2777.123,S 6719.930,S

FSDT/ED52 (19) 1029.326,A 3528.21,A 960.1512,A 197921,A 2807.223,S 7736.925,A

FSDT/ED47 (22) 822.5532,S 3528.21,A 948.6712,A 197921,A 2776.723,S 6586.532,S

FSDT/ED46 (21) 825.1132,A 3528.21,A 948.6712,A 197921,A 2776.823,S 6595.832,S

FSDT/ED45 (20) 825.5831,S 3528.21,A 948.7312,A 197921,A 2776.823,S 6595.832,S

FSDT/ED4 (19) 840.7731,A 3528.21,A 948.7312,A 197921,A 2777.123,S 6719.930,S

FSDT/ED43 (18) 877.9229,S 3528.21,A 949.8813,S 197921,A 2777.123,S 6719.930,S

FSDT/ED42 (17) 1030.526,A 3528.21,A 961.2912,A 197921,A 2807.223,S 7780.725,A

FSDT/ED37 (20) 824.1732,S 3528.21,A 948.6712,A 197921,A 2789.023,S 6880.031,A

FSDT/ED36 (19) 825.1132,A 3528.21,A 948.6712,A 197921,A 2789.123,S 6880.031,A

FSDT/ED35 (18) 827.6432,S 3528.21,A 948.7312,A 197921,A 2789.123,S 6967.530,A

FSDT/ED34 (17) 840.7731,A 3528.21,A 948.7312,A 197921,A 2790.923,S 6967.530,A

FSDT/ED3 (16) 888.4630,S 3528.21,A 960.6013,S 197921,A 2790.923,S 7780.725,A

FSDT/ED32 (15) 1030.526,A 3528.21,A 961.2912,A 197921,A 2807.423,S 7780.725,A

FSDT/ED27 (18) 824.1732,S 3528.31,A 958.5113,S 198771,A 2789.023,S 7182.235,S

FSDT/ED26 (17) 826.3232,A 3528.31,A 958.5113,S 198771,A 2789.123,S 7188.436,A

FSDT/ED25 (16) 827.6432,S 3528.31,A 958.5113,S 198771,A 2789.123,S 7222.934,S

FSDT/ED24 (15) 841.2431,A 3528.31,A 959.9413,A 198771,A 2790.923,S 7381.434,A

FSDT/ED23 (14) 888.4630,S 3528.31,A 960.6013,S 198771,A 2790.923,S 7810.731,S

FSDT/ED2 (13) 1037.427,A 3528.31,A 980.8612,A 198771,A 2807.423,S 9245.21,A

FSDT/ED17 (16) 826.3232,A 3528.31,A 958.8213,S 198771,A 6606.736,S 7186.834,S

FSDT/ED16 (15) 826.3232,A 3528.31,A 958.8313,S 198771,A 6651.435,S 7188.436,A

FSDT/ED15 (14) 841.2431,A 3528.31,A 958.8313,S 198771,A 6651.435,S 7224.634,S

FSDT/ED14 (13) 841.2431,A 3528.31,A 959.9413,A 198771,A 6982.135,A 7381.434,A

FSDT/ED13 (12) 909.3728,S 3528.31,A 960.9413,S 198771,A 7279.933,S 7830.132,S

FSDT/ED12 (11) 1037.427,A 3528.31,A 980.8612,A 198771,A 9032.130,A 9245.21,A
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At least four linear (4-nodes) elements appear to be necessary to properly resolve the half-wave

of the wrinkling mode. Nevertheless, percent differences in the buckling load prediction may vary

from ≈ 1.5% for the thinnest face sheet configuration, up to ≈ 2% and ≈ 10% for orthotropic cores.

If quadratic (8-nodes) elements are used, two elements per half-wave can accurately predict the

buckling load (percent differences < 0.6%) and buckled shape.

The following comments can be further made concerning the instability mode triggered depend-

ing on the sandwich configuration. It is obvious that overall buckling occurs for either thick faces

(R f = 0.1) or a stiff core (k = 0.1). In all other cases, the lowest critical load corresponds to a

wrinkling-type instability, whose wave-length depends on the characteristic ratios of the sandwich

section as well as on the core orthotropy ratio χ. This parameter is further shown to be important

for defining whether the mode is antisymmetric or symmetric: it appears that the symmetric mode

is triggered when the in-plane stiffness of the core is less than its transverse stiffness, i.e., typically

in the case of honeycomb structure. For χ = 1 (isotropic cores) the dominant modal shape is shown

to be the antisymmetric one.

4.2.2. Model assessment

The DO-TC is next used to perform a model assessment for investigating the influence of the

kinematic model of the core on the computed buckling mode. Based on the previous convergence

study, a mesh of 64 × 1 CL8 elements will be used. The face sheets are modelled according to

FSDT, whilst the core model is progressively refined by increasing the order of the theory, ranging

from ED12 up to ED77 ≡ED7. Indeed, FSDT is found to be adequate to represent the buckling phe-

nomenon in the thin face sheets [31]. On the other hand, according to the sandwich configuration,

the through-thickness approximation in the core must be enhanced to grasp the correct buckling

mode.

The buckling loads and corresponding modes obtained with different kinematic models of the

core, are reported for the previously investigated sandwich configurations in Tab. 5. Values in

parentheses indicate the number of nodal DOFs of the plate model. Entries in bold emphasize the

converged solutions with respect to the core model, obtained with the lowest number of nodal DOFs.

Two results presented in [12] are used for comparison:

Solid FEM: A converged FEM solution obtained with the commercial software Ansys and contin-

uum elements. A 2D mesh of 4-nodes elements is used to compute the plane strain problem in
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the (xz)-plane: 256 elements are introduced along the longitudinal (x) direction, while 4 and 60

elements are used to discretize along the thickness the face sheets and the core, respectively.

Navier: The mixed CUF model LM4, with an enhanced description of the core obtained by sub-

dividing the core ply into 3 computational layers. This model provides a converged solution with

respect to the solid FEM.

Present FE results obtained with the high-order LW model LD4 and the same mesh of the SGUF

models are also reported.

Overall buckling occurs for thick face sheets (k = 0.002, R f = 0.1, χ = 1.0) and stiff cores

(k = 0.1, R f = 0.02, χ = 1.0). In this case, the core works essentially in shear and the model

ED32 (Nux = 3,Nuz = 2) guarantees a converged solution. Very small errors are found if lower-

order core kinematics is used, and even an FSDT model (not reported) proves sufficiently accurate.

The situation is altogether different when the short wave-length wrinkling occurs, i.e., as the axial

rigidity of the sandwich decreases due to thin face sheets or soft cores. In this case, the core

provides the elastic support for the buckled face sheets and refined kinematics should be accordingly

used for accurately capturing the important core warping and transverse stretch. The SGUF model

FSDT/ED76 has proven able to cope with the local response for all the sandwich panel configurations

here presented: quasi-3D solution are recovered while drastically reducing the number of DOFs

with respect to conventional LW models that adopt the same kinematics for all layers. In this

context, it is worth noticing that the FSDT/ED4 model yields in most cases practically the same

results as the LD4 model with approximately the half of the nodal DOF (19 against 39 of the

LD4 model). Some discrepancies are appreciable only in the last two columns of Tab. 5, i.e., for

wrinkling modes characterized by a very short wave-length. In this case, the wave-length is in fact

approximately only 10 times larger than the face sheet thickness, a situation for which the classical

FSDT model reaches its limit of applicability.

4.3. Skew wrinkling of anisotropic face sheets under uniaxial load

In this section, the potential of the proposed variable kinematics plate elements is challenged

against local instabilities developing over the surface of the 2D computational domain. To this aim,

we draw upon the study conducted by Fagerberg and Zenkert in Ref. [6], which investigates a sand-

wich panel with anisotropic face sheets. Henceforth, we shall denote this case study as Fagerberg-

TestCase (F-TC). The geometric and material properties are given in Tab. 6. The sandwich panel
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is clamped at its lateral edges and subjected to a unitary stress resultant N0xx in the longitudinal

direction as illustrated in Fig. 9.

x

y

z

b

a
H

f

c
N0xx

N0xx

Figure 9: F-TC: Sandwich plate geometry.

Table 6: F-TC: Geometric and material data.

a = 200 mm; b = 150 mm

f = 1; 2c = 50 mm

H = 52 mm

Core (c) Facesheet ( f )

E1 [MPa] 107000 20

E2 [MPa] 15000 20

E3 [MPa] 15000 20

ν 0.3 0.25

G12 [MPa] 4300 13

G13 [MPa] 4300 13

G23 [MPa] 4300 13

The sandwich panel has a symmetric cross-section and each face sheet consists of a symmet-

ric cross-ply laminate made up of four plies of uniform thickness, see Fig. 10a. The anisotropy

is introduced by rotating the principal laminate directions of an angle α with respect to the x, y

reference frame of the plate. The anisotropy of the face sheet significantly influences the wrinkle

pattern. Wrinkles, which in an isotropic material would typically occur perpendicular to the loading

direction, deviate from this orientation due to the anisotropic nature of the face sheet. Instead, they

are formed at an angle ϕ relative to the loading direction. Fig. 10b illustrates the definitions of the

angles α and ϕ.

4.3.1. Pre-buckling

The initial strain field, resulting from the applied uniform stress resultant N0xx, is determined by

employing the Classical Lamination Theory (CLT) within the plane stress framework as

ε0xx = a11 N0xx; ε0yy = a12 N0xx; ε0xy = a16 N0xx (26)

where the coefficients a11, a12 and a16 are obtained upon inverting the membrane stiffness matrix A.

The pre-buckling stress state is then evaluated for individual plies as:

σ
p
0xx = Q̃p

11 ε0xx + Q̃p
12 ε0yy + Q̃p

16 γ0xy

σ
p
0yy = Q̃p

12 ε0xx + Q̃p
22 ε0yy + Q̃p

26 γ0xy

σ
p
0xy = Q̃p

16 ε0xx + Q̃p
26 ε0yy + Q̃p

66 γ0xy

(27)
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Figure 10: F-TC: a) symmetric cross-ply lamination scheme for the face sheet, b) α is the angle between the principal

laminate directions x1, x2 and the global reference frame x, y of the plate; ϕ is the skew angle of the wrinkle pattern,

defined as the angle between the direction orthogonal to the wrinkles and the loading direction.

where Q̃p
PQ, (P,Q ∈ [1, 2, 6]) are ply-specific reduced stiffness coefficients. It is important to empha-

size that angles α , 0◦, 90◦ result in a non-zero coefficient a16. This coefficient induces the coupling

between the extensional and shear behaviors, ultimately leading to the formation of wrinkles at a

skew angle with respect to the direction x of the applied compressive load.

4.3.2. Buckling

The present FEM solution is compared to the closed-form solution proposed by Fagerberg and

Zenkert [8], along with the outcomes obtained by Vescovini et al in Ref. [31] using the Ritz ap-

proach. The present FEM and the Ritz solutions adopt both a FSDT model with unitary shear

correction factor (ED10) for the face sheets. A refined kinematics is employed for the thick core,

with a fifth-order expansion for the in-plane displacement and a fourth-order transverse displace-

ment (ED54). The resulting SGUF model FSDT/ED54 has been demonstrated to yield very accurate

solutions for the present case [31]. The in-plane domain is discretized with a regular mesh of square

QC4 elements with a side length of 0.5 mm. The mesh thus comprises a total of 7500 elements.

To facilitate the comparison with the solutions in [8, 31], we define the buckling load as one

half of the lowest eigenvalue derived from Eq. (12). This corresponds to the critical load of one

face sheet instead of that of the whole sandwich panel. The buckling loads and corresponding

skew angles of the wrinkle pattern are plotted in Fig. 11 across a range of values of α within the
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Figure 11: F-TC: Critical loads for one face sheet and corresponding angles of the wrinkling pattern obtained for

different orientation angles α of the cross-ply face laminates with respect to the longitudinal x−direction of the uniaxial

compression

interval [0, 90]. This representation provides a detailed insight into the influence of the angle α on

both buckling loads and wrinkle pattern skew angles. Fig. 11b reports also the wrinkling patterns

obtained by the present FE solution at the top surface of the panel for the 3 angles α = 10◦, 40◦, 70◦.

A close agreement is found for the local buckling response of the present FEM with respect to

the analytical solution [8] as well as to the Ritz-based results [31]. This successful comparison

confirms the capability of the proposed FE approach, to grasp with a simple 2D mesh complex

three-dimensional responses characterized by short wave-length deformation patterns.

4.4. Sandwich face sheets wrinkling under transverse load

This case study aims to demonstrate the capability of the present computational approach to

compute wrinkling loads for sandwich panels that work in bending, which is the principal structural

function of these structures. Indeed, the compression stress state in one of the face sheets may

result in local instability, eventually yielding the total failure of the panel. The analysis refers to the

three-point bending configuration proposed by Yuan et al. [39], and therefore referred to as Yuan-

TestCase (Y-TC). It considers a wide sandwich panel made up of two thin and stiff face sheets of

Kevlar and a weak and thick PMI foam core (ROHACELL® 50). Both face sheet and core materials

are assumed to be isotropic. The geometric and elastic properties are summarized in Tab. 7.
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Figure 12: Y-TC: Sandwich beam-plate geometry.

Table 7: Y-TC: Geometric and material data.

a = 300 mm; b = 60 mm

f = 0.5; 2c = 19.05 mm

H = 20.05 mm

ROHACELL® 50 Kevlar

E [MPa] 52.5 27400

ν 0.25 0.3

G [MPa] 21 10538.5

With reference to the axes defined in Fig. 12, the sandwich panel is simply-supported at its

extremities and subjected to a concentrated force acting at its center (x = 0) along the z−direction.

Since both loading and boundary conditions exhibit symmetry about the midspan, only the left half-

panel is modelled. In contrast to the plane stress assumption underlying the beam model of [39],

plane strain assumption is here invoked to confine the response to the (x, z)−plane. As already done

in Sec. 4.2, this is realized by constraining uy (x, y, z) = 0. The typically three-dimensional boundary

conditions of the three-point bending test are reproduced in a very straightforward manner within

the present SGUF modelling: in fact, by virtue of the thickness functions defined by Legendre

polynomials, each node of the 2D FE mesh has DOF corresponding to the displacements at the

outer surfaces of the panel. The roller boundary condition can thus be accurately reproduced by

constraining the transverse displacement at the panel’s bottom surface and at specific locations along

the x−coordinate, as illustrated in Fig. 13. The boundary conditions applied to the left half-panel

are thus

uy (x, y, z) = ux (0, y, z) = uz (−a/2, y,−H/2) = 0 (28)

and the load is introduced as ∫ b/2

−b/2
Pz (x = 0, y, z = H/2) dy = −P (29)

The sandwich response is evaluated by means of SGUF models adopting four different kinemat-

ics for the core, namely ED7, ED32, ED12 and FSDT. The face sheets are always modelled according

to FSDT. The sandwich model FSDT/ED32 is close to that employed in [39], namely the EHSAPT
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Figure 13: Y-TC: Constraints of the present 2D plate FEM reproducing the roller boundary condition of the three-point

bending test and the plane strain condition in the (xz)−plane.

of Phan et al [42]. The ED12 kinematics is an enrichment of the FSDT towards the consistent

inclusion of the transverse normal deformation.

The FE mesh used for the SGUF models comprises 340 linear elements along the x−direction

of the half-panel (only one element is used along the width direction). For the sake of comparison,

a 2D plane strain elasticity FE solution obtained with the commercial software package Abaqus is

also considered for comparison. In this elasticity model, 4 and 15 elements are stacked along the

thickness of the face sheets and the core, respectively. To properly describe the steep gradients in

the proximity of the concentrated load, the mesh of the SGUF model and of the Abaqus model is

progressively refined towards the symmetry axis by means of a bias factor (bf) of 50. The resulting

2D mesh of the plane strain Abaqus model is illustrated in Fig. 14.
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Figure 14: Y-TC: FE model in Abaqus.
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4.4.1. Pre-buckling

A first step is required to define the initial stress state, which is achieved by the performing a lin-

ear static analysis for the three-point bending configuration. Fig. 15 reports the applied load against

the transverse displacement of the midpoint at the top surface, i.e., the point (x = 0, z = H/2) of

application of the force. Results of the geometrically linear EHSAPT model reported in [39] and

the ones obtained with the commercial software Abaqus are included for comparison. Since the

analysis is linear elastic, the displacement is obviously proportional to the applied load. A good

agreement is found between Abaqus and all SGUF models that retain the transverse compressibil-

ity of the core: the sandwich model FSDT/FSDT displays an excessively stiff response because

the local indentation of the core under the applied force cannot be grasped. On the other hand,

the EHSAPT solution is less stiff due to the plane stress assumption adopted for the beam FEM

developed in [39].
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Figure 15: Y-TC: Transverse displacement uz at sandwich panel midspan for different values of transversal load P.

Fig. 16 shows the distributions of the in-plane axial stress σxx and the transverse normal stress

σzz across the core at the symmetry plane (x = 0) and for a load P = −1300 N. These distributions

confirm the quasi-3D accuracy of the FSDT/ED7 model, which provides practically identical re-

sults compared to the solid FEM of Abaqus that is taken as reference. It is also obvious that the

FSDT/FSDT model is limited to a global bending response of the sandwich, it cannot grasp the

local bending of the face sheets that come along the indentation occurring due to the concentrated
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Figure 16: Y-TC: Stress distributions in the core at x = 0: a) axial stress, b) transverse normal stress.

force. It is worth emphasizing that very low compressive stresses are predicted by the FSDT/FSDT

model on the compressed portion of the sandwich section. This is in contrast with the strongly

nonlinear distributions σxx(x = 0, z) predicted by core models that allow the transverse normal de-

formation, in which only a small region close to the top face sheet is subjected to high compressive

axial stresses. The FSDT/ED12 model is shown to improve upon the FSDT by introducing a linear

transverse normal stress (Fig. 16b). The effect of the transverse normal strain εzz and the consistent

resolution of the Poisson effect can be appreciated in the slight shift of the neutral axis towards

the region of the section subjected to tensile stresses, see Fig. 16a. It is also interesting to notice

that the results of the model FSDT/ED32 agree well with those obtained in [39] with the geometri-

cally linear analysis with EHSAPT, in particular an identical distribution of the transverse normal

stress can be appreciated in Fig. 16b. The small discrepancy observed in Fig. 16a can be due to the

already mentioned difference between the beam (plane stress) and wide plate (plane strain) assump-

tions. However, since the discrepancy is localized at the top face sheet directly under the applied

concentrated force, it is more likely that the difference be due to the different mesh refinement, or to

the different kinematic model used for the face sheet: EHSAPT adopts in fact the CLT kinematics

for the face sheets, and the disregard of the transverse shear effects may yield some inaccuracies in

presence of such extremely localized responses.

The axial stress distribution across the face sheets, shaded in gray, is plotted in Fig. 17. It is

important to detail out these distributions because these will mainly affect the results of the subse-
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Figure 17: Y-TC: Axial stress distribution across the face sheets thickness at x = 0.

quent buckling analysis. The bottom face sheet works entirely in tension as a consequence of the

global sandwich bending response. However, the top face sheet undergoes a local bending due to

the indentation: only the top portion of the face sheet is subjected to compressive stress, while the

bottom portion of the face sheet results to carry tensile axial stresses. As already pointed out, the

FSDT/FSDT model is not capable to represent the indentation and, therefore, the local bending of

the top face sheet.

4.4.2. Buckling

The second analysis step consists in the solution of the eigenvalue problem Eq. (12), in which

the initial stress state is obtained from the previously discussed linear static analysis of a three-point

bending problem under the action of a unit force P = −1 N acting downwards.

Table 8: Y-TC: First three buckling loads of the sandwich panel in the three-point bending configuration.

Mode Abaqus FSDT/ED7 (28) FSDT/ED32 (15) FSDT/ED12 (11) FSDT/FSDT (9)

1 -2264.2 -2248.2 -2359.2 -2431.1 -9.3e+12

2 2326.3 2283.3 2402.6 2519.7 -8.0e+14

3 -2464.3 -2453.0 -2582.5 -2692.5 -2.5e+15

Values in parentheses indicate the number of nodal DOF of the model.

The bucking loads for the first 3 modes are listed in Tab. 8 in the order of increasing absolute
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value of the eigenvalue. The number of nodal DOFs is also included to provide a qualitative estima-

tion of the computational effort associated with each SGUF model. In order to provide a physical

interpretation of the numerical values of Tab. 8, the buckled shapes of the first 2 modes are shown

in Fig. 18.

(a) Abaqus. Mode 1: P = −2264.2 N (b) Abaqus. Mode 2: P = 2326.3 N

(c) FSDT/ED7. Mode 1: P = −2248.2 N (d) FSDT/ED7. Mode 2: P = 2283.3 N

(e) FSDT/ED32. Mode 1: P = −2359.2 N (f) FSDT/ED32. Mode 2: P = 2402.6 N

(g) FSDT/ED12. Mode 1: P = −2431.1 N (h) FSDT/ED12. Mode 2: P = 2519.7 N

(i) FSDT/FSDT. Mode 1: P = −9.3e+12 N (j) FSDT/FSDT. Mode 2: P = −8.0e+14 N

Figure 18: Y-TC: Buckled shapes of the sandwich panel in the three-point bending configuration for the first two

buckling modes. Influence of the SGUF model on buckling pattern.

At first, it is obvious that the wrinkling modes cannot be grasped unless the kinematic model

adopted for the core allows for its compressibility: results for the FSDT/FSDT model are completely

meaningless.

Further, it is remarked that the first buckling mode is associated to a negative eigenvalue, irre-
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spective of the model. Looking at Fig. 18a, this mode is shown to correspond to a local instability

(wrinkling) of the bottom face sheet − i.e., this wrinkling mode would occur if the sandwich was

loaded with a force acting upwards. The reason for this is to be found in the local axial stress dis-

tributions obtained from the pre-buckling analysis and reported in Fig. 17. In fact, multiplying by

-1 the initial stress state, the bottom skin would buckle first because it results to be entirely under

compression. In contrast, the top face sheet is seen to be subjected to axial stresses that are partially

in tension and partially in compression due to the local bending. Therefore, a higher absolute value

of the eigenvalue is required for the wrinkling of the top face sheet. Indeed, the wrinkling of the top

face sheet is associated to a positive eigenvalue and corresponds to the second mode.

Finally, it is noticed the very good agreement between the most refined FSDT/ED7 SGUF model

and the quasi-3D solution provided by Abaqus in terms of both, the wrinkling load (a difference of

less of 0.2% is obtained) and the modal shape.

4.5. Symmetric sandwich panels under combined in-plane loading

The final case study aims to demonstrate the capability of the proposed approach in addressing

buckling under combined in-plane compressive and shear loading. Sandwich panels typical of

modern aircraft structures are here considered, in particular those characterizing the Elixir aircraft

as referenced in [13, 43]. Specifically, a simply-supported square sandwich plate is investigated,

whose geometric and material properties are detailed out in Tab. 9. The layup of the sandwich plate

is symmetric and defined in Tab. 10.
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Figure 19: DC-TC: Sandwich plate geometry.

Table 9: DC-TC: Geometric and material data.

a = b = 260 mm, f = 0.61 mm

Fabric UniDir Foam Honeycomb

E1 [MPa] 55000 120000 50 0.5

E2 [MPa] 55000 10000 50 0.5

E3 [MPa] 10000 10000 50 140

ν12 0.04 0.3 0.3 0.9

ν13 0.3 0.3 0.3 0.01

ν23 0.3 0.5 0.3 0.01

G12 [MPa] 4000 4000 30 1

G13 [MPa] 4000 4000 30 40

G23 [MPa] 4000 3300 30 25
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Table 10: DC-TC: Sandwich layup.

Ply no. 1 2 3 4 5 6 7

h [mm] 0.224 0.162 0.224 {0.01, 0.02, . . . , 0.2} a 0.224 0.162 0.224

θ
[
deg

]
45 0 45 0 45 0 45

Material Fabric Unidir Fabric Foam/Honeycomb Fabric UniDir Fabric

Various sandwich configurations are explored, which involve variations in core materials (foam

or honeycomb) and core thickness, ranging from thin to very thick. Given that all the results show-

cased in this section are novel, we shall henceforth denote this case study as Di Cara-TestCase

(DC-TC).

4.6. Pre-buckling

The initial strain field described by Eq. (26) is enhanced to incorporate the contribution aris-

ing from the imposed shear stress resultant N0xy, which is added to the compressive stress N0xx.

Consequently, the initial strain field under this combined in-plane loading is as follows:

ε0xx = a11 N0xx + a13 N0xy

ε0yy = a12 N0xx + a23 N0xy

ε0xy = a16 N0xx + a22 N0xy

(30)

The resulting initial stress field is obtained in the same manner as previously, employing the reduced

constitutive law as presented in Eq. (27). It is worth noting that the introduction of in-plane shear

loads leads to the occurrence of a wrinkle pattern at a skewed angle with respect to the principal

directions, regardless of the lamination scheme.

4.7. Buckling

A first analysis investigates the interaction between shear and compression loading for a rather

thick panel with a foam core whose thickness is 15% of the plate length, which corresponds to

a total thickness H = 40.22 mm. A converged mesh consisting of 100 × 100 QC4 elements is

used. Indeed, the moderate length-to-thickness ratio of the panel and the orthotropic composite face

sheets subjected to the combined shear-compression loading give rise to a complex wrinkle pattern,

demanding a substantial number of elements to achieve a precise representation.
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Figure 20: DC-TC: Interaction curves of a sandwich panel with a foam core subjected to combined in-plane shear-

compression loading.

The composite face sheets are modelled according to FSDT whilst different models are assessed

for the core, namely ED21, ED32, ED54 and ED76. The interaction curve obtained for the different

core models is illustrated in Fig. 20.

It is observed that a low order model for the core layer significantly overestimates the load-

bearing capacity of the sandwich structure. Therefore, a refined kinematics is required to attain

an accurate prediction of the buckling load. the results show that the high-order model ED54 is

required to properly resolve the local wrinkling instabilities. These results are being introduced

for the first time in the context of the variable kinematics FE approach, providing evidence of its

capability to effectively handle complex loading conditions that involve both shear and compression

simultaneously.

The second analysis delves into the transition from global to local instabilities. This shift in the

buckling mechanism is initiated by increasing the core’s thickness [44]. In fact, augmenting the core

layer’s thickness enhances the structure’s resistance to global buckling. However, the increase of the

core thickness redirects the challenge toward local instabilities in the face sheets. Global buckling

and face sheet wrinkling appear thus as competing failure mechanisms that must be well identified

for a rational sandwich design. The proposed numerical approach actually allows to investigate both
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Figure 21: DC-TC: Transition curves of a sandwich panel subjected to combined shear-compression loading condition

with N0xy/N0xx = 0.75: foam core (left), honeycomb core (right).

buckling mechanisms within a unique modeling framework based on a simple 2D FE mesh.

The same mesh of the previous analysis is retained and the previous SGUF models are used

with FSDT for the face sheets and different kinematic models for the core. The critical buckling

load per unit length is plotted in Fig. 21 as a function of the ratio between the core thickness and

the plate length, denoted as 2c/a. The analysis is carried out for both foam and honeycomb cores.

The loading ratio N0xy/N0xx for this analysis has been set to 0.75.

For low core thickness, the critical buckling mechanisms is the global one, and the buckling

loads linearly increase as the core thickness increases because the overall bending rigidity of the

panel is enhanced. At a certain threshold value of the core thickness, however, the critical buckling

mechanism switches to local wrinkling. The threshold core thickness is shown to depend on the

mechanical properties of the core. At a first glance, it is immediate to see in Fig. 21 that, as the FSDT

model does not account for the compressibility of the core layer, it fails to detect any transition

from global to local buckling mechanisms, irrespective of the core properties. High-order models

for the core are again required to grasp the global-local transition. In the wrinkling regime, it is

interesting to note the different influence of the core thickness on the critical load of the foam and

the honeycomb cores. Fig. 21 shows that increasing the foam core thickness comes along a slight

increase of the buckling load, whereas increasing the thickness of the honeycomb core produces

at first a decrease of the critical load. An explanation of this phenomenon may be attempted by
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analysing the results obtained with different kinematic models used for the core. It is shown that

converged results for the honeycomb core are obtained with the ED21 model (Fig. 21, right), whereas

the refined model ED54 is required for resolving the wrinkling of the foam core (Fig. 21, left).

This suggests that the transverse shear deformation plays a more relevant role in the foam core

than in the honeycomb core [12, 31]. In fact, the negligible in-plane stiffness of the honeycomb

structure induces a nearly pure extensional deformation (symmetric wrinkling mode), in which the

transverse shear plays a negligibly small role. On the contrary, the isotropic foam core induces an

antisymmetric wrinkling mode which is heavily influenced by the transverse shear rigidity. Since

the thickness enhances the transverse shear stiffness, the wrinkling load of the foam core panel

increases with the core thickness. However, the transverse normal stiffness is independent of the

core thickness, thus the initial reduction of the critical load occurs for honeycomb core thicknesses

directly above the threshold value.

5. Conclusions

This paper has extended the variable kinematics approach, referred to as Sublaminate Gen-

eralized Unified Formulation (SGUF), towards the linearized buckling analysis in the framework

of the Finite Element Method (FEM). The variable kinematics geometric stiffness matrix is built

for membrane loads by referring to von Kármán approximation and the classical bifurcation buck-

ling problem is solved by means of eigenvalue analysis. A number of representative case studies

have been addressed for displaying the accuracy and flexibility of the proposed SGUF-FEM tool:

global buckling of symmetric cross-ply laminates, the transition from global to local buckling of

sandwich panels under different loading conditions and depending on characteristic geometric and

material parameters of the sandwich section, including anisotropic face sheets, orthotropic as well

as isotropic cores. The results illustrate the capability of this approach to grasp complex three-

dimensional failure mechanisms such as the wrinkling of the face sheets within a simple 2D FE

mesh. This advantage sets the proposed method apart from currently available commercial Finite

Element packages, and it appears as particularly useful in the context of preliminary design phases.

Further developments of the SGUF-FEM tool shall be directed towards the inclusion of material

failure and delamination initiation criteria. Also, progressive failure analysis arises as a required

development in view of advanced structural designs. The extension towards geometric as well ma-

terial non-linearities shall in particular allow to grasp post-buckling responses, global-local buck-
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ling interactions and delamination propagation. The promising advantages of functionally graded

sandwich structures as efficient load carrying thermal barriers or lightweight ballistic panels further

suggest to extend the presented SGUF-FEM tool towards plies with continuously varying material

parameters, thermal effects and dynamic response.

References
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