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In the field of complex networks, hypergraph models have so far received significantly less attention than graphs. However, many real-life networks feature multiary relations (coauthorship, protein reactions) may therefore be modeled way better by hypergraphs. Also, a recent study by Broido and Clauset suggests that a power-law degree distribution is not as ubiquitous in the natural systems as it was thought so far. They experimentally confirm that a majority of networks (56% of around 1000 networks that undergone the test) favor a powerlaw with an exponential cutoff over other distributions. We address the two above observations by introducing a preferential attachment hypergraph model which allows for vertex deactivations. The phenomenon of vertex deactivations is rare in existing theoretical models and omnipresent in real-life scenarios (social network accounts which are not maintained forever, collaboration networks in which people retire, technological networks in which devices break down). We prove that the degree distribution of the proposed model follows a power-law with an exponential cutoff. We also check experimentally that a Scopus collaboration network has the same characteristic. We believe that our model will predict well the behavior of systems from a variety of domains.

I. INTRODUCTION

The notion of complex networks relates to the mathematical structures modeling large real-life systems. Their omnipresence across different life domains is remarkable. Complex networks model biological networks (e.g., protein or gene interactions schemes, maps of neural connections in the brain), social networks (Facebook, Twitter, Snapchat, collaboration networks), technological networks (power grids, transportation networks), the World Wide Web, etc. They allow to predict the behavior of the systems, serve as the benchmarks for testing algorithms that are used later in the real networks, and, in general, allow to understand better the underlying mechanisms that create those systems in nature. Roughly, since 1999, one observes a dynamical growth in experimental and theoretical research on complex networks in computer science, mathematical, and physical societies. It was the year when Barabási and Albert introduced the seminal model of a preferential attachment random graph [START_REF] Barabási | Emergence of scaling in random networks[END_REF]. This model is based on two mechanisms: growth (the graph is growing over time, gaining a new vertex and a bunch of edges at each time step) This work has been supported by the French government through the UCA JEDI (ANR-15-IDEX-01) and EUR DS4H (ANR-17-EURE-004) Investments in the Future projects, by Inria associated team CANOE, and project SNIF (Scientific Networks and IDEX funding). and preferential attachment (an arriving vertex is more likely to attach to other vertices with high degrees rather than with low degrees). It captures the small world (small diameter) and the rich get richer (leading to a heavy tailed degree distribution) phenomena commonly observed in nature.

Since then, a number of theoretical models were presented, e.g., [START_REF] Buckley | Popularity based random graph models leading to a scale-free degree sequence[END_REF], [START_REF] Chung | The average distances in random graphs with given expected degrees[END_REF], [START_REF] Cooper | A general model of web graphs[END_REF], [START_REF] Molloy | A critical point for random graphs with a given degree sequence[END_REF], [START_REF] Watts | Collective dynamics of small-world networks[END_REF]. These were mostly graph models concentrated on reflecting three phenomena: a small diameter, a high clustering coefficient, and a power-law degree distribution. It was thought for a long time that a powerlaw degree distribution is the most commonly present in nature [START_REF] Bollobás | Handbook of Graphs and Networks: From the Genome to the Internet[END_REF]. However, this statement was recently questioned by Broido and Clauset [START_REF] Broido | Scale-free networks are rare[END_REF]. They performed statistical tests on almost 1000 social, biological, technological, transportation, and information networks and observed that a "majority of networks (56%) favor the power-law with cutoff model over other distributions". The cutoff observed in the tail of a distribution may be caused by a finite-size character of the dynamic network, i.e., when the elements deactivate after some time [START_REF] Broido | Scale-free networks are rare[END_REF]. The phenomenon of vertex deactivations is rare in known theoretical models and omnipresent in reallife scenarios as the extinction events are fundamental in the world surrounding us. Think of social networks (Facebook, Twitter, Instagram, etc.) where users unsubscribe or simply stop using them, collaboration networks in which deactivated nodes represent people who retired, died or stopped working in the given domain, technological networks where a vertex deactivation is interpreted as a breakdown of the device or the web network in which web pages are not maintained forever. Even though some theoretical models featuring deletions or deactivations of vertices were introduced [START_REF] Cooper | Random deletion in a scale-free random graph process[END_REF], [START_REF] Moore | Exact solutions for models of evolving networks with addition and deletion of nodes[END_REF], just a few of them lead to a degree distribution following a power-law with an exponential cutoff. One of the widely cited is a balls and bins scheme introduced by Fenner et al. [START_REF] Fenner | A stochastic evolutionary model exhibiting power-law behaviour with an exponential cutoff[END_REF], [START_REF] Fenner | A model for collaboration networks giving rise to a power-law distribution with an exponential cutoff[END_REF].

In the model from [START_REF] Fenner | A stochastic evolutionary model exhibiting power-law behaviour with an exponential cutoff[END_REF], [START_REF] Fenner | A model for collaboration networks giving rise to a power-law distribution with an exponential cutoff[END_REF], information about the degree of each element of the network is kept but information about who is connected with whom is lost. Working with graphs instead of bins and balls allows to keep this information. Nevertheless, graphs have another clear limitation. They reflect only binary relations while in practice we encounter many higher order relations (groups of interest, protein reactions, coauthorship, interactions between biological cells, GitHub users committing to the same repository). Nowadays they are often modeled in graphs by cliques which may lead to a profound information loss [START_REF] Battiston | Networks beyond pairwise interactions: Structure and dynamics[END_REF]. E.g., if there are three researchers in a triangle in a collaboration graph, one cannot tell whether they published one paper together or three independent papers, each per pair of researchers. Higher order relations can be captured by hypergraphs, that is, a generalization of graphs in which each (hyper)edge possibly links together more than two nodes. Sometimes keeping information about hyperedge may have a profound impact on analyzing the model and drawing conclusions. Consider any example in which a big hyperedge strongly indicates belonging to the same community (e.g., an email sent to a group of people should evidence the existence of a community rather than be treated as a set of bilateral emails). So far hypergraph models have received significantly less attention than graphs in the area of complex networks. Wang et al. introduced a preferential attachment hypergraph model but restricted to a specific subfamily of uniform acyclic hypergraphs (the analogue of trees within graphs) [START_REF] Wang | Evolving hypernetwork model[END_REF]. The first rigorously studied non-uniform hypergraph preferential attachment model was proposed only in 2019 by Avin et al. [START_REF] Avin | Random preferential attachment hypergraph[END_REF] and featured a power-law degree distribution. Another dynamic hypergraph model with a clear community structure was presented in [START_REF] Giroire | Preferential attachment hypergraph with high modularity[END_REF]. Note that there exists an analogy between the hypergraphs and the random intersection graphs [START_REF] Bloznelis | Recent progress in complex network analysis: Models of random intersection graphs[END_REF], [START_REF] Bloznelis | Recent progress in complex network analysis: Properties of random intersection graphs[END_REF]. The algorithms and software tools for working with hypergraph networks, even the definitions of some features and measures started appearing only recently [START_REF] Antelmi | Analyzing, exploring, and visualizing complex networks via hypergraphs using SimpleHypergraphs[END_REF], [START_REF]HyperNetX: hypergraph software library implemented in Python[END_REF]- [START_REF] Kamiński | Community detection algorithm using hypergraph modularity[END_REF].

Results. We propose a preferential attachment hypergraph model in which vertices may become inactive after some time. The hyperedges model multiary and not necessarily uniform relations, we allow for different cardinalities of hyperedges (e.g., articles may have different numbers of co-authors). We prove that the degree distribution of our model follows a power-law with an exponential cutoff and compare it with a real-life example, a Scopus research collaboration network. We believe that our model will be the next step towards developing the hypergraph chapter in the complex networks area and that will serve as a useful tool predicting well the behavior of the systems from a variety of domains.

Paper organization. Sec. II contains basic definitions and notation. In Sec. III, we introduce the hypergraph model with vertex deactivation and prove that its degree distribution follows a power-law with an exponential cutoff using a master equation approach. Due to the presence of hyperedges and to the possibility of vertex deactivation, we had to modify the classical approach (e.g. treat active and inactive vertices separately) and take advantage of some tools that were not used in this context before (e.g. the Stolz-Cesaro Theorem). In Sec. IV, we estimate one of the parameters that appears in the formula for the degree distribution of our model. It is defined as a limit, existence of which we assume (Asm. (4) formulated in Sec. III.B) to prove the main result (Thm. 2). Such an assumption was already present in the literature on models with degree distribution following a power-law with an exponential cutoff, [START_REF] Fenner | A stochastic evolutionary model exhibiting power-law behaviour with an exponential cutoff[END_REF], [START_REF] Fenner | A model for collaboration networks giving rise to a power-law distribution with an exponential cutoff[END_REF]. Even though we also did not manage to prove the existence of this limit directly, the technical novelty is that we give a formally rigid indication on how to estimate its value (using Gaussian hypergeometric functions and the Banach Fixed Point Theorem) and an experimental justification for its existence in Sec. V. Sec. V also includes the experimental results on real data and the simulations of the model. Further works are discussed in Sec. VI.

II. BASIC DEFINITIONS AND NOTATION

We define a hypergraph H as a pair H = (V, E), where V is a set of vertices and E is a multiset of hyperedges, i.e., non-empty, unordered multisets of V . We allow for a multiple appearance of a vertex in a hyperedge (self-loops) as well as a multiple appearance of a hyperedge in E. The degree of a vertex v in a hyperedge e, denoted by d(v, e), is the number of times v appears in e. The cardinality of a hyperedge e is |e| = v∈e d(v, e). The degree of a vertex v ∈ V in H is understood as the number of times it appears in all hyperedges, i.e., deg(v) = e∈E d(v, e). If |e| = k for all e ∈ E, H is said to be k-uniform.

We consider hypergraphs that grow by adding vertices and/or hyperedges at discrete time steps t = 0, 1, 2, . . . according to some rules involving randomness. The random hypergraph obtained at time t will be denoted by H t = (V t , E t ) and the degree of u ∈ V t in H t by deg t (u). During this building process some of the vertices may become deactivated. Therefore the set V t splits into A t , the set of vertices active at time t (denote its cardinality by A t ), and I t , the set of vertices that are not active at time t (denote its cardinality by I t ); thus |V t | = A t +I t . By D t we denote the sum of degrees of vertices active at time t, i.e., D t = u∈At deg t (u). Moreover, we write Θ t for the degree of a vertex chosen for deactivation at time t (the description of a deactivation procedure is given within the formal definition of the model in the next section).

N k,t stands for the number of vertices in H t of degree k. Thus k≥1 N k,t = |V t |. Similarly, A k,t is the number of active vertices of degree k at time t and I k,t the number of inactive vertices of degree k at time t (denote the corresponding sets by A k,t and I k,t , respectively)

; k≥1 A k,t = A t , k≥1 I k,t = I t and N k,t = A k,t + I k,t . We write f (k) ∼ g(k) if f (k)/g(k) k→∞ ----→ 1.
We say that the degree distribution of a random hypergraph follows a power-law if the expected fraction of vertices of degree k is proportional to k -β for some exponent β > 1. Formally, we interpret it as

lim t→∞ E N k,t |Vt| ∼ c • k -β
for some positive constants c and β > 1. Similarly, we say that the degree distribution of H t follows a power-law with an exponential cutoff if

lim t→∞ E N k,t |Vt| ∼ c • k -β γ k ,
where γ ∈ (0, 1). We say that an event A occurs with high probability (whp) if the probability P[A] depends on a certain number t and tends to 1 as t tends to infinity.

III. PREFERENTIAL ATTACHMENT HYPERGRAPH WITH VERTEX DEACTIVATION

The model introduced in this section may be seen as a generalization of a hypergraph model presented by Avin et al. in [START_REF] Avin | Random preferential attachment hypergraph[END_REF]. The model from [START_REF] Avin | Random preferential attachment hypergraph[END_REF] allows for two different actions at a single time step -attaching a new vertex by a hyperedge to the existing structure or creating a new hyperedge on already existing vertices. We add another possibility -deactivation of a vertex. Once a vertex is chosen for deactivation, it stays deactivated forever, i.e., it remains in the hypergraph but it can not be chosen to the new hyperedges -its degree freezes and the hyperedges incident with it remain in the hypergraph. Avin et al. proved that the degree distribution of their model follows a power-law. We prove that adding the possibility of deactivation of vertices generates an exponential cutoff in the degree distribution.

A. Model H(H 0 , p v , p e , Y)
The hypergraph model H is characterized by the following parameters:

1) H 0 -the initial hypergraph, seen at t = 0; 2) p v , p e , p d = 1-p e -p v -the probabilities indicating, what are the chances that a particular type of event occurs at a single time step; 3) Y = (Y 0 , Y 1 , . . . , Y t , . . .) -independent random variables, giving the cardinalities of the hyperedges that are added at a single time step. Here is how the structure of H = H(H 0 , p v , p e , Y ) is being built. We start with some non-empty hypergraph H 0 at t = 0. We assume for simplicity that H 0 consists of a hyperedge of cardinality 1 over a single vertex. Nevertheless, all the proofs may be generalized to any initial H 0 having constant number of vertices and constant number of hyperedges with constant cardinalities. 'Vertices chosen from A t in proportion to degrees' means that active vertices are chosen independently (possibly with repetitions) and the probability that any u from A t is chosen is Remark 2. Vertices in this model are deleted in proportion to their degrees, which may reflect aging, retirement, etc. The choice of other deletion procedures appearing in some scenarios (e.g., deleting vertices at random or inversely to the degree) would influence significantly our calculations and might even lead to a different limiting degree distribution. We leave it as a future work.

P[u is chosen] = deg t (u) v∈At deg t (v) = deg t (
Remark 3. As the hypergraph gets large, the probability of creating a self-loop can be well bounded and is quite small provided that the sizes of hyperedges are reasonably bounded.

Note that if we want a process to continue then it is reasonable to demand that, on average, we add more vertices to the system than we deactivate. Therefore we always assume p v > p d . Then the probability that the process will not terminate (i.e., that we never arrive at the moment in which all vertices are deactivated) is positive and equals 1 -(p d /p v ) i , where i is the number of active vertices at time t = 0, in our case i = 1 (compare with the probability that the gambler's fortune will increase forever, [START_REF] Epstein | The Theory of Gambling and Statistical Logic[END_REF]). We concentrate only on the case when the process does not terminate.

B. Degree distribution of H(H

0 , p v , p e , Y)
In this section we prove that the degree distribution of H = H(H 0 , p v , p e , Y ) follows a power-law with an exponential cutoff under four assumptions.

First two of them address the distributions of the cardinalities of hyperedges (Y t ) added step by step. We assume that their expectation is constant and their variance sublinear in t, which, we feel, is in accordance with many real-life systems (in particular, with the scientific collaboration network we are working with experimentally in Sec. V).

The third assumption tells that we will restrict ourselves to only such distributions of Y t for which the distribution of D t (the sum of degrees of active vertices at time t) remains concentrated. Similar assumption one finds in other papers on complex network models, e.g. in [START_REF] Avin | Random preferential attachment hypergraph[END_REF] by Avin et al. (presenting a model of a preferential attachment hypergraph with the degree distribution following a power-law) or in [START_REF] Krapivsky | Organization of growing random networks[END_REF], [START_REF] Krapivsky | Connectivity of growing random networks[END_REF] by Krapivsky et al. (where the models in which the arriving vertex attaches to the existing node w with probability proportional to (deg w) r with r < 1 is studied).

The fourth assumption refers to the average sum of degrees of vertices chosen for deactivation,

t τ =1 E[Θ τ ].
In Sec. IV we prove that its order is Θ(t). However, we additionally assume that the limit lim t→∞

1 t t τ =1 E[Θ τ ]
exists and equals some θ ∈ R >0 . Such assumption was also already present in the literature on models with degree distribution following a power-law with an exponential cutoff [START_REF] Fenner | A stochastic evolutionary model exhibiting power-law behaviour with an exponential cutoff[END_REF], [START_REF] Fenner | A model for collaboration networks giving rise to a power-law distribution with an exponential cutoff[END_REF]. Since we were not able to (just as the authors of [START_REF] Fenner | A stochastic evolutionary model exhibiting power-law behaviour with an exponential cutoff[END_REF] or [START_REF] Fenner | A model for collaboration networks giving rise to a power-law distribution with an exponential cutoff[END_REF]) theoretically justify the existence of the stated limit we support it by simulations in Sec. V. We also explain in Sec. IV how the limiting value may be obtained, assuming that the limit exists.

Assumptions 1) E[Y t ] = µ ∈ R >0 for all t > 0. 2) Var[Y t ] = o(t). 3) P[D t ̸ = E[D t ] + o(t)] = o(1/t). 4) lim t→∞ 1 t t τ =1 E[Θ τ ] = θ ∈ R >0 .
Before we formally state and prove the main theorem we introduce several technical lemmas and theorems that will be helpful later on. 

Lemma 2. If lim t→∞ E[N k,t ] t ∼ c • k -β γ k 1 k + δ for some positive constants c, β, γ, δ then lim t→∞ E N k,t |Vt| ∼ c pv k -β γ k 1 k + δ . (Here "∼" refers to the limit by k → ∞.) Lemma 3. Let E[Y t ] = µ for all t > 0 and Var[Y t ] = o(t). Then E Y 2 t D 2 t-1 = o 1 t . Lemma 4. Let D t = E[D t ] + o(t) whp. Then E A k,t Dt = E[A k,t ] E[Dt] + o(1) for each k ≥ 1. Lemma 5. Let E[Y t ] = µ for all t > 0. Assume that lim t→∞ 1 t t τ =1 E[Θ τ ] = θ ∈ R >0 . Then lim t→∞ E[Dt] t = (p v + p e )µ -p d θ.
Proof. The initial hypergraph H 0 consists of a single vertex of degree 1. Since at time t ≥ 1 we add a hyperedge of cardinality Y t with probability p v + p e and we deactivate a vertex of degree Θ t with probability p d we get

E[D t ] = 1 + (p v + p e ) t τ =1 E[Y τ ] -p d t τ =1 E[Θ τ ]. (1)
The conclusion follows.

Theorem 2. Consider a hypergraph H = H(H 0 , p e , p v , Y ) for any t > 0. By Asm. (1-4) the degree distribution of H follows a power-law with an exponential cutoff, i.e.,

E N k,t |V t | ∼ c • k -β γ k 1 k + δ f or β = µ(p v + p e ) -p d θ p v (µ -1) + p e µ + p d , γ = p v (µ -1) + p e µ p v (µ -1) + p e µ + p d , δ = p d µ(p v + p e ) -p d θ , c = β • Γ(1 + β) γ ,
where Γ(x) = ∞ 0 t x-1 e -t dt. Remark 4. The theorem and its proof presented below remain true if we relax Asm. (3) just to

D t = E[D t ] + o(t) whp.
Nevertheless, we leave the stronger version of (3) on the list of assumptions as it will be needed in Sec. IV for estimating θ.

Remark 5. Setting p d = 0 in the above theorem (i.e., considering the process without deactivation) results in the power-law degree distribution, namely β+1) , where β = µ µ-pv and c = β • Γ(1 + β). This is in accordance with the result obtained in [START_REF] Avin | Random preferential attachment hypergraph[END_REF].

E N k,t |Vt| ∼ c•k -(
See [START_REF] Giroire | Preferential attachment hypergraph with vertex deactivation[END_REF] for the full proof without shortcuts in calculations.

Proof. We take a standard master equation approach that can be found e.g. in Chung and Lu book [START_REF] Chung | Complex Graphs and Networks[END_REF] about complex networks. However, we apply it separately to the number of active vertices and the number of deactivated vertices.

Recall that N k,t denotes the number of vertices of degree k at time t. We need to show that lim t→∞ E

N k,t |Vt| ∼ c • k -β γ k 1
k + δ for the proper constants c, β, γ and δ. However, by Lemma 2 we know that it suffices to show that

lim t→∞ E[N k,t ] t ∼ p v • c • k -β γ k 1 k + δ . Recall that N k,t = A k,t + I k,t . First, let us evaluate lim t→∞ E[A k,t ] t
using the mathematical induction on k. In this part we follow closely the lines of the proof that can be found in [START_REF] Avin | Random preferential attachment hypergraph[END_REF]. Consider the case k = 1. Since H 0 consists of a single hyperedge of cardinality 1 over a single vertex, we have A 1,0 = 1. To formulate a master equation, let us make the following observation for t ≥ 1. An active vertex remains in A 1,t if it had degree 1 at step t -1 and was neither selected to a hyperedge, nor deactivated. Recall that a vertex from A 1,t-1 is chosen at step t in a single trial to the new hyperedge with probability 1/D t-1 thus the chance that it won't be selected to the hyperedge of cardinality y equals (1 -1/D t-1 ) y . Also, in each step, with probability p v , a single new active vertex of degree 1 is added to the hypergraph. Let F t denote a σ-algebra associated with the probability space at step t. For t ≥ 1

E[A 1,t |F t-1 ] = p v A 1,t-1 1 - 1 D t-1 Yt-1 + p e A 1,t-1 1 - 1 D t-1 Yt + p d A 1,t-1 1 - 1 D t-1 + p v .
(

) 2 
Taking the expectation on both sides of (2) we derive upper and lower bounds on E[A 

E[A 1,t ] ≥ p v E A 1,t-1 1 - Y t -1 D t-1 + p e E A 1,t-1 1 - Y t D t-1 + p d E A 1,t-1 1 - 1 D t-1 + p v = E[A 1,t-1 ] 1 - p v (µ -1) + p e µ + p d E[D t-1 ] + p v -o(1). (3) 
On the other hand, since

(1 -x) n ≤ 1/(1 + nx) for x ∈ [0, 1]
and n ∈ N, and A 1,t-1 ≤ t, by Lemma 3 (thus by Asm. ( 1), ( 2) necessary for it) and Lemma 4 (thus by Asm. ( 3)) we have

E[A 1,t ] ≤ p v E A 1,t-1 1 + (Y t -1)/D t-1 + p e E A 1,t-1 1 + Y t /D t-1 + p d E A 1,t-1 1 - 1 D t-1 + p v = E[A 1,t-1 ] 1 - p v (µ -1) + p e µ + p d E[D t-1 ] + p v + o(1). (4) 
From ( 3) and ( 4) we get

E[A 1,t ] = E[A 1,t-1 ] 1 - p v (µ -1) + p e µ + p d E[D t-1 ] +p v +o(1)
.

Now, we apply Lemma 1 to the above equation choosing

a t = E[A 1,t ], b t = p v (µ -1) + p e µ + p d E[D t-1 ]/t , c t = p v +o(1).
We have lim t→∞ c t = p v and, by Fact 5 (thus by Asm. ( 1), (4) implying it), lim t→∞ b t = pv(µ-1)+peµ+p d µ(pv+pe)-p d θ =: 1/β thus

lim t→∞ a t t = lim t→∞ E[A 1,t ] t = p v 1 + 1/β =: Ā1 .
Now, we assume that the limit lim t→∞

E[A k-1,t ] t
exists and equals Āk-1 and we will show by induction on k that the analogous limit for E[A k,t ] exists. Let us again formulate a master equation, this time for k > 1. We have A k,0 = 0 and for t ≥ 1 an active vertex appears in A k,t if it was active at step t -1, had degree kl and was chosen exactly l times to a hyperedge, or it had degree k and was not selected for deactivation. Let B(l, n, p) = n l p l (1 -p) n-l . We have

E[A k,t |F t-1 ] = p v min{Yt-1,k-1} l=0 A k-l,t-1 B l, Y t -1, k -l D t-1 + p e min{Yt,k-1} l=0 A k-l,t-1 B l, Y t , k -l D t-1 + p d A k,t-1 1 - k D t-1 .
Taking the expectation on both sides we get

E[A k,t ] = E[ψ] + p v E[φ(Y t -1)] + p e E[φ(Y t )],
where

ψ = p v 1 l=0 A k-l,t-1 B l, Y t -1, k -l D t-1 + p e 1 l=0 A k-l,t-1 B l, Y t , k -l D t-1 + p d A k,t-1 1 - k D t-1 and φ(n) = min{n,k-1} l=2 A k-l,t-1 B l, n, k -l D t-1 .
We will show that only the term E[ψ] is significant and

E[φ(Y t -1)] and E[φ(Y t )] converge to 0 as t → ∞. We have φ(Y t ) ≤ k-1 l=2 A k-l,t-1 Y t l k -l D t-1 l 1 - k -l D t-1 Yt-l = O(t) Y 2 t D 2 t-1
.

Hence by Lemma 3 (thus by Asm. ( 1), ( 2)

) we get E[φ(Y t )] = o(1) and, similarly, E[φ(Y t -1)] = o(1). The bounds for E[ψ] derived analogously to the ones for E[A 1,t ] give E[A k,t ] = E[A k,t-1 ] 1 - k (p v (µ -1) + p e µ + p d ) E[D t-1 ] + E[A k-1,t-1 ] (k -1) (p v (µ -1) + p e µ) E[D t-1 ] + o(1). (5) 
Recall that by the induction assumption lim t→∞ E[A k-1,t ]/t = Āk-1 . Now, we apply again Lemma 1 to the above equation choosing

a t = E[A k,t ], b t = k(p v (µ -1) + p e µ + p d ) E[D t-1 ]/t , c t = E[A k-1,t-1 ] t (k -1)(p v (µ -1) + p e µ) E[D t-1 ]/t + o(1)
.

By Fact 5 (thus by Asm. ( 1), ( 4)) we have lim t→∞ b t = k/β and lim t→∞ c t = Āk-1

(k-1)(pv(µ-1)+peµ) µ(pv+pe)-p d θ thus lim t→∞ a t t = lim t→∞ E[A k,t ] t = Āk = Āk-1 (k -1)γ k + β , (6) 
where γ = pv(µ-1)+peµ pv(µ-1)+peµ+p d . Thus we got

Ā1 = p v β 1 (1 + β) , Ā2 = p v β γ (1 + β)(2 + β) , . . . , Āk = p v β γ k-1 (k -1)! (1 + β)(2 + β) . . . (k + β) . Since lim k→∞ Γ(k)k α Γ(k+α) = 1 for constant α ∈ R we have lim t→∞ E[A k,t ] t = Āk = p v β γ γ k Γ(1 + β)Γ(k) Γ(k + β + 1) ∼ p v • c • γ k k -(β+1) with c = β • Γ(1 + β) γ . (7) 
Now, let us evaluate lim t→∞

E[I k,t ] t
. We have I k,0 = 0 for all k ≥ 1. For t ≥ 1 the expected number of inactive vertices of degree k ≥ 1 at step t, given F t-1 , can be expressed as

E[I k,t |F t-1 ] = I k,t-1 + p d A k,t-1 k D t-1 ,
since inactive vertices of degree k remain in I k,t forever and a vertex of degree k becomes inactive if it was selected in step t -1 for deactivation. Taking the expectation on both sides, by Lemma 4 (thus by Asm. ( 3)), we obtain

E[I k,t ] = E[I k,t-1 ] + p d E[A k,t-1 ] k E[D t-1 ] + o(1).
Then, by Fact 5 (thus by Asm. ( 1) and ( 4)),

lim t→∞ (E[I k,t ] -E[I k,t-1 ]) = lim t→∞ p d k E[A k,t-1 ] • t t • E[D t-1 ] + o(1) = Āk kδ, where δ = p d (p v + p e )µ -p d θ .
And, by Stolz-Cesàro theorem (Thm. 1), we obtain

Īk := lim t→∞ E[I k,t ] t = lim t→∞ (E[I k,t ] -E[I k,t-1 ]) = Āk kδ. (8) 
Finally, by ( 7) and ( 8)

lim t→∞ E[N k,t ] t = lim t→∞ E[A k,t ] + E[I k,t ] t = Āk + Īk = Āk (1 + kδ) ∼ p v • c • k -β γ k 1 k + δ .

IV. ESTIMATING THE LIMITING VALUE θ

This section is devoted to estimating θ which appears as one of the parameters in the degree distribution of our hypergraph model H (consult Thm. 2). Recall that Θ t stands for the degree of a vertex chosen for deactivation at time t and it appears in the fourth assumption needed to prove Thm. 2 4. lim t→∞

1 t t τ =1 E[Θ τ ] = θ ∈ R >0 . Let us start with showing that t τ =1 E[Θ τ ] is of order Θ(t). Lemma 6. Let E[Y t ] = µ for all t > 0. Then p d ≤ 1 t t τ =1 E[Θ τ ] ≤ 1 + pv(µ-1)+peµ p d . Proof. By equation (1) we get t τ =1 E[Θ τ ] = 1 p d (1 + (p v + p e )µt -E[D t ]). Note that E[D t ] ≥ E[A t ] = 1 + (p v -p d )t (we assume p v > p d ) thus on one hand t τ =1 E[Θ τ ] ≤ t 1 + pv(µ-1)+peµ p d
and on the other

t τ =1 E[Θ τ ] ≥ E[I t ] = p d t.
Unfortunately, we were not able to prove that the limit lim t→∞ 1 t t τ =1 E[Θ τ ] exists. We support this assumption by simulations in Sec. V. Whereas in this section we show, assuming that the limit exists, how to estimate it.

Throughout this section F (a, b; c; z) denotes the Gaussian hypergeometric function, i.e., for a, b, c, z ∈ C, |z| < 1

F (a, b; c; z) = ∞ n=0 (a) n (b) n (c) n z n n! , where (x) n = Γ(x + n)/Γ(x). Lemma 7. Assume that P[D t ̸ = E[D t ] + o(t)] = o(1/t). Then E k≥1 k 2 A k,t D t = E[ k≥1 k 2 A k,t ] E[D t ] + o(1).
The proof can be found in [START_REF] Giroire | Preferential attachment hypergraph with vertex deactivation[END_REF].

Theorem 3. Assume that the conditions (1 -4) from Sec. III hold. Then θ is a fixed point of the function R(x) := F (2,2;ρ(x);γ)

F (1,2;ρ(x);γ) , where γ = pv(µ-1)+peµ pv(µ-1)+peµ+p d and ρ(x) = 2 + µ(pv+pe)-p d x pv(µ-1)+peµ+p d .

Proof. Recall that θ = lim t→∞

1 t t τ =1 E[Θ τ
] and Θ t is the degree of a vertex chosen for deactivation at time t. Let F t denote a σ-algebra associated with the probability space at step t. We have

E[Θ t |F t-1 ] = k≥1 k kA k,t-1
Dt-1 , hence taking expectation on both sides, applying Lemma 7 (thus by Asm. ( 3)) and noting that D t = k≥1 kA k,t we get

E[Θ t ] = E k≥1 k 2 A k,t-1 D t-1 = E[ k≥1 k 2 A k,t-1 ] E[D t-1 ] + o(1) = E[ k≥1 k 2 A k,t-1 ] E[ k≥1 kA k,t-1 ] + o(1).
Now, by eq. ( 7) (thus by Asm. (1-4) needed to prove Thm. 2)

lim t→∞ E[Θ t ] = k≥1 k 2 Āk k≥1 k Āk = F ( 
2, 2; ρ(θ); γ) F (1, 2; ρ(θ); γ) .

Finally, setting a t = t τ =1 E[Θ τ ] and b t = t in Stolz-Cesàro Theorem (Thm. 1) we obtain

θ = lim t→∞ 1 t t τ =1 E[Θ τ ] =
F (2, 2; ρ(θ); γ) F (1, 2; ρ(θ); γ) .

From now on we consider the behavior of R(x) only in the interval [0, θ], where θ = (pv+pe)µ p d since we know that the limiting value θ we are looking for belongs there. Indeed, by Lemma 6 we know that it is at least p d and at most (pv+pe)µ-pv+p d p d and we work by p v > p d to ensure that, on average, we add more vertices to the network than we deactivate. Recall that the function F (a, b; c; z) is defined for |z| < 1 and c ̸ ∈ Z ≤0 . Therefore, since 0 < γ < 1 and ρ(x) is positive on [0, θ], both F (1, 2; ρ(x); γ) and F (2, 2; ρ(x); γ) are always defined, continuous and positive on [0, θ]. This implies that R(x) is continuous on [0, θ]. Below we will justify that R(x) has just one fixed point in the interval [0, θ] and that a fixed-point iteration method will converge here. We start with recalling Banach Fixed Point Theorem.

Theorem 4 (Banach Fixed Point Theorem). Let (S, d) be a non-empty complete metric space with a contraction mapping R : S → S. Then R admits a unique fixed point s * in S (R(s * ) = s * ). Furthermore, s * can be found as follows: start with an arbitrary element s 0 ∈ S and define a sequence {s n } n≥1 by s n = R(s n-1 ) for n ≥ 1. Then lim n→∞ s n = s * .

Thus we aim at showing that R(x) is a contraction mapping on [0, θ]. From now on let F 1 (x) = F (1, 2; ρ(x); γ) and F 2 (x) = F (2, 2; ρ(x); γ) for γ and ρ(x) as in Thm. 3.

The proofs of Lemmas 8, 9, and 10 can be found in [START_REF] Giroire | Preferential attachment hypergraph with vertex deactivation[END_REF].

Lemma 8. The function R(x) = F2(x) F1(x) can be expressed as R(x) = x -pv p d + 1 1-γ ρ(x)-1 F1(x)
, where γ, ρ(x) are as in Thm. 3. Corollary 1. Assume that the conditions (1 -4) from Sec. III hold (in particular, θ = lim t→∞

1 t t τ =1 E[Θ τ ]).
Then θ is a unique fixed point of R(x) in [0, θ], such that lim n→∞ θ n = θ, where θ n+1 = R(θ n ) and θ 0 can take any value in [0, θ].

Proof. The proof follows directly from the fact that θ is a fixed point of R(x) (Thm. 3), the fact that R(x) is a contraction mapping defined on a complete metric space (Lemma 10), and the Banach fixed-point theorem (Thm. 4). Remark 6. The speed of convergence of the fixed-point iteration method may be described by a Lipschitz constant for R, denoted here by q: d(θ, θ n+1 ) ≤ q 1-q d(θ n+1 , θ n ). If we conjecture that R(x) is convex on [0, θ] then we easily get (R(x) is increasing) that the best Lipschitz constant for R is q

= sup x∈[0, θ] R ′ (x) = R ′ ( θ) = 1 + 1-γ γ ln(1 -γ).
However, proving the convexity of R(x) seems very demanding.

In the next section we present the results of applying the fixed-point iteration method to estimate θ for the exemplary random hypergraph following our model.

V. EXPERIMENTAL RESULTS

In order to verify the results obtained and the legitimacy of our assumptions, we ran numerous simulations of the model testing different sets of parameters. In this section we present the results of simulated H = H(H 0 , p v = 0.3, p e = 0.5, p d = 0.2, Y t ), where the distribution of Y t was experimentally obtained from a real collaboration network G. G was built upon data extracted from Scopus [START_REF]Elsevier's abstract and citation database[END_REF], 239,414 computer science articles published between 1990 and 2018 by 258,145 authors. Each author was treated as a node and every publication corresponded to a hyperedge between its co-authors. We used statistical tools from [START_REF] Clauset | Power-law distributions in empirical data[END_REF] to fit and compare the theoretical distributions with the real degree distribution of G. One finds the result in Fig. 1 which shows that a power-law with an exponential cutoff is a good fit here (this is just one of many examples of real-life networks that follow this distribution [START_REF] Broido | Scale-free networks are rare[END_REF]). The evolution of the average degree of a vertex selected for deactivation in H compared to the value of θ calculated using the fixed-point iteration method (Cor. 1) is presented in Fig. 3. It shows the convergence of the empirical average degree of a deactivated vertex to the estimated value of θ which supports both, our Asm. (4) as well as the method for evaluating θ (see Fig. 4 for its visualization). Furthermore, we checked empirically the value of E[D t ] in H (we ran 1000 simulations up to 100,000 steps). The empirical E[D t ] appeared to be linear with the slope α = 0.438948 (Fig. 5). We then calculated the slope of the theoretical E[D t ] using the fixed-point iteration method to compute θ and, then, plugging it into equation from Lemma 5. It yielded For the results of simulations conducted with different sets of parameters (e.g. Y t following some theoretical distribution, like Poisson), check the extended version of this paper [START_REF] Giroire | Preferential attachment hypergraph with vertex deactivation[END_REF].

VI. CONCLUSIONS

To the best of our knowledge, we have presented the first complex network model which allows for multiary relations and deactivation of elements 1 . Both those eventualities occur naturally in real-life systems. We thus believe that the model will find a wide range of applications in many research domains. We have also proved that its degree distribution follows a power-law with an exponential cutoff, which, according to the broad study of Broido and Clauset [START_REF] Broido | Scale-free networks are rare[END_REF], is the distribution most often observed in nature.

Challenging further research would be to check how the choice of a deletion procedure (e.g., deleting vertices at random or inversely to the degree instead of in proportion to the degree) influences the limiting degree distribution. It would be also useful to determine which deletion procedures are the more adequate for the different real life complex networks.

The other interesting direction of study is to make the attachment rule dependent not only on the degrees of vertices but also on their additional own characteristic (called fitness in the literature [START_REF] Borgs | First to market is not everything: An analysis of preferential attachment with fitness[END_REF]).
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 1 Stolz-Cesàro). Let (a t ) t≥1 and (b t ) t≥1 be the sequences of real numbers. Assume (b t ) t≥1 is strictly monotone and divergent. If lim t→∞ at+1-at bt+1-bt = g then lim t→∞ at bt = g. Lemma 1 ( [12], Chapter 3.3). Let (a t ) t≥1 , (b t ) t≥1 and (c t ) t≥1 be the sequences of real numbers, where b t t→∞ ---→ b > 0, c t t→∞ ---→ c and a t satisfies the recursive relation a t+1 = 1 -bt t a t + c t . Then lim t→∞ at t = c 1+b . The proofs of Lemmas 2, 3, and 4 can be found in the extended version of this paper [19].

Lemma 9 .

 9 The function R(x) strictly increases on [0, θ]. Lemma 10. R(x) is a contraction mapping on [0, θ].
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 1 Fig. 1: The degree distribution of the Scopus network G.
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 2 Fig. 2: The distribution of sizes of hyperedges in the Scopus network G.

Fig. 2

 2 Fig.2shows the distribution of hyperedge sizes in G -the one chosen for Y t in our experiment.
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 3 Fig. 3: The empirical average deactivated degree (grey and black curves) as compared to the estimated θ (red line) in H.
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 4 Fig. 4: The visualization of the fixed-point iteration method applied to the model H, starting from θ 0 = 0.
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 5 Fig. 5: The empirical E[D t ] and the trajectory of D t for H.

Fig. 6 :

 6 Fig. 6: The concentration of D t for the hypergraph H.

  With probability p d : Choose one vertex from A t in proportion to degrees. Deactivate it, i.e., A t+1 = A t \{v} and I t+1 = I t ∪ {v}.

	Remark 1. Note that this model can be simplified to many
	known models by choosing the appropriate set of parameters:
	1) setting p

u) D t (deg t (u) and deg t (v) refer to the degrees of u and v in the whole H t ). For t ⩾ 0 we form H t+1 from H t choosing only one of the following events according to p v , p e , p d . • With probability p v : Add one vertex v. Draw a value y being a realization of Y t . Then select y -1 vertices from A t in proportion to degrees; add a new hyperedge consisting of v and the y -1 selected vertices. • With probability p e : Draw a value y being a realization of Y t . Then select y vertices from A t in proportion to degrees; add a new hyperedge consisting of the y selected vertices.

• v = 1, p e = p d = 0 and Y t = 2 (all the hyperedges are of size 2 thus one simply builds a graph) one gets the Barabási-Albert tree

[START_REF] Barabási | Emergence of scaling in random networks[END_REF]

; 2) setting p d = 0 and Y t = 2 one gets the preferential attachment scheme for graphs with vertex-and edgestep

[START_REF] Chung | Complex Graphs and Networks[END_REF]

, Chapter 3;

3) setting p d = 0 one gets the hypergraph model presented by Avin et al. in

[START_REF] Avin | Random preferential attachment hypergraph[END_REF]

.