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Abstract—In the field of complex networks, hypergraph models
have so far received significantly less attention than graphs.
However, many real-life networks feature multiary relations (co-
authorship, protein reactions) may therefore be modeled way
better by hypergraphs. Also, a recent study by Broido and
Clauset suggests that a power-law degree distribution is not
as ubiquitous in the natural systems as it was thought so far.
They experimentally confirm that a majority of networks (56%
of around 1000 networks that undergone the test) favor a power-
law with an exponential cutoff over other distributions. We
address the two above observations by introducing a preferential
attachment hypergraph model which allows for vertex deactiva-
tions. The phenomenon of vertex deactivations is rare in existing
theoretical models and omnipresent in real-life scenarios (social
network accounts which are not maintained forever, collaboration
networks in which people retire, technological networks in which
devices break down). We prove that the degree distribution of
the proposed model follows a power-law with an exponential
cutoff. We also check experimentally that a Scopus collaboration
network has the same characteristic. We believe that our model
will predict well the behavior of systems from a variety of
domains.

Index Terms—complex network, hypergraph, preferential
attachment, power-law, exponential cutoff

I. INTRODUCTION

The notion of complex networks relates to the mathematical
structures modeling large real-life systems. Their omnipres-
ence across different life domains is remarkable. Complex
networks model biological networks (e.g., protein or gene
interactions schemes, maps of neural connections in the brain),
social networks (Facebook, Twitter, Snapchat, collaboration
networks), technological networks (power grids, transportation
networks), the World Wide Web, etc. They allow to predict
the behavior of the systems, serve as the benchmarks for
testing algorithms that are used later in the real networks,
and, in general, allow to understand better the underlying
mechanisms that create those systems in nature. Roughly,
since 1999, one observes a dynamical growth in experimental
and theoretical research on complex networks in computer
science, mathematical, and physical societies. It was the year
when Barabási and Albert introduced the seminal model of a
preferential attachment random graph [3]. This model is based
on two mechanisms: growth (the graph is growing over time,
gaining a new vertex and a bunch of edges at each time step)
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and preferential attachment (an arriving vertex is more likely to
attach to other vertices with high degrees rather than with low
degrees). It captures the small world (small diameter) and the
rich get richer (leading to a heavy tailed degree distribution)
phenomena commonly observed in nature.

Since then, a number of theoretical models were presented,
e.g., [10], [11], [15], [26], [30]. These were mostly graph
models concentrated on reflecting three phenomena: a small
diameter, a high clustering coefficient, and a power-law degree
distribution. It was thought for a long time that a power-
law degree distribution is the most commonly present in
nature [7]. However, this statement was recently questioned
by Broido and Clauset [9]. They performed statistical tests on
almost 1000 social, biological, technological, transportation,
and information networks and observed that a “majority of
networks (56%) favor the power-law with cutoff model over
other distributions”. The cutoff observed in the tail of a
distribution may be caused by a finite-size character of the
dynamic network, i.e., when the elements deactivate after
some time [9]. The phenomenon of vertex deactivations is
rare in known theoretical models and omnipresent in real-
life scenarios as the extinction events are fundamental in the
world surrounding us. Think of social networks (Facebook,
Twitter, Instagram, etc.) where users unsubscribe or simply
stop using them, collaboration networks in which deactivated
nodes represent people who retired, died or stopped working
in the given domain, technological networks where a vertex
deactivation is interpreted as a breakdown of the device or the
web network in which web pages are not maintained forever.
Even though some theoretical models featuring deletions or
deactivations of vertices were introduced [14], [27], just a few
of them lead to a degree distribution following a power-law
with an exponential cutoff. One of the widely cited is a balls
and bins scheme introduced by Fenner et al. [17], [18].

In the model from [17], [18], information about the degree
of each element of the network is kept but information about
who is connected with whom is lost. Working with graphs
instead of bins and balls allows to keep this information.
Nevertheless, graphs have another clear limitation. They reflect
only binary relations while in practice we encounter many
higher order relations (groups of interest, protein reactions, co-
authorship, interactions between biological cells, GitHub users
committing to the same repository). Nowadays they are often
modeled in graphs by cliques which may lead to a profound
information loss [4]. E.g., if there are three researchers in



a triangle in a collaboration graph, one cannot tell whether
they published one paper together or three independent papers,
each per pair of researchers. Higher order relations can be
captured by hypergraphs, that is, a generalization of graphs in
which each (hyper)edge possibly links together more than two
nodes. Sometimes keeping information about hyperedge may
have a profound impact on analyzing the model and drawing
conclusions. Consider any example in which a big hyperedge
strongly indicates belonging to the same community (e.g., an
email sent to a group of people should evidence the existence
of a community rather than be treated as a set of bilateral
emails). So far hypergraph models have received significantly
less attention than graphs in the area of complex networks.
Wang et al. introduced a preferential attachment hypergraph
model but restricted to a specific subfamily of uniform acyclic
hypergraphs (the analogue of trees within graphs) [29]. The
first rigorously studied non-uniform hypergraph preferential
attachment model was proposed only in 2019 by Avin et
al. [2] and featured a power-law degree distribution. Another
dynamic hypergraph model with a clear community structure
was presented in [20]. Note that there exists an analogy
between the hypergraphs and the random intersection graphs
[5], [6]. The algorithms and software tools for working with
hypergraph networks, even the definitions of some features
and measures started appearing only recently [1], [21]–[23].

Results. We propose a preferential attachment hypergraph
model in which vertices may become inactive after some time.
The hyperedges model multiary and not necessarily uniform
relations, we allow for different cardinalities of hyperedges
(e.g., articles may have different numbers of co-authors). We
prove that the degree distribution of our model follows a
power-law with an exponential cutoff and compare it with a
real-life example, a Scopus research collaboration network. We
believe that our model will be the next step towards developing
the hypergraph chapter in the complex networks area and that
will serve as a useful tool predicting well the behavior of the
systems from a variety of domains.

Paper organization. Sec. II contains basic definitions and
notation. In Sec. III, we introduce the hypergraph model
with vertex deactivation and prove that its degree distribution
follows a power-law with an exponential cutoff using a master
equation approach. Due to the presence of hyperedges and
to the possibility of vertex deactivation, we had to modify
the classical approach (e.g. treat active and inactive vertices
separately) and take advantage of some tools that were not
used in this context before (e.g. the Stolz-Cesaro Theorem).
In Sec. IV, we estimate one of the parameters that appears
in the formula for the degree distribution of our model. It is
defined as a limit, existence of which we assume (Asm. (4)
formulated in Sec. III.B) to prove the main result (Thm. 2).
Such an assumption was already present in the literature on
models with degree distribution following a power-law with
an exponential cutoff, [17], [18]. Even though we also did not
manage to prove the existence of this limit directly, the techni-
cal novelty is that we give a formally rigid indication on how
to estimate its value (using Gaussian hypergeometric functions

and the Banach Fixed Point Theorem) and an experimental
justification for its existence in Sec. V. Sec. V also includes
the experimental results on real data and the simulations of
the model. Further works are discussed in Sec. VI.

II. BASIC DEFINITIONS AND NOTATION

We define a hypergraph H as a pair H = (V,E), where
V is a set of vertices and E is a multiset of hyperedges, i.e.,
non-empty, unordered multisets of V . We allow for a multiple
appearance of a vertex in a hyperedge (self-loops) as well as
a multiple appearance of a hyperedge in E. The degree of a
vertex v in a hyperedge e, denoted by d(v, e), is the number
of times v appears in e. The cardinality of a hyperedge e
is |e| =

∑
v∈e d(v, e). The degree of a vertex v ∈ V in H is

understood as the number of times it appears in all hyperedges,
i.e., deg(v) =

∑
e∈E d(v, e). If |e| = k for all e ∈ E, H is

said to be k-uniform.
We consider hypergraphs that grow by adding vertices

and/or hyperedges at discrete time steps t = 0, 1, 2, . . . ac-
cording to some rules involving randomness. The random hy-
pergraph obtained at time t will be denoted by Ht = (Vt, Et)
and the degree of u ∈ Vt in Ht by degt(u). During this
building process some of the vertices may become deactivated.
Therefore the set Vt splits into At, the set of vertices active
at time t (denote its cardinality by At), and It, the set of
vertices that are not active at time t (denote its cardinality by
It); thus |Vt| = At+It. By Dt we denote the sum of degrees of
vertices active at time t, i.e., Dt =

∑
u∈At

degt(u). Moreover,
we write Θt for the degree of a vertex chosen for deactivation
at time t (the description of a deactivation procedure is given
within the formal definition of the model in the next section).
Nk,t stands for the number of vertices in Ht of degree

k. Thus
∑

k≥1Nk,t = |Vt|. Similarly, Ak,t is the number
of active vertices of degree k at time t and Ik,t the number
of inactive vertices of degree k at time t (denote the corre-
sponding sets by Ak,t and Ik,t, respectively);

∑
k≥1Ak,t =

At,
∑

k≥1 Ik,t = It and Nk,t = Ak,t + Ik,t. We write

f(k) ∼ g(k) if f(k)/g(k) k→∞−−−−→ 1. We say that the degree
distribution of a random hypergraph follows a power-law if
the expected fraction of vertices of degree k is proportional
to k−β for some exponent β > 1. Formally, we interpret it
as limt→∞ E

[
Nk,t

|Vt|

]
∼ c · k−β for some positive constants

c and β > 1. Similarly, we say that the degree distribution
of Ht follows a power-law with an exponential cutoff if
limt→∞ E

[
Nk,t

|Vt|

]
∼ c · k−βγk, where γ ∈ (0, 1).

We say that an event A occurs with high probability (whp)
if the probability P[A] depends on a certain number t and
tends to 1 as t tends to infinity.

III. PREFERENTIAL ATTACHMENT HYPERGRAPH WITH
VERTEX DEACTIVATION

The model introduced in this section may be seen as a
generalization of a hypergraph model presented by Avin et
al. in [2]. The model from [2] allows for two different actions
at a single time step - attaching a new vertex by a hyperedge to



the existing structure or creating a new hyperedge on already
existing vertices. We add another possibility - deactivation of
a vertex. Once a vertex is chosen for deactivation, it stays
deactivated forever, i.e., it remains in the hypergraph but it
can not be chosen to the new hyperedges - its degree freezes
and the hyperedges incident with it remain in the hypergraph.
Avin et al. proved that the degree distribution of their model
follows a power-law. We prove that adding the possibility of
deactivation of vertices generates an exponential cutoff in the
degree distribution.

A. Model H(H0,pv,pe,Y)

The hypergraph model H is characterized by the following
parameters:

1) H0 - the initial hypergraph, seen at t = 0;
2) pv, pe, pd = 1−pe−pv - the probabilities indicating, what

are the chances that a particular type of event occurs at
a single time step;

3) Y = (Y0, Y1, . . . , Yt, . . .) - independent random vari-
ables, giving the cardinalities of the hyperedges that are
added at a single time step.

Here is how the structure of H = H(H0, pv, pe, Y ) is being
built. We start with some non-empty hypergraph H0 at t = 0.
We assume for simplicity that H0 consists of a hyperedge
of cardinality 1 over a single vertex. Nevertheless, all the
proofs may be generalized to any initial H0 having constant
number of vertices and constant number of hyperedges with
constant cardinalities. ‘Vertices chosen from At in proportion
to degrees’ means that active vertices are chosen independently
(possibly with repetitions) and the probability that any u from
At is chosen is

P[u is chosen] =
degt(u)∑

v∈At
degt(v)

=
degt(u)

Dt

(degt(u) and degt(v) refer to the degrees of u and v in the
whole Ht). For t ⩾ 0 we form Ht+1 from Ht choosing only
one of the following events according to pv, pe, pd.

• With probability pv: Add one vertex v. Draw a value
y being a realization of Yt. Then select y − 1 vertices
from At in proportion to degrees; add a new hyperedge
consisting of v and the y − 1 selected vertices.

• With probability pe: Draw a value y being a realization
of Yt. Then select y vertices from At in proportion to
degrees; add a new hyperedge consisting of the y selected
vertices.

• With probability pd: Choose one vertex from At in
proportion to degrees. Deactivate it, i.e., At+1 = At\{v}
and It+1 = It ∪ {v}.

Remark 1. Note that this model can be simplified to many
known models by choosing the appropriate set of parameters:
1) setting pv = 1, pe = pd = 0 and Yt = 2 (all the hyperedges

are of size 2 thus one simply builds a graph) one gets the
Barabási-Albert tree [3];

2) setting pd = 0 and Yt = 2 one gets the preferential
attachment scheme for graphs with vertex- and edge-
step [12], Chapter 3;

3) setting pd = 0 one gets the hypergraph model presented
by Avin et al. in [2].

Remark 2. Vertices in this model are deleted in proportion
to their degrees, which may reflect aging, retirement, etc.
The choice of other deletion procedures appearing in some
scenarios (e.g., deleting vertices at random or inversely to
the degree) would influence significantly our calculations and
might even lead to a different limiting degree distribution. We
leave it as a future work.

Remark 3. As the hypergraph gets large, the probability of
creating a self-loop can be well bounded and is quite small
provided that the sizes of hyperedges are reasonably bounded.

Note that if we want a process to continue then it is
reasonable to demand that, on average, we add more vertices
to the system than we deactivate. Therefore we always assume
pv > pd. Then the probability that the process will not
terminate (i.e., that we never arrive at the moment in which all
vertices are deactivated) is positive and equals 1 − (pd/pv)

i,
where i is the number of active vertices at time t = 0, in our
case i = 1 (compare with the probability that the gambler’s
fortune will increase forever, [16]). We concentrate only on
the case when the process does not terminate.

B. Degree distribution of H(H0,pv,pe,Y)

In this section we prove that the degree distribution of
H = H(H0, pv, pe, Y ) follows a power-law with an expo-
nential cutoff under four assumptions.

First two of them address the distributions of the cardinal-
ities of hyperedges (Yt) added step by step. We assume that
their expectation is constant and their variance sublinear in t,
which, we feel, is in accordance with many real-life systems
(in particular, with the scientific collaboration network we are
working with experimentally in Sec. V).

The third assumption tells that we will restrict ourselves
to only such distributions of Yt for which the distribution of
Dt (the sum of degrees of active vertices at time t) remains
concentrated. Similar assumption one finds in other papers on
complex network models, e.g. in [2] by Avin et al. (presenting
a model of a preferential attachment hypergraph with the
degree distribution following a power-law) or in [24], [25] by
Krapivsky et al. (where the models in which the arriving vertex
attaches to the existing node w with probability proportional
to (degw)r with r < 1 is studied).

The fourth assumption refers to the average sum of degrees
of vertices chosen for deactivation,

∑t
τ=1 E[Θτ ]. In Sec. IV

we prove that its order is Θ(t). However, we additionally
assume that the limit limt→∞ 1

t

∑t
τ=1 E[Θτ ] exists and equals

some θ ∈ R>0. Such assumption was also already present in
the literature on models with degree distribution following a
power-law with an exponential cutoff [17], [18]. Since we were
not able to (just as the authors of [17] or [18]) theoretically
justify the existence of the stated limit we support it by
simulations in Sec. V. We also explain in Sec. IV how the
limiting value may be obtained, assuming that the limit exists.



Assumptions
1) E[Yt] = µ ∈ R>0 for all t > 0.
2) Var[Yt] = o(t).
3) P[Dt ̸= E[Dt] + o(t)] = o(1/t).
4) limt→∞ 1

t

∑t
τ=1 E[Θτ ] = θ ∈ R>0.

Before we formally state and prove the main theorem we
introduce several technical lemmas and theorems that will be
helpful later on.

Theorem 1 (Stolz-Cesàro). Let (at)t≥1 and (bt)t≥1 be the se-
quences of real numbers. Assume (bt)t≥1 is strictly monotone
and divergent. If limt→∞

at+1−at

bt+1−bt
= g then limt→∞

at

bt
= g.

Lemma 1 ( [12], Chapter 3.3). Let (at)t≥1, (bt)t≥1 and
(ct)t≥1 be the sequences of real numbers, where bt

t→∞−−−→
b > 0, ct

t→∞−−−→ c and at satisfies the recursive relation
at+1 =

(
1− bt

t

)
at + ct. Then limt→∞

at

t = c
1+b .

The proofs of Lemmas 2, 3, and 4 can be found in the
extended version of this paper [19].

Lemma 2. If limt→∞
E[Nk,t]

t ∼ c · k−βγk
(
1
k + δ

)
for

some positive constants c, β, γ, δ then limt→∞ E
[
Nk,t

|Vt|

]
∼

c
pv
k−βγk

(
1
k + δ

)
. (Here “∼” refers to the limit by k → ∞.)

Lemma 3. Let E[Yt] = µ for all t > 0 and Var[Yt] = o(t).
Then E

[
Y 2
t

D2
t−1

]
= o

(
1
t

)
.

Lemma 4. Let Dt = E[Dt] + o(t) whp. Then E
[
Ak,t

Dt

]
=

E[Ak,t]
E[Dt]

+ o(1) for each k ≥ 1.

Lemma 5. Let E[Yt] = µ for all t > 0. Assume that
limt→∞ 1

t

∑t
τ=1 E[Θτ ] = θ ∈ R>0. Then limt→∞

E[Dt]
t =

(pv + pe)µ− pdθ.

Proof. The initial hypergraph H0 consists of a single vertex
of degree 1. Since at time t ≥ 1 we add a hyperedge of
cardinality Yt with probability pv + pe and we deactivate a
vertex of degree Θt with probability pd we get

E[Dt] = 1 + (pv + pe)
t∑

τ=1

E[Yτ ]− pd

t∑
τ=1

E[Θτ ]. (1)

The conclusion follows.

Theorem 2. Consider a hypergraph H = H(H0, pe, pv, Y )
for any t > 0. By Asm. (1-4) the degree distribution of H
follows a power-law with an exponential cutoff, i.e.,

E
[
Nk,t

|Vt|

]
∼ c · k−βγk

(
1

k
+ δ

)
for β =

µ(pv + pe)− pdθ

pv(µ− 1) + peµ+ pd
, γ =

pv(µ− 1) + peµ

pv(µ− 1) + peµ+ pd
,

δ =
pd

µ(pv + pe)− pdθ
, c =

β · Γ(1 + β)

γ
,

where Γ(x) =
∫∞
0
tx−1e−t dt.

Remark 4. The theorem and its proof presented below remain
true if we relax Asm. (3) just to Dt = E[Dt] + o(t) whp.

Nevertheless, we leave the stronger version of (3) on the list
of assumptions as it will be needed in Sec. IV for estimating θ.

Remark 5. Setting pd = 0 in the above theorem (i.e.,
considering the process without deactivation) results in the
power-law degree distribution, namely E

[
Nk,t

|Vt|

]
∼ c·k−(β+1),

where β = µ
µ−pv

and c = β · Γ(1 + β). This is in accordance
with the result obtained in [2].

See [19] for the full proof without shortcuts in calculations.

Proof. We take a standard master equation approach that can
be found e.g. in Chung and Lu book [12] about complex
networks. However, we apply it separately to the number of
active vertices and the number of deactivated vertices.

Recall that Nk,t denotes the number of vertices of degree
k at time t. We need to show that limt→∞ E

[
Nk,t

|Vt|

]
∼

c · k−βγk
(
1
k + δ

)
for the proper constants c, β, γ and δ.

However, by Lemma 2 we know that it suffices to show that

lim
t→∞

E[Nk,t]

t
∼ pv · c · k−βγk

(
1

k
+ δ

)
.

Recall that Nk,t = Ak,t + Ik,t. First, let us evaluate
limt→∞

E[Ak,t]
t using the mathematical induction on k. In

this part we follow closely the lines of the proof that can
be found in [2]. Consider the case k = 1. Since H0 consists
of a single hyperedge of cardinality 1 over a single vertex, we
have A1,0 = 1. To formulate a master equation, let us make the
following observation for t ≥ 1. An active vertex remains in
A1,t if it had degree 1 at step t−1 and was neither selected to
a hyperedge, nor deactivated. Recall that a vertex from A1,t−1

is chosen at step t in a single trial to the new hyperedge with
probability 1/Dt−1 thus the chance that it won’t be selected
to the hyperedge of cardinality y equals (1−1/Dt−1)

y . Also,
in each step, with probability pv , a single new active vertex of
degree 1 is added to the hypergraph. Let Ft denote a σ-algebra
associated with the probability space at step t. For t ≥ 1

E[A1,t|Ft−1] = pvA1,t−1

(
1− 1

Dt−1

)Yt−1

+ peA1,t−1

(
1− 1

Dt−1

)Yt

+ pdA1,t−1

(
1− 1

Dt−1

)
+ pv.

(2)

Taking the expectation on both sides of (2) we derive upper
and lower bounds on E[A1,t]. By Bernoulli’s inequality ((1+
x)n ≥ 1 + nx for n ∈ N and x ≥ −1), Lemma 4 (thus by
Asm. (3)) and the independence of Yt from A1,t−1 and Dt−1

E[A1,t] ≥ pvE
[
A1,t−1

(
1− Yt − 1

Dt−1

)]
+ peE

[
A1,t−1

(
1− Yt

Dt−1

)]
+ pdE

[
A1,t−1

(
1− 1

Dt−1

)]
+ pv

= E[A1,t−1]

(
1− pv(µ− 1) + peµ+ pd

E[Dt−1]

)
+ pv − o(1).

(3)



On the other hand, since (1−x)n ≤ 1/(1+nx) for x ∈ [0, 1]
and n ∈ N, and A1,t−1 ≤ t, by Lemma 3 (thus by Asm. (1),
(2) necessary for it) and Lemma 4 (thus by Asm. (3)) we have

E[A1,t] ≤ pvE
[

A1,t−1

1 + (Yt − 1)/Dt−1

]
+ peE

[
A1,t−1

1 + Yt/Dt−1

]
+ pdE

[
A1,t−1

(
1− 1

Dt−1

)]
+ pv

= E[A1,t−1]

(
1− pv(µ− 1) + peµ+ pd

E[Dt−1]

)
+ pv + o(1).

(4)

From (3) and (4) we get

E[A1,t] = E[A1,t−1]

(
1− pv(µ− 1) + peµ+ pd

E[Dt−1]

)
+pv+o(1).

Now, we apply Lemma 1 to the above equation choosing

at = E[A1,t], bt =
pv(µ− 1) + peµ+ pd

E[Dt−1]/t
, ct = pv+o(1).

We have limt→∞ ct = pv and, by Fact 5 (thus by Asm. (1),
(4) implying it), limt→∞ bt =

pv(µ−1)+peµ+pd

µ(pv+pe)−pdθ
=: 1/β thus

lim
t→∞

at
t

= lim
t→∞

E[A1,t]

t
=

pv
1 + 1/β

=: Ā1.

Now, we assume that the limit limt→∞
E[Ak−1,t]

t exists and
equals Āk−1 and we will show by induction on k that the
analogous limit for E[Ak,t] exists. Let us again formulate a
master equation, this time for k > 1. We have Ak,0 = 0 and
for t ≥ 1 an active vertex appears in Ak,t if it was active at
step t − 1, had degree k − l and was chosen exactly l times
to a hyperedge, or it had degree k and was not selected for
deactivation. Let B(l, n, p) =

(
n
l

)
pl(1− p)n−l. We have

E[Ak,t|Ft−1] = pv

min{Yt−1,k−1}∑
l=0

Ak−l,t−1B

(
l, Yt − 1,

k − l

Dt−1

)

+ pe

min{Yt,k−1}∑
l=0

Ak−l,t−1B

(
l, Yt,

k − l

Dt−1

)
+ pdAk,t−1

(
1− k

Dt−1

)
.

Taking the expectation on both sides we get

E[Ak,t] = E[ψ] + pvE[φ(Yt − 1)] + peE[φ(Yt)], where

ψ = pv

1∑
l=0

Ak−l,t−1B

(
l, Yt − 1,

k − l

Dt−1

)

+ pe

1∑
l=0

Ak−l,t−1B

(
l, Yt,

k − l

Dt−1

)
+ pdAk,t−1

(
1− k

Dt−1

)

and φ(n) =

min{n,k−1}∑
l=2

Ak−l,t−1B

(
l, n,

k − l

Dt−1

)
.

We will show that only the term E[ψ] is significant and
E[φ(Yt − 1)] and E[φ(Yt)] converge to 0 as t→ ∞. We have

φ(Yt) ≤
k−1∑
l=2

Ak−l,t−1

(
Yt
l

)(
k − l

Dt−1

)l (
1− k − l

Dt−1

)Yt−l

= O(t)
Y 2
t

D2
t−1

.

Hence by Lemma 3 (thus by Asm. (1), (2)) we get E[φ(Yt)] =
o(1) and, similarly, E[φ(Yt−1)] = o(1). The bounds for E[ψ]
derived analogously to the ones for E[A1,t] give

E[Ak,t] = E[Ak,t−1]

(
1− k (pv(µ− 1) + peµ+ pd)

E[Dt−1]

)
+ E[Ak−1,t−1]

(k − 1) (pv(µ− 1) + peµ)

E[Dt−1]
+ o(1).

(5)

Recall that by the induction assumption
limt→∞ E[Ak−1,t]/t = Āk−1. Now, we apply again
Lemma 1 to the above equation choosing

at = E[Ak,t], bt =
k(pv(µ− 1) + peµ+ pd)

E[Dt−1]/t
,

ct =
E[Ak−1,t−1]

t

(k − 1)(pv(µ− 1) + peµ)

E[Dt−1]/t
+ o(1).

By Fact 5 (thus by Asm. (1), (4)) we have limt→∞ bt = k/β

and limt→∞ ct = Āk−1
(k−1)(pv(µ−1)+peµ)

µ(pv+pe)−pdθ
thus

lim
t→∞

at
t

= lim
t→∞

E[Ak,t]

t
= Āk = Āk−1

(k − 1)γ

k + β
, (6)

where γ = pv(µ−1)+peµ
pv(µ−1)+peµ+pd

. Thus we got

Ā1 = pvβ
1

(1 + β)
, Ā2 = pvβ

γ

(1 + β)(2 + β)
, . . . ,

Āk = pvβ
γk−1(k − 1)!

(1 + β)(2 + β) . . . (k + β)
.

Since limk→∞
Γ(k)kα

Γ(k+α) = 1 for constant α ∈ R we have

lim
t→∞

E[Ak,t]

t
= Āk =

pvβ

γ

γkΓ(1 + β)Γ(k)

Γ(k + β + 1)

∼ pv · c · γkk−(β+1) with c =
β · Γ(1 + β)

γ
.

(7)

Now, let us evaluate limt→∞
E[Ik,t]

t . We have Ik,0 = 0 for
all k ≥ 1. For t ≥ 1 the expected number of inactive vertices
of degree k ≥ 1 at step t, given Ft−1, can be expressed as

E[Ik,t|Ft−1] = Ik,t−1 + pdAk,t−1
k

Dt−1
,

since inactive vertices of degree k remain in Ik,t forever and a
vertex of degree k becomes inactive if it was selected in step
t − 1 for deactivation. Taking the expectation on both sides,
by Lemma 4 (thus by Asm. (3)), we obtain

E[Ik,t] = E[Ik,t−1] + pdE[Ak,t−1]
k

E[Dt−1]
+ o(1).

Then, by Fact 5 (thus by Asm. (1) and (4)),

lim
t→∞

(E[Ik,t]− E[Ik,t−1]) = lim
t→∞

pdk
E[Ak,t−1] · t
t · E[Dt−1]

+ o(1)

= Ākkδ, where δ =
pd

(pv + pe)µ− pdθ
.

And, by Stolz–Cesàro theorem (Thm. 1), we obtain

Īk := lim
t→∞

E[Ik,t]
t

= lim
t→∞

(E[Ik,t]− E[Ik,t−1]) = Ākkδ. (8)



Finally, by (7) and (8)

lim
t→∞

E[Nk,t]

t
= lim

t→∞
E[Ak,t] + E[Ik,t]

t
= Āk + Īk

= Āk(1 + kδ) ∼ pv · c · k−βγk
(
1

k
+ δ

)
.

IV. ESTIMATING THE LIMITING VALUE θ

This section is devoted to estimating θ which appears as one
of the parameters in the degree distribution of our hypergraph
model H (consult Thm. 2). Recall that Θt stands for the
degree of a vertex chosen for deactivation at time t and it
appears in the fourth assumption needed to prove Thm. 2
4. limt→∞ 1

t

∑t
τ=1 E[Θτ ] = θ ∈ R>0.

Let us start with showing that
∑t

τ=1 E[Θτ ] is of order Θ(t).

Lemma 6. Let E[Yt] = µ for all t > 0. Then
pd ≤ 1

t

∑t
τ=1 E[Θτ ] ≤ 1 + pv(µ−1)+peµ

pd
.

Proof. By equation (1) we get
∑t

τ=1 E[Θτ ] =
1
pd

(1 + (pv + pe)µt− E[Dt]). Note that E[Dt] ≥ E[At] =
1 + (pv − pd)t (we assume pv > pd) thus on one hand∑t

τ=1 E[Θτ ] ≤ t
(
1 + pv(µ−1)+peµ

pd

)
and on the other∑t

τ=1 E[Θτ ] ≥ E[It] = pdt.

Unfortunately, we were not able to prove that the limit
limt→∞ 1

t

∑t
τ=1 E[Θτ ] exists. We support this assumption

by simulations in Sec. V. Whereas in this section we show,
assuming that the limit exists, how to estimate it.

Throughout this section F (a, b; c; z) denotes the Gaussian
hypergeometric function, i.e., for a, b, c, z ∈ C, |z| < 1

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where (x)n = Γ(x+ n)/Γ(x).

Lemma 7. Assume that P[Dt ̸= E[Dt]+o(t)] = o(1/t). Then

E

[∑
k≥1 k

2Ak,t

Dt

]
=

E[
∑

k≥1 k
2Ak,t]

E[Dt]
+ o(1).

The proof can be found in [19].

Theorem 3. Assume that the conditions (1− 4) from Sec. III
hold. Then θ is a fixed point of the function R(x) :=
F (2,2;ρ(x);γ)
F (1,2;ρ(x);γ) , where γ = pv(µ−1)+peµ

pv(µ−1)+peµ+pd
and ρ(x) = 2 +

µ(pv+pe)−pdx
pv(µ−1)+peµ+pd

.

Proof. Recall that θ = limt→∞ 1
t

∑t
τ=1 E[Θτ ] and Θt is the

degree of a vertex chosen for deactivation at time t. Let
Ft denote a σ-algebra associated with the probability space
at step t. We have E[Θt|Ft−1] =

∑
k≥1 k

kAk,t−1

Dt−1
, hence

taking expectation on both sides, applying Lemma 7 (thus by
Asm. (3)) and noting that Dt =

∑
k≥1 kAk,t we get

E[Θt] = E

[∑
k≥1 k

2Ak,t−1

Dt−1

]
=

E[
∑

k≥1 k
2Ak,t−1]

E[Dt−1]
+ o(1)

=
E[
∑

k≥1 k
2Ak,t−1]

E[
∑

k≥1 kAk,t−1]
+ o(1).

Now, by eq. (7) (thus by Asm. (1-4) needed to prove Thm. 2)

lim
t→∞

E[Θt] =

∑
k≥1 k

2Āk∑
k≥1 kĀk

=
F (2, 2; ρ(θ); γ)

F (1, 2; ρ(θ); γ)
.

Finally, setting at =
∑t

τ=1 E[Θτ ] and bt = t in Stolz-Cesàro
Theorem (Thm. 1) we obtain

θ = lim
t→∞

1

t

t∑
τ=1

E[Θτ ] =
F (2, 2; ρ(θ); γ)

F (1, 2; ρ(θ); γ)
.

From now on we consider the behavior of R(x) only in
the interval [0, θ̂], where θ̂ = (pv+pe)µ

pd
since we know

that the limiting value θ we are looking for belongs there.
Indeed, by Lemma 6 we know that it is at least pd and at
most (pv+pe)µ−pv+pd

pd
and we work by pv > pd to ensure

that, on average, we add more vertices to the network than we
deactivate. Recall that the function F (a, b; c; z) is defined for
|z| < 1 and c ̸∈ Z≤0. Therefore, since 0 < γ < 1 and ρ(x) is
positive on [0, θ̂], both F (1, 2; ρ(x); γ) and F (2, 2; ρ(x); γ) are
always defined, continuous and positive on [0, θ̂]. This implies
that R(x) is continuous on [0, θ̂]. Below we will justify that
R(x) has just one fixed point in the interval [0, θ̂] and that a
fixed-point iteration method will converge here. We start with
recalling Banach Fixed Point Theorem.

Theorem 4 (Banach Fixed Point Theorem). Let (S, d) be a
non-empty complete metric space with a contraction mapping
R : S → S. Then R admits a unique fixed point s∗ in
S (R(s∗) = s∗). Furthermore, s∗ can be found as follows:
start with an arbitrary element s0 ∈ S and define a sequence
{sn}n≥1 by sn = R(sn−1) for n ≥ 1. Then limn→∞ sn = s∗.

Thus we aim at showing that R(x) is a contraction mapping
on [0, θ̂]. From now on let F1(x) = F (1, 2; ρ(x); γ) and
F2(x) = F (2, 2; ρ(x); γ) for γ and ρ(x) as in Thm. 3.

The proofs of Lemmas 8, 9, and 10 can be found in [19].

Lemma 8. The function R(x) = F2(x)
F1(x)

can be expressed as

R(x) = x− pv

pd
+ 1

1−γ
ρ(x)−1
F1(x)

, where γ, ρ(x) are as in Thm. 3.

Lemma 9. The function R(x) strictly increases on [0, θ̂].

Lemma 10. R(x) is a contraction mapping on [0, θ̂].

Corollary 1. Assume that the conditions (1−4) from Sec. III
hold (in particular, θ = limt→∞ 1

t

∑t
τ=1 E[Θτ ]). Then θ is a

unique fixed point of R(x) in [0, θ̂], such that limn→∞ θn = θ,
where θn+1 = R(θn) and θ0 can take any value in [0, θ̂].



Proof. The proof follows directly from the fact that θ is a fixed
point of R(x) (Thm. 3), the fact that R(x) is a contraction
mapping defined on a complete metric space (Lemma 10),
and the Banach fixed-point theorem (Thm. 4).

Remark 6. The speed of convergence of the fixed-point
iteration method may be described by a Lipschitz constant
for R, denoted here by q: d(θ, θn+1) ≤ q

1−qd(θn+1, θn). If
we conjecture that R(x) is convex on [0, θ̂] then we easily get
(R(x) is increasing) that the best Lipschitz constant for R is
q = supx∈[0,θ̂]R

′(x) = R′(θ̂) = 1 + 1−γ
γ ln(1− γ). However,

proving the convexity of R(x) seems very demanding.

In the next section we present the results of applying the
fixed-point iteration method to estimate θ for the exemplary
random hypergraph following our model.

V. EXPERIMENTAL RESULTS

In order to verify the results obtained and the legitimacy of
our assumptions, we ran numerous simulations of the model
testing different sets of parameters. In this section we present
the results of simulated H̃ = H(H0, pv = 0.3, pe = 0.5, pd =
0.2, Yt), where the distribution of Yt was experimentally ob-
tained from a real collaboration network G. G was built upon
data extracted from Scopus [28], 239,414 computer science
articles published between 1990 and 2018 by 258,145 authors.
Each author was treated as a node and every publication
corresponded to a hyperedge between its co-authors.
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Fig. 1: The degree distribution of the Scopus network G.

Fig. 2: The distribution of sizes of
hyperedges in the Scopus network G.

We used statisti-
cal tools from [13]
to fit and compare
the theoretical dis-
tributions with the
real degree distribu-
tion of G. One finds
the result in Fig. 1
which shows that a
power-law with an
exponential cutoff is
a good fit here (this
is just one of many
examples of real-life
networks that follow
this distribution [9]).

Fig. 2 shows the distribution of hyperedge sizes in G - the
one chosen for Yt in our experiment.

Fig. 3: The empirical average deactivated degree (grey and
black curves) as compared to the estimated θ (red line) in H̃ .

Fig. 4: The visualization of the fixed-point iteration method
applied to the model H̃ , starting from θ0 = 0.

The evolution of the average degree of a vertex selected for
deactivation in H̃ compared to the value of θ calculated using
the fixed-point iteration method (Cor. 1) is presented in Fig. 3.
It shows the convergence of the empirical average degree of a
deactivated vertex to the estimated value of θ which supports
both, our Asm. (4) as well as the method for evaluating θ (see
Fig. 4 for its visualization).

Fig. 5: The empirical E[Dt] and the trajectory of Dt for H̃ .

Furthermore, we checked empirically the value of E[Dt] in
H̃ (we ran 1000 simulations up to 100,000 steps). The empiri-
cal E[Dt] appeared to be linear with the slope α̂ = 0.438948
(Fig. 5). We then calculated the slope of the theoretical E[Dt]
using the fixed-point iteration method to compute θ and,
then, plugging it into equation from Lemma 5. It yielded



Fig. 6: The concentration of Dt for the hypergraph H̃ .

α = 0.438184 which closely corresponds to α̂. Finally,
the result seen in Fig. 6 supports our Asm. (3) about the
concentration of Dt.

For the results of simulations conducted with different sets
of parameters (e.g. Yt following some theoretical distribution,
like Poisson), check the extended version of this paper [19].

VI. CONCLUSIONS

To the best of our knowledge, we have presented the first
complex network model which allows for multiary relations
and deactivation of elements1. Both those eventualities occur
naturally in real-life systems. We thus believe that the model
will find a wide range of applications in many research do-
mains. We have also proved that its degree distribution follows
a power-law with an exponential cutoff, which, according to
the broad study of Broido and Clauset [9], is the distribution
most often observed in nature.

Challenging further research would be to check how the
choice of a deletion procedure (e.g., deleting vertices at
random or inversely to the degree instead of in proportion to
the degree) influences the limiting degree distribution. It would
be also useful to determine which deletion procedures are the
more adequate for the different real life complex networks.

The other interesting direction of study is to make the
attachment rule dependent not only on the degrees of vertices
but also on their additional own characteristic (called fitness
in the literature [8]).
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M. Böhmer, editors, Data Science, Learning by Latent Structures, and
Knowledge Discovery, Studies in Classification, Data Analysis, and
Knowledge Organization, pages 79–88. Springer, 2013.

[7] B. Bollobás and O. Riordan. Handbook of Graphs and Networks: From
the Genome to the Internet. Wiley-VCH, 2003. Pages 1–34.

[8] C. Borgs, J. Chayes, Constantinos D., and S. Roch. First to market
is not everything: An analysis of preferential attachment with fitness.
In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory
of Computing, STOC ’07, page 135–144, New York, NY, USA, 2007.
Association for Computing Machinery.

[9] A.D. Broido and A. Clauset. Scale-free networks are rare. Nat.
Commun., 10(1017), 2019.

[10] P.G. Buckley and D. Osthus. Popularity based random graph models
leading to a scale-free degree sequence. Discrete Math., 282(1-3):53–
68, 2004.

[11] F. Chung and L. Lu. The average distances in random graphs with given
expected degrees. P. Natl. Acad. Sci. USA, 99(25):15879–15882, 2002.

[12] F. Chung and L. Lu. Complex Graphs and Networks. American
Mathematical Society, 2006.

[13] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data. SIAM Review, 51(4):661–703, November 2009.

[14] C. Cooper, A. Frieze, and J. Vera. Random deletion in a scale-free
random graph process. Internet Mathematics, 1(4):463–483, 2004.

[15] C. Cooper and A.M. Frieze. A general model of web graphs. Random
Struct. Algor., 22(3):311–335, 2003.

[16] R. A. Epstein. The Theory of Gambling and Statistical Logic. Academic
Press, 2013.

[17] T. I. Fenner, M. Levene, and G. Loizou. A stochastic evolutionary model
exhibiting power-law behaviour with an exponential cutoff. Physica A,
355(2):641–656, 2005.

[18] T. I. Fenner, M. Levene, and G. Loizou. A model for collaboration
networks giving rise to a power-law distribution with an exponential
cutoff. Soc. Networks, 29(1):70–80, 2007.

[19] F. Giroire, N. Nisse, K. Ohulchanskyi, M. Sulkowska, and T. Trol-
liet. Preferential attachment hypergraph with vertex deactivation, 2023.
arXiv:2205.00071.

[20] F. Giroire, N. Nisse, M. Sulkowska, and T. Trolliet. Preferential attach-
ment hypergraph with high modularity. Network Science, 10(4):400–429,
2022.

[21] HyperNetX: hypergraph software library implemented in Python.
https://pypi.org/project/hypernetx/.
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