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Abstract. A hydrodynamic model based on lubrication theory has been devekapddscribe an
evaporative meniscus in a complete wetting configuration, when euvapotakes place in ambient
air. We focus on combined effects of evaporation and the substratenmmtighe effective contact
angle. Numerical simulations show two distinct regimes when varying th&tisie velocity on several
orders of magnitude. At a small velocity, the effective contact angl@vemed by evaporation and
is independent of the substrate velocity, while the substrate motion is danainarhigh velocity. In
the latter case, a Landau-Levich regime is obtained for the recedingctding, and a Cox-Voinov
regime for the advancing contact line. Finally, we use our numericaltset® test the simplified model
developed by Pharet al.[5, 6].

1 Introduction

Evaporation close to a contact line can modify the effeatioetact angle observed at the macroscopic scale [1,
2]. If, in addition, there is a relative motion between théstvate and the contact line, the effective contact angle
dynamically depends on both evaporative flux and the substedocity. In this work, we focus on the case of
complete wetting of pure liquids with evaporation in an trgas.

The case of droplets has been experimentally studied by ALaddabat’s group [3,4]. The droplet spreads over
the substrate until it reaches a maximum diameter. Thentadexaporation, the droplet retracts, until it completely
vanishes. These authors obtained from experiments simplerdaws describing the time evolution of the contact
angle and the droplet radius during the receding stagek&mlidroplets, a steady state regime can be reached in
dip-coating like experiments. This is the configurationgidared in this work.

When evaporation takes place in ambient air, the evaporétivés limited by vapor diffusion in the gas phase.
Close to the contact line, the liquid and gas phases are eduptough the Kelvin effect. Poulaget al. [3] and
Phamet al. ([5] with erratum [6]) proposed approximate models basethernDeegan’s electrostatic analogy [7]
to estimatea priori the profile of the evaporative flux. Although using differerdys to overcome the unphysical
divergence of the Deegan’s expression at the contact lihef shese authors found the same scaling for the
precursor film length, as well as the effective contact griglthe case of a motionless substrate. Recently, Eggers
and Pismen [8] developed a more elaborate model takingagkplinto account the coupling between the liquid
and gas phases, in the case of retracting droplets, anddhed fa good agreement with Cazabat's experiments.
In a previous work, we developed the same type of approach fieeniscus between two parallel plates (capillary
rise)[9]. Scaling laws describing the different domainghef meniscus have been derived in the steady state and
for a motionless substrate, and validated by numericallsitioms. Despite the different descriptions of the tip, the
scalings of the precursor film length and the contact angleigind to be the same as those predicted by the
above-mentioned approximate models [3,5]. This new stodudes on the combined effects of evaporation and
the substrate motion.

2 Model description

The model described herein has first been developed for molgmiutions [10], then it has been modified to
address the problem of pure liquids on a motionless subdi$ht We present in the following the extension of
the latter case to a moving substrate. The process is asssothdrmal (same temperaturein liquid and gas
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phases, equal to the ambient temperature). The Stokesatpiatthe liquid phase are written in the framework of
lubrication approximation, with a disjoining pressure \aggeh to describe van der Waals interactions between the
liguid and the solid substrate. The volumetric flow r@te:) over a cross section at absciasalong the substrate
reads [11]:

Alw) h* o, *h A
- dz=——(0=——=+——=)+Vh 1
Q) = [ w2z = S o g + o) + ®
whereu(z, z) is the velocity component in the direction parallel to thestrate > the distance to the substrate,
h the liquid height,y the dynamic viscosityy the surface tensiord the Hamaker constant arid the substrate
velocity. In the steady state, the global mass conservatiads:

?9722 = _’Ue'u(x) (2)

wherev,, () is the local evaporation velocity (positive for evaporajicAt z = 0, we impose the liquid height
h(0) = ho and the curvaturé,, (0) = Cy. These boundary conditions create a meniscus of lengtreadridter of
Ly = +/2ho/Cy. A second set of two boundary conditions is imposed at W (W > L;). The first condition
consists in zero curvaturé £, (W) = 0), while the second one depends on the direction of the satbgmotion:

a receding contact liné/ > 0), or an advancing contact lif@ < 0). A zero slope condition is assumed in the
former case/,, (W) = 0), while an arbitrary small thickness is imposed in the lati@se L(W) = henq With
hena ~ 1nm). As far as the lengthl’ of the simulation box is large enough, the choice of the dionts atz = W
(including the value of the heiglt..,4;) has no significant effect on the results.

As evaporation takes place in air, it is driven by vapor tpamsin the gas phase. So the coupling between
liquid and gas must be explicitly taken into account, makhmgdetermination of the evaporative flux a non-local
problem [8]. The gas domain is assumed to be rectangulangtié? and heightd (H > hy, so variations of
the liquid height can be neglected in the gas phase modedumisng a stagnant air and a dilute vapor, the vapor
concentration in the gas phaggis computed by solving the diffusion equation:

D¢y 0%cqy
Ox2 0z2

=0 for0 <z <Wandl < z < H. 3)

The lateral boundaries are assumed impermeable. The ngupith the liquid phase is obtained by writing the
local thermodynamic equilibrium and the mass flux consémadt the free surface for < x < W andz = 0:

s . O%h A de
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whereR is the ideal gas constant, is the liquid molar volumeyp is the liquid densityD, is the vapor diffusion
coefficient in the gas phase, aagy = M, P, (T)/(RT) is the vapor concentration at the bulk saturated vapor
pressureP, (1) (M; is the solvent molar mass). Finally, a known vapor concéintra,; deduced from the
ambient solvent activity., = cym/cgs0 IS imposed at = H. In a previous work [9], we showed that the average
evaporation velocity,, at the meniscus free surface depends on the system prgpemtisgeometric parameters
through the following scaling:

Cg = Cgs0 €XTP[—

i w D W
Vev ™~ Ugy = pT;(Cgso - CgH) Lst (5)

Equations (1) - (4) with the above-defined boundary conaiitiare solved by finite differences, with an adaptive
mesh algorithm to increase the number of nodes in the rediarh@h evaporation rate (see [9] for details). We
carefully checked over several test cases that the resaftsiwdependent of the numerical parameters.

We used this model to simulate evaporation of toluene intain@atmospheric pressure (see [9] for physical
properties). The temperatureis= 25°C. The geometric parameters arg¢ = 0.1 mm,Co = 2mm=1, W =1
mm, H = 3 mm. We consider two values of the Hamaker constaht=f 10-2° J and4A = 10~'Y J), and
two values of the ambient solvent activity.{ = 0 anda., = 0.5, corresponding t@:¢ = 1.4 um.s ! and
v3¢ = 0.71 um.s™ !, respectively).

ev

3 Advancing contact line

Figure 1 shows some typical results in the case of an adwgueointact line, for the film thickness, the curvature,
the liquid pressure and the evaporative flux as a functiohehbrizontal distance, for several capillary numbers
Ca = nV/o. Two regimes can be observed, depending on the vald&ofor small capillary numbers@a| <

2 x 10~9), the meniscus shape is independentiaf, and the departure from the thermodynamic equilibrium
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(corresponding taCa = 0 andwv., = 0) is due to evaporation only. On the contrary, the meniscapehs
significantly modified by the substrate motion féta| > 2 x 1076, As pointed out in [9], it is an advantage of
this type of model to predict the meniscus structure, froenghasi-static region characterized by a quasi-constant
curvatureCy and a quasi-constant pressux€, = 60 Pa, to the liquid film adsorbed on the substrate and governed
by the disjoining pressure. The peaks of the evaporatiarciteds in Fig. 1d are due to the bidimensional nature of
vapor transfer in the gas phase, like in Deegan’s approathhére is no divergence there due to the Kelvin effect
(see Fig. 1c along with Eq. (4)). At the highest capillary mem(Ca| = 1.8 x 10~*, corresponding t¢V | = 1
cm.s 1), a small region of condensation (negative evaporatice) iatdetected just after the peak.
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Fig. 1. Advancing contact line foti, = 0 andA = 10~° J (increasingCa| from right to left). (a): the liquid thickness ; (b):
the curvature ; (c): the pressure= 0227}; + Gﬁ%; (d): the evaporation velocity.

A precise definition of the contact angle is not straightfamv Indeed, strictly speaking, such angle does not
exist, since there is no intersection between the liquidilprand the substrate (see Fig. 1a). Nevertheless, an
effective (or apparent) contact angle can still be definedetrribe the shape of the meniscus at the macroscopic
scale. This requires a more detailed description of theiegtasc region. This region extends from= 0 to
x = x1, with x; the abscissa corresponding to a significant deviation opthesurey from the static capillary
pressure(p(z1) — 0Cy)/0Cy < « (o an arbitrary parameted, < « < 1). Due to the fact that the curvature can
be regarded as constant in that region, and within the frammeaf small slope approximation, the liquid height
is given by a parabolic functiorii,s(z) = ho + Soz + Coz?/2. S is the slope at: = 0, which can be easily
deduced from numerical simulations. After extrapolatibis parabola intercepts the substrate at absaissach
thath,s(z2) = 0. We can consider two definitions of the effective contacieing

0, = %(xl) and 6y = ag;S
0, is the slope at the transition between the quasi-statictandytnamic region, whil@, is the slope of the parabola
describing the quasi-static region at the intersectioh thie substrate.

Figure 2 show#; andf, as a function of the capillary numbéta, for different values ofA anda... Both
definitions lead to the same qualitative results. At a lowsstalbe velocity, the contact angle is independent of the
capillary number, as expected. On the contrary, at a higititg] a classical Cox-Voinov regime is found, in which
6 < Cal/3. In this high velocity regime, we expect evaporation to haveeak effect on the meniscus macroscopic
behavior.

(z2) = So + Coza. (6)
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Fig. 2. Effective contact angle as a function of the capillary number for aamaag contact line. Symbols: numerical simula-
tions ; solid lines: Eq. (7) ; dashed lines: fit of the Cox-Voinov regimg.fafor o = 0.1 ; (b): 6.

Switching fromé; to 0, yields a decrease in the estimation of the contact angle joapnately20%. We can
also estimate the effect @h of the arbitrary parameter which has been set to1 in Fig.2a. Takingx = 0.03 or
a = 0.3 leads to variations of the same order, betwe@mand30%. This uncertainty is inherent to the definition
of the effective contact angle. The same problem is encoemhia experiments. Indeed, Enaet al.[4] measured
by interferometry the effective contact angle of evapotroplets at the contact line or at the inflection point of
the droplet profile, and found differences of the same ordabave between the two estimates.

In the following, we use these simulation results to testapgroximate model proposed by Phatral. ([5,
6]. They use the Deegan'’s electrostatic analogy [7] to aldaiestimate of the evaporation flux. For small contact
angles, and assuming that the contact line is located at 0, the volumetric evaporative flux read$(X) =
Jo/v/X. A small arbitrary liquid height and a zero slope are impoase® = 0. A zero curvature is imposed
at a macroscopic distandg,, ..., from the contact line. This leads to the following analytiegpression for the
effective contact angle:

L’ CcTro
0 =3.1762 — 9 Ca (In =222 + 1) 7

micro
with 6,, = 2.12% being the angle at the small scale cutigff.,., = 3.4( 127f‘J0n)2/3 (cf. [5,6] for details).
We choosel,,..ro = Ls; @s an estimation of the macroscopic scale. This is certaimlgverestimation, but the
ratio Ly,acro/lmicro has only a weak effect on the results, since it is included logarithm. The constani,
is estimated from the mean evaporation velocity: = v:5v/ Lg; /2. Figure 2a and 2b show a good agreement
between the approximate model and the numerical simukatlodeed, the differences are of the same order as the
uncertainty coming from the definition of the contact angle.

4 Receding contact line

A similar behavior is observed in the case of a receding ablitee (see Fig. 3), that is a regime dominated by the
plate motion at small’a (Ca > 6 x 10~%) and by evaporation at even smalés (Ca < 6 x 1079). The former
case corresponds to the Landau-Levich regime in whichidriahduced by the plate movement is high enough
to pull out a liquid film which evaporates over a distance éasing with the plate velocity (see the experimental
study by Quet al.[12]). At the highest capillary numbe€@ = 1.8 x 10~?, corresponding t& = 1 mm/s), the
distance required to achieve complete evaporation of thedifilm is higher than the domain widtiv'. In that
case, the liquid film inside the computational domain is tuok to activate the Kelvin effect, so the concentration
field in the gas phase is one-dimensional, and the evaporatiocity represented in Fig. 3b is uniform.

The effective contact anglg being too sensitive ta close to the transition from the evaporative to the Landau-
Levich regimes, we only present results figr(see Fig. 4)0- is independent of '« in the evaporative regime, then
falls down to zero at the transition with the Landau-Levielgime. Once again, the model by Phatral. (Eq.

7) gives fairly good results, as compared to the numericalkitions. It is interesting to notice that the order of
magnitude of the capillary number corresponding to thesitemm between the two regimes can be estimated by
settingd = 0in Eq. 7.
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Fig. 3. Receding contact line far,, = 0 andA = 1071° J. (a): the liquid thickness (increasitg: from left to right) ; (b): the
evaporation velocity.
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Fig. 4. Effective contact angle as a function of the capillary number for a receding contact line. Symbols: numerical
simulations; solid lines: Eq. (7).

5 Conclusion

We proposed a hydrodynamic model based on lubricationyhteatescribe an evaporative meniscus in a complete
wetting configuration, when evaporation takes place in amtbair. van der Waals interactions were taken into
accountvia a disjoining pressure term. We focused on combined efféeeaporation and the substrate motion on
the effective contact angle. Numerical simulations shotmexdistinct regimes when varying the capillary number
over several orders of magnitude. At a very small capillamnber, the effective contact angle is governed by
evaporation and is independent of the substrate velocityth® contrary, the substrate motion is dominant at a
high velocity: the Cox-Voinov regime is obtained in the cafan advancing contact line, and the Landau-Levich
regime in the case of a receding contact line. Finally, oumextical results were used to test the simplified model
developed by Phamt al.[5, 6]. This model shows a good agreement with our resultsimthe range of uncertainty
inherent to the definition of the effective contact angle.
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