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Variational study of mesh and shape
optimization

Alain Dervieux[0000−0002−3936−3285] and
Frédéric Alauzet[0000−0002−8025−3862] and
Didier Chargy

Abstract This paper focuses on the combination of design optimization with anisotropic
mesh adaptation. The key components are: unstructured mesh for CFD, use of ad-
joint state for design, use of metric-based mesh adaptation.

1 Motivations

In order to design the new transport devices answering to the climatic challenge, the
needs in High-Fidelity CFD simulation are increasing. High-Fidelity CFD simula-
tion demands:
- high-fidelity models like RANS and hybrid RANS/LES,
- high-fidelity approximations with a strong control of the approximation error.

This paper focuses on the combination of design with anisotropic mesh adapta-
tion. The key components are: unstructured mesh for CFD, use of adjoint state for
design, use of mesh adaptation.

The adjoint state was popularized by J.L. Lions in his book ”Optimal Control”
[5] in 60’s. It was demonstrated by O. Pironneau for CFD design based on the Full
Potential model [7] and then by A. Jameson [4] for the Euler model. Unstructured-
mesh CFD was strongly supported and developed in France by Dassault Aviation
(J. Périaux, P. Perrier, program HERMES). Adjoint methods use intensively code
differentiation, strongly supported in France by Dassault Aviation (J. Périaux, B.
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Stoufflet, program GENIE). A cooperation on metric-based mesh adaptation started
very early between INRIA, Paris 6 and Dassault (J. Périaux, B. Stoufflet).

It appears today that with the new algorithms for mesh adaptation, new efficient
and accurate automatical tools are available for maximizing the quality of high-
fidelity prediction. The advantages of these tools will probably in the near future
make their use mandatory in the industrial practice. Automatic tools are already
available for design optimization. Today these tools rely on a generation of non-
adaptative or poorly adaptative CFD. It is then important to propose for the very
near future a composite algorithm which combines in best conditions the novel mesh
adaptation technology with most recent or novel design optimization loops.

The first part of this paper gives some state-of-the-art of the anisotropic goal-
oriented mesh adaptation algorithms. The second part examines the integration of
these algorithms in a design loop.

2 Anisotropic mesh adaptation

The ingredients of anisotropic mesh adaptation are in short:
- Spalart-Allmaras RANS and DDES vertex-centered FEM-FVM using tetrahedra,
- anisotropic metric-based local remesher.

They are described and discussed in details in [1, 2]. The Goal Oriented (GO)
version minimizes the error on a prescribed scalar output. The error analysis relies
on an adjoint state. The double loop mesh adaptation algorithm (Figure 1) contains
an inner loop which iteratively adapts the mesh and recomputes the flow, the adapta-
tion being performed while maintaining the total number of nodes in the mesh. The
double loop mesh adaptation algorithm contains also an outer loop of refinement,
that is responsible of increasing the total number of nodes in such a way that the
double loop organizes the convergence of the discrete solution to the exact one.

2.1 Earlier higher-order convergence and important details of flow

Anisotropic adaptation results in earlier high-order convergence.
We illustrate this fact with a case of the AIAA High Lift Prediction Workshop [11],
see Figure 2. In the right figure, the convergence of the lift coefficicent is depicted.
Five red square show different calculations with best practice meshes composed of
205 M nodes. An confidence interval [CL = 2.365 ± 0.05] is then derived. Six
blue stars are also depicted, produced by the application of the GO mesh adaptation
double loop (values of lift at end of outer loops). We observe that meshes with
2.73M, 5.41M, 10.5M, 20.0M nodes of the process produce lift predictions inside
the confidence interval, showing an accuracy comparable to the accuracy of the five
205 M nodes computations. Since adjoint-based/GO approaches are designed to
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Start

Initialize mesh H0, solution u0, and complexity N0
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Refine the metric

...
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Fig. 1 Anisotropic double loop GO mesh adaptation

Fig. 2 High-Lift workshop. Left: GO adaptation with lift as functional. Local Mach number, 5.41M
cells. Right: Lift predictions against different computations. ■: five computation with the work-
shop mesh of 206M cells. ⋆(right to left) are produced by a GO adaptation loop with lift as
functional, successive meshes of (right to left) 0.68M, 1.35M, 2.73M, 5.41M, 10.5M, and 20.0M
nodes.
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find the mesh which minimizes the error on the target scalar output, this method
concentrate mesh in regions which are important for the output accuracy. This is
illustrated by pictures from the above computation (Figure 3).

Fig. 3 Same High-Lift workshop calculation, adapted mesh composed of 5.41M cells and the
associated solution (local Mach number).

2.2 GO meshes can produce much better results than Taylored finer
meshes

This statement is illustrated by computations from the 2nd AIAA Sonic-Boom Pre-
diction Workshop, [8]. The geometry, depicted in Figure 4, is a shape for a super-
sonic aircraft with mitigated sonic boom. The pressure perturbation is measured in a
horizontal plane at some distance under the aircraft. A non-adapted and an adapted
calculation have been performed with a post-processing [10] showing the local error
(black vertical intervals). It appears that the computation with a 13M nodes taylored
mesh (aligned with main shock direction) still show large local errors. In contrast,
the GO approach with 5.9 M nodes shows small error intervals almost everywhere
(Figure 5).
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Fig. 4 13M Taylored mesh d p/pin f (left) vs 5.9 M adapted mesh d p/pin f (right). Black vertical
intervals are estimates of local approximation uncertainty.

Fig. 5 13M Taylored mesh d p/pin f (left) vs 5.9 M adapted mesh d p/pin f (right). Black vertical
intervals are estimates of local approximation uncertainty.

2.3 Some remarks on the Goal-Oriented adaptation

As illustrated in Figure 2, a rather neat convergence of the functional is obtained. We
emphasize that the GO algorithm does not provide a mesh-converged flow. Indeed,
the error which is minimized is weighted by the derivative of the adjoint state. For
example, regions where adjoint is constant are not refined.

Further, the GO algorithm relies on an adjoint flow while not having any evident
mechanism for ensuring that the mesh is sufficient for computing this adjoint flow.
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3 Mesh adaptation for design

Let us make precise the kind of tool we are developing. We focus on the last phase
of design:
- main characteristics of the shape are chosen, defining the initial shape,
- an initial flow is computed as accurately as possible on this initial shape with GO
mesh adaptation, maximizing the accuracy on the functional, for example the drag,
- it remains to slightly modify the shape in order to get the last attainable improve-
ments by design.
The central question is:

How to continue towards drag minimization while still enjoying the accuracy of
mesh adaptation.

3.1 Theoretical issues in mesh adaptation for design

3.1.1 Single adjoint approach

It is remarkable that:
- the GO adjoint state W ∗ computed for minimizing the error δ j on the functional j
w.r.t. metric M and,
- the design adjoint state for minimizing the functional j itself w.r.t. shape parameter
γh,
are strictly the same:

min
M

| j − jh| ⇒ W ∗

min
γh

jh ⇒ W ∗

It is then natural to combine the two minimization loops using the same adjoint.
This single-adjoint strategy will be illustrated in the numerical examples.

3.2 Double adjoint approach

The purpose of the design is to approximate the continuous optimal shape γopt .
γopt = Argmin

γ
j.

Then a more rational mesh adaptation criterion should concentrate on the accuracy
for the optimal parameter:

Find a metric Mopt and an approximate optimal shape γopt,h
γopt,h = Argmin

γh
j(h).
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such that the deviation ||γopt,h − γopt || is minimized (in some norm):

min
M

||γopt,h − γopt ||.□

In the above statement, index h holds for the discretization based on Mopt . To
address that latter problem, Becker et al. [9] proposed the following analysis:

0 = j′(γopt)− j′h(γopt,h) = j′(γopt)− j′h(γopt)+ j′h(γopt)− j′h(γopt,h).

Thus:
j′h(γopt)− j′h(γopt,h) = j′h(γopt)− j′(γopt).

Now:

j′h(γopt)− j′h(γopt,h) = jh”(γopt)(γopt − γopt,h)+ R = jh”(γopt,h)(γopt − γopt,h)+ R′.

Then:
γopt − γopt,h ≈

[
jh”(γopt)

]−1
(

j′h(γopt)− j′(γopt)
)

. (1)

Then Becker et al. [9] propose to simplify the square Hessian matrix jh”(γopt) by
a scalar number times Identity. In fact, using Automatic Differentiation for example,
the Hessian matrix jh”(γopt) is certainly complex but not impossible to evaluate.
Instead, let us simplify the initial minimal norm problem into the following Goal
Oriented formulation:

Minimize the error on (g0,γopt − γopt,h).

We simplify it further by putting:

g =
[

jh”(γopt)
]
g0

and analyzing the GO minimization of

(g , j′h(γopt)− j′(γopt)) ≡ (g , j′h(γopt))

for an arbitrary g.(
g , j′h(γh)

)
is a function θh of (γh,Wh,W ∗

h

)
:

min
M

θh
(
γh,Wh,W ∗

h
)

under the constraint K(γh,Wh,W ∗
h ) = 0

with θh
(
γh,Wh,W ∗

h

)
=

(
g ,

(
W ∗

h , ∂Ψh
∂u

(
γh,Wh

))
+ ∂Jh

∂u

(
γh,Wh

))
and where the pre-

vious state and adjoint state are the unknowns of a new state equation

K(γh,Wh,W ∗
h ) = 0

with:
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K = (K1,K2)
K1(γh,Wh,W ∗

h ) = Ψh(γh,Wh), K2(γh,Wh,W ∗
h ) = ∂Ψh

∂Wh

∗
(γh,Wh)W ∗

h + ∂Jh
∂Wh

(γh,Wh).

This time, the adaptation accounts for both state and adjoint flows local errors,
weighted by a new adjoint K′−1∗∂θh/∂ (W,W ∗).

It remains to express the residuals K1 and K2 in terms of interpolation errors of
state (W,W ∗) in order to build a GO mesh adaptation loop for the optimal shape. □

The double-adjoint approach presented here does not take into account the con-
straints which are introduced on shape parameters in quasi all practical problems.
Next section present an implementation of the single adjoint approach for which
introducing constraints is trivial.

3.3 Implementation of single adjoint approach

In the last phase of industrial design, the shape optimization has to rely on:
- a sufficiently accurate shape parametrization in order to be able to get the best
improvement,
- a highly accurate simulation, in order to better identify a local minimum,
- an accurate algorithm for searching the optimum.
We focus on the combination of:
- adjoint-based sensitivity to shape,
- Sequential Quadratic Programming for shape optimization, and
- anisotropic mesh adaptation for accurate functional evaluation.

An option would be to consider the mesh-adaptive solver as the solver to be in-
stalled inside the design loop. But the function which maps the Shape onto the Mesh-
adapted flow is not a differentiable mapping due to the discontinuous changes in the
underlying mesh performed by adaptation and SQP cannot be applied efficiently. It
is possible to work on the coupling between SPQ and BFGS from one side with the
adaptation. An example of this coupling for a simpler gradient loop as optimizer is
discussed in [6]. In the present work, we install the double mesh-adaptation loop as
an external loop with respect to the optimization loop. This is developed in Figure
6. Two applications are then presented.

3.4 Application to hydraulic design, 1, bulbous bow optimization

In this first example, the above loop is applied without the mesh adaptation se-
quence. This will permit to evaluate the efficiency of the association of SQP, shape
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?

End

Fig. 6 Single-adjoint triple loop for adaptation, refinement and design

parametrization and volumic mesh deformation. We consider the well known David
Taylor Model Basin 5415, a historical post-second war shape for a combattant ship,
see the shape in Figure 7. We consider the optimization of the front bulb. The flow
model involves the free surface. The mesh size is of 849709 nodes. An idea of the
initial flow is given in Figure 8 in which are presented the free surface (indicated by
the variation of fluid density) and the total pressure. Applying the SQP algorithm,
we observe that with solely 5 SQP minimization iterations, this shape can be im-
proved in such a way that the ship drag is reduced by 9%, Table 1. The modification
of bulb shape (less flat at stagnation point) is slightly perceptible when examining
the flow obtained at the end of optimization (Figure 9).

Fig. 7 Initial shape: David Taylor Model Basin 5415.
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Mesh size Optimization steps Initial drag Final drag
849709 5 10.9 10.1 (-9%)

Table 1 Optimisation of DTMB bulb.

NiceFlow NiceFlow

Fig. 8 David Taylor Model Basin 5415: density and pressure before optimization

NiceFlow NiceFlow

Fig. 9 David Taylor Model Basin 5415: density and pressure after optimization

3.5 Applications to hydraulic design, 2, VP1304 propeller

The last example combines mesh adaptation and shape optimization. The geometry
is the ship VP1304 propeller model proposed by Postdam university and depicted in
Figure 10. A first mesh adaptive double loop predicts accurately the flow, with a final
mesh of 2.5M nodes. Then 100 shape degrees of freedom are introduced for opti-
mizing the blades. Then the optimization process combined with mesh adaptation is
started. The purpose is to increase the so-called propeller efficiency, ratio of propul-
sive power to absorbed power, which is then chosen as the scalar output, while the
cost functional to minimize is chosen as the inverse of propeller efficicency. With
this medium number of shape parameters, the combination of adaptation and opti-
mization uses 20 mesh adaptations and a total of 80 SQP iterations. Inital and final
meshes are shown in Figure 11. Initial and final flows are presented in Figure 12.
Differences seem very small. The blades modifications are more evident, although
not very large (Figure 13 and 14) This computation permitted to increase the pro-
peller efficiency by 4.5%.
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NiceFlow

Fig. 10 VP1304 propeller: geometry

NiceFlow

NiceFlow

Fig. 11 VP1304 propeller: initial and final meshes
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NiceFlow

NiceFlow

Fig. 12 VP1304 propeller: initial and final flows

NiceFlow

Fig. 13 VP1304 propeller: initial and final shapes
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NiceFlow

Fig. 14 VP1304 propeller: initial and final shapes

NiceFlow

Fig. 15 VP1304 propeller: initial and final shapes

4 Concluding remarks

This short paper first shows that the new anisotropic mesh adaptation algorithms
are efficient to get a more accurate and more efficicent solution. As concerns GO
adaptation we observe that:
- a medium (3M) mesh GO-adaptation provides results that are equivalent to usual
fine (200M) mesh computations.
- It results that when a massively parallel fine (> 30M nodes) mesh GO-adaptation
is available, the quality of the results will be hardly affordable when using a tradi-
tional non-adaptive approach.

These properties are important for initializing and performing a final design
phase. Starting from a medium GO-adapted solution, the last example shows that
the single-adjoint composite design+adaptation loop, performing the simultaneous
GO-adaptation and shape improvement, provides a High-Fidelity shape improve-
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ment.
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