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1 Introduction

The Mostow celebrated rigidity theorem for rank-one symmetric spaces states that
every isomorphism between fundamental groups of compact, negatively curved, lo-
cally symmetric manifolds, of dimension at least 3, is induced by an isometry. In
his proof, Mostow exploits two major ideas: group actions on boundaries and reg-
ularity properties of quasi-conformal homeomorphisms. This set of ideas revealed
itself very fruitful. It forms one of the bases of the theory of Gromov hyperbolic
groups. It also serves as a motivation to develop quasi-conformal geometry on
metric spaces.

The present text attempts to provide a synthetic presentation of the rigidity
theorems that rely on the quasi-conformal geometry of boundaries of hyperbolic
spaces. Previous surveys on the subject include [74, 34, 13, 102, 80]. The orig-
inality of this text lies more in its form. It has two objectives. The first one
is to discuss and prove some classical results like Mostow’s rigidity in rank one,
Ferrand’s solution of Lichnérowicz’s conjecture, the Sullivan-Tukia and the Pansu
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quasi-isometry rigidity theorems. The second one is to present more briefly some of
the numerous recent advances and results based on the quasi-conformal geometry
of boundaries.

The paper starts with three preliminary sections. Section 2 is a survey on Gro-
mov hyperbolic spaces, their boundaries and CAT(−1)-spaces. Section 3 concerns
rank-one non-compact symmetric spaces. We describe in detail their boundaries in
relation to the nilpotent structure. Section 4 presents the geometric analytic tools
that serve in the sequel. This includes the convergence property, the Sullivan char-
acterization of Möbius homeomorphisms, the notion of Loewner spaces and the
regularity properties of quasi-conformal homeomorphisms. The heart of the paper
is formed by Sections 5, 6, 7, 8. Each of them consists of a main part with major
statements and sketches of proofs, and of a succinct exposition of several related
results. Section 5 is devoted to the Mostow original theorem and its proof. We
also state some generalizations, including Besson-Courtois-Gallot’s theorem. In
Section 6, Ferrand’s theorem and Sullivan-Tukia’s theorem are stated and proved
by using the zoom method. We also present Tukia’s proof of Mostow’s theorem
(for real hyperbolic spaces). Section 7 focuses on rigidity of quasi-isometries. A
detailed sketch of the proof of Pansu’s theorem is given. Right-angled Fuchsian
buildings are also discussed. Finally, Section 8 presents some recent developments
and perspectives, including Cannon’s conjecture and the combinatorial Loewner
property.

Clearly, several results presented in this paper would deserve a more detailed
exposition. Moreover only very few aspects of rigidity are treated. In particu-
lar, infinitesimal rigidity, higher rank rigidity, superrigidity, harmonic maps and
bounded cohomology, do not appear at all. This is due to my own limitations.

It is my pleasure to refer to P. Häıssinsky’s survey [78], in this volume, for a
complementary viewpoint of some of the subjects discussed here.
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Damian Osajda. I acknowledge Peter Häıssinsky for the mini-course we gave
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Notation and convention

In a metric space X, we denote by NR(Y ) the R-neighborhood of a subset Y ⊂ X,
i.e. NR(Y ) := {x ∈ X|dist(x, Y ) ≤ R}. The Hausdorff dimension of X is denoted
by Hausdim(X). The homeomorphism and isometry groups of X are denoted by
Homeo(X) and Isom(X) respectively. A map f : X → Y between metric spaces
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is a homothety if it is an isometry after possibly rescaling the metric of X or Y by
a multiplicative positive constant.

Two real-valued functions f, g defined on a space X are said to be comparable,
and we write f � g, if there exists a constant C > 0 such that C−1f ≤ g ≤ Cf .
We write f . g if there is a constant C > 0 such that f ≤ Cg.

2 Gromov hyperbolic spaces

Hyperbolic spaces and hyperbolic groups were defined by Gromov [73] in the mid-
dle of the eighties. We give a brief survey on hyperbolic spaces and their bound-
aries, see e.g. [73, 56, 72, 37, 95, 40, 62] for more details.

2.1 First definitions and properties

Let (X, d) be a metric space. A geodesic segment inX is an isometrically embedded
closed interval. A geodesic segment with endpoints x, y ∈ X is denoted by [x, y].
Similarly are defined the geodesic rays and the bi-infinite geodesics inX. The space
X is geodesic if every pair of points in X can be joined by a geodesic segment.

Definition 2.1. A geodesic metric spaceX is hyperbolic if there is a constant δ ≥ 0
such that for every points x, y, z ∈ X and every geodesic segments [x, y], [y, z], [z, x],
one has [x, y] ⊂ Nδ([yz] ∪ [zx]).

A companion definition is :

Definition 2.2.

1. A map F : X1 → X2 between metric spaces is a quasi-isometric embedding ,
if there are constants λ ≥ 1 and C ≥ 0 such that for every x, y ∈ X1

λ−1d(x, y)− C ≤ d(F (x), F (y)) ≤ λd(x, y) + C.

In the particular case where X1 is an interval in R, the map F is called a
(λ,C)-quasi-geodesic of X2.

2. The map F is a quasi-isometry if it is a quasi-isometric embedding and if
there is a constant R ≥ 0 such that NR(F (X1)) = X2.

Examples are provided by the following situation. A group action is called
geometric if it is an isometric, properly discontinuous and cocompact action. The
Cayley graph of a finitely generated group (Γ, S), is the graph whose vertices
are the elements of Γ, and whose edges are the pairs {g, gs}, with g ∈ Γ and
s ∈ S ∪ S−1. It is endowed with the path metric obtained by identifying every
edge with the unit interval.

Proposition 2.3 (Svarc-Milnor). Suppose a group Γ acts geometrically on a
geodesic metric space X. Let S be a finite generating set of Γ. Then for ev-
ery O ∈ X, the orbit map Γ → X, g 7→ g · O, extends to a quasi-isometry of the
Cayley graph of (Γ, S) to X.
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The following result is called the Morse Lemma in [73].

Theorem 2.4. Suppose X is a δ-hyperbolic space. There is a constant R =
R(λ,C, δ), such that for every (λ,C)-quasi-geodesic γ : I → X there exists a
geodesic c ⊂ X with γ(I) ⊂ NR(c).

As a consequence one obtains

Corollary 2.5. Suppose F : X1 → X2 is a quasi-isometry between geodesic metric
spaces. Then X1 is hyperbolic if and only if X2 is.

Since the Cayley graphs of Γ, for the various choices of generators, are pairwise
quasi-isometric, the following definition does not depend on the finite generating
set S.

Definition 2.6. A finitely generated group Γ is called hyperbolic if the Cayley
graph of (Γ, S) is hyperbolic.

2.2 Boundary at infinity

The boundary at infinity of a hyperbolic space, equipped with a visual metric, is
the main protagonist of the paper. The boundary at infinity is defined in Definition
2.7, the visual metrics are defined in the statement of Theorem 2.9.

Definition 2.7. LetX be a geodesic metric space. Geodesic rays r1, r2 : [0+∞)→
X are asymptotic if

sup
t∈[0,+∞)

d(r1(t), r2(t)) <∞.

The boundary at infinity of X is

∂X := {r : [0 +∞)→ X geodesic ray}/ ∼

where r1 ∼ r2 when they are asymptotic. It is endowed with the topology induced
by the topology of uniform convergence on the compact subsets of [0,+∞). The
group Isom(X) acts on ∂X by homeomorphisms.

Recall that a metric space is proper if its closed balls are compact. Using
Ascoli’s theorem one has :

Proposition 2.8. Suppose that X is a proper hyperbolic space.

1. Given an origin O ∈ X, every geodesic ray of X is asymptotic to a geodesic
ray starting at O.

2. For every pair of non-asymptotic geodesic rays r1, r2, there is a geodesic
γ : R→ X that is asymptotic to r1 for t ≤ 0 and to r2 for t ≥ 0.

3. The boundary ∂X is compact.

In the sequel, we denote by (z, w) every geodesic which is asymptotic to a pair
of distinct points z, w ∈ ∂X. Note that (z, w) is not unique in general. But for
two of such geodesics γ, η one has γ ⊂ N10δ(η), thanks to δ-hyperbolicity.



Mostow type rigidity theorems 5

Theorem 2.9 (Gromov). Suppose that X is a proper δ-hyperbolic space, and let
O ∈ X be an origin. Then:

1. There is a constant a0 > 1 which depends only on δ, such that for every
a ∈ (1, a0), there exists a metric d on ∂X with the following property: for
every z, w ∈ ∂X, one has

d(z, w) � a−L, where L = dist(O, (z, w)).

A metric d on ∂X which satisfies the above property is called a visual metric.

2. X ∪ ∂X is a natural metric compactification of X. More precisely, there is
a metric d on X ∪ ∂X that enjoys the following property: for every x, y ∈
X ∪ ∂X, one has

d(x, y) � a−L min{1, |x− y|}, where L = dist(O, (x, y)).

Observe that two visual metrics d, δ on ∂X, with parameters a and b respec-

tively (and with possibly different origins) satisfy δ � d
log a
log b .

Sketch of proof. We sketch a proof of Part 1, and refer to [16] for Part 2. Suppose
first that X is a tree. Then for every distinct z, w ∈ ∂X the geodesic (z, w) is
unique, and for every a > 1 the fonction

d(z, w) := a− dist(O,(z,w))

satisfies the ultrametric inequality

d(z1, z3) ≤ max{d(z1, z2), d(z2, z3)}.

For a general δ-hyperbolic space X, the fonction

ϕ : (z, w) ∈ (∂X)2 7→ e− dist(O,(z,w))

satisfies
ϕ(z1, z3) ≤ e100δ max{ϕ(z1, z2), ϕ(z2, z3)}.

Therefore part 1 of the theorem is a consequence of the following classical lemma
(see e.g. [89] for a proof).

Lemma 2.10. Let Z be a set and ϕ : Z × Z → [0,+∞) be a quasi-metric, i.e. a
function that satisfies the following properties:

1. ϕ(z, w) = 0 if and only if z = w.

2. ϕ(w, z) = ϕ(z, w) for every w, z ∈ Z.

3. There is a K > 0 such that for every z1, z2, z3 ∈ Z one has

ϕ(z1, z3) ≤ K max{ϕ(z1, z2), ϕ(z2, z3)}.

Then there exists α0 ∈ (0, 1) which depends only on K, such that for every α ∈
(0, α0) there exists a metric d on Z with d � ϕα.
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2.3 Cross-ratio and boundary extensions of quasi-isometries

In classical hyperbolic geometry, isometries extend to Möbius homeomorphisms
of the boundary. This property generalizes, in some sense, to quasi-isometries of
Gromov hyperbolic spaces.

Definition 2.11 (Väisälä [139]). Let (Z, d) be a metric space. The cross-ratio of
four pairwise distinct points z1, z2, z3, z4 ∈ Z is

[z1, z2, z3, z4] =
d(z1, z3)d(z2, z4)

d(z1, z4)d(z2, z3)
.

A map f : Z1 → Z2 between metric spaces is Möbius if it preserves the cross-ratio.
It is quasi-Möbius if there is a homeomorphism η : [0,+∞) → [0,+∞) such that
for every four pairwise distinct points z1, z2, z3, z4 ∈ Z1, one has

[f(z1), f(z2), f(z3), f(z4)] ≤ η([z1, z2, z3, z4]).

The group of Möbius homeomorphisms of Z is denoted by Moeb(Z).

Note that switching z1 and z2 in the last inequality leads to the opposite
inequality (with a different fonction η). Therefore inverses and compositions of
quasi-Möbius homeomorphisms are quasi-Möbius as well.

Theorem 2.12 (Efremovich-Tihomirova [65]). Let X1 and X2 be proper δ-hyperbolic
spaces. Equip ∂X1 and ∂X2 with visual metrics. Then every quasi-isometry
F : X1 → X2 extends to a quasi-Möbius homeomorphism f : ∂X1 → ∂X2.
Moreover the distortion fonction η depends only on δ, the constants of the quasi-
isometry F and the constants of the visual metrics.

In particular Isom(X) acts on ∂X by uniform quasi-Möbius homeomorphisms,
i.e. with the same distortion function.

Sketch of proof. Let O be an origin in X1. In order to extend the quasi-isometry
F to a map f : ∂X1 → ∂X2, consider z ∈ ∂X1 and a geodesic ray [O, z). Its image
by F is a quasi-geodesic ray. By the Morse lemma it lies within bounded distance
from a geodesic ray [F (O), w), with w ∈ ∂X2. Define f(z) = w. It is easy to see
that f is bijective.

To see that f is quasi-Möbius, one observes that there is a constant C ≥ 0
which depends only on δ and the constants of the visual metric, such that for
every pairwise distinct points z1, z2, z3, z4 ∈ ∂X, one has

|dist ((z1, z4), (z2, z3))−max

{
0,

log[z1, z2, z3, z4]

log a

}
| ≤ C.

These inequalities follow easily from the special case where X is a tree (in this
case C = 0).

By combining the above inequalities with the Morse lemma one obtains that
f is quasi-Möbius.
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We note that the converse of Theorem 2.12 is valid for non-degenerate hyper-
bolic spaces. A hyperbolic space X is non-degenerate if there is a constant C ≥ 0
such that every x ∈ X lies within distance at most C from all three sides of some
ideal geodesic triangle ∆x. According to [118, 25], every quasi-Möbius homeomor-
phism f : ∂X1 → ∂X2, between boundaries of proper non-degenerate hyperbolic
spaces, extends to a quasi-isometry F : X1 → X2. Therefore the boundary is a
full quasi-isometric invariant of the proper non-degenerate hyperbolic spaces.

2.4 Some dynamical properties

We give some properties of ∂X for the hyperbolic spaces X that admit a geometric
action. The definition below of approximately self-similar spaces appears in [102].

Definition 2.13.

1. A metric space Z is approximately self-similar if there is a constant L0 ≥ 1
such that if B(z, r) ⊂ Z is an open ball of radius 0 < r ≤ diam(Z), then
there is an open subset U ⊂ Z which is L0-bi-Lipschitz homeomorphic to
the rescaled ball (B(z, r), 1

rd).

2. A metric space Z is Ahlfors Q-regular (for some Q ∈ (0,+∞)) if there is a
measure ν on Z such that for every ball B ⊂ Z of radius 0 < r ≤ diam(Z)
one has ν(B) � rQ.

Note that if Z is Ahlfors Q-regular, then Q is its Hausdorff dimension. More-
over the measure ν and the Q-Hausdorff measure are absolutely continuous with
respect to each other, and their Radon-Nikodym derivatives are bounded. Observe
also that an approximately self-similar space is Ahlfors Q-regular as soon as its
Q-Hausdorff measure is finite and non-zero.

Theorem 2.14. Let X be a proper hyperbolic space such that |∂X| ≥ 3, and
suppose that a group Γ acts on X geometrically. Let d be a visual metric on ∂X,
let a be its parameter, and let O ∈ X be an origin. Then :

1. (∂X, d) is approximately self-similar, the partial bi-Lipschitz maps being re-
strictions of elements of Γ.

2. (∂X, d) is Ahlfors Q-regular with

Q = lim sup
R→+∞

log |(Γ ·O) ∩B(O,R)|
R log a

.

3. Let H be the Q-Hausdorff measure of (∂X, d). The diagonal action of Γ on
((∂X)2,H×H) is ergodic.

Statement 2 is due to M. Coornaert [53, 55]. Statement 3 is proved in [2].
They generalize previous results of Patterson and Sullivan to hyperbolic spaces
and groups. See e.g. [30] for a proof of 1.
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Let again X be a proper hyperbolic space X, suppose that |∂X| ≥ 3, and
consider the topological space

∂3X := {(z1, z2, z3) ∈ (∂X)3 | zi 6= zj for i 6= j},

with the diagonal action of Isom(X) by homeomorphisms.

Proposition 2.15. Suppose that a group Γ acts on X geometrically. Then Γ acts
properly discontinuously and cocompactly on ∂3X.

Conversely, suppose that X is a proper non-degenerate hyperbolic space (as
defined in the last subsection). Then every group Γ ⊂ Isom(X) that acts properly
discontinuously and cocompactly on ∂3X, acts geometrically on X.

Sketch of proof. To every (z1, z2, z3) ∈ ∂3X, one associates an ideal triangle in X,
i.e. the union of three bi-infinite geodesics (zi, zj), i 6= j, denoted by ∆(z1, z2, z3).
Then, by hyperbolicity, one constructs a center of the triangle ∆(z1, z2, z3), i.e. a
point x ∈ X such that the maximal of its distances to the three sides is minimal.
This defines a map p : ∂3X → X, which is essentially proper and Isom(X)-
equivariant (see [53] for more details).

2.5 CAT(−1)-spaces

A vast class of hyperbolic spaces is formed by the so-called CAT(−1)-spaces. We
recall their definition and review some properties of their boundary.

Definition 2.16. Let H2
R be the real hyperbolic plane of curvature −1. Let X

be a geodesic metric space, and let ∆ ⊂ X be a geodesic triangle. A comparison
triangle of ∆ is a geodesic triangle ∆ ⊂ H2

R whose edge lengths are the same as in
∆. Let s : ∆ → ∆ be the natural map. Then X is a CAT(−1)-space if for every
geodesic triangle ∆ ⊂ X, the map s : ∆→ ∆ is 1-Lipschitz.

Thanks to the Alexandrov comparison theorem, any simply connected com-
plete Riemannian manifold of sectional curvatures less than or equal to −1 is a
CAT(−1)-space. Other examples include the negatively curved simply connected
polyhedron complexes [3, 37], and among them Tits buildings associated to hy-
perbolic Coxeter groups [61].

A nice feature about CAT(−1)-spaces is the existence of canonical explicit
visual metrics on their boundary and the relations between the groups Moeb(∂X)
and Isom(X). To present them, we start with some definitions.

Let X be a proper CAT(−1)-space and let O ∈ X be an origin. Denote by
|x−y| the distance between x, y ∈ X. Since X is hyperbolic, its boundary appears
as the frontier of the compactification X∪∂X (Theorem 2.9.2). By using Definition
2.16 and some standard geometric properties of H2

R, one sees that the function

(x, y) ∈ X2 7→ 1

2
(|O − x|+ |O − y| − |x− y|) ∈ R,

extends by continuity to a function on ∂2X := {(z, w) ∈ (∂X)2 | z 6= w}, denoted
by (z|w) and called the Gromov product of z, w. Similarly, the function

(x1, x2, x3, x4) ∈ X4 7→ 1

2
(|x1 − x3|+ |x2 − x4| − |x1 − x4| − |x2 − x3|) ∈ R,
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extends by continuity to a function on

∂4X := {(z1, z2, z3, z4) ∈ (∂X)4 | zi 6= zj for i 6= j},

denoted by (z1|z2|z3|z4).

Proposition 2.17 ([26]). Let X be a proper CAT(−1)-space. Then

dCAT(z, w) = e−(z|w)

defines a visual metric of parameter e on ∂X. The associated cross-ratio (see
Definition 2.11) satisfies [z1, z2, z3, z4] = exp(z1|z2|z3|z4).

Example 2.18. Let HnR be the n-dimensional real hyperbolic space of constant
curvature −1. The metric dCAT on its boundary can be describe as follows. In the
ball model Bn ⊂ Rn of HnR, choose the origin O to be the center of Bn. Then the
metric dCAT on ∂HnR is half of the chordal distance on the boundary sphere of Bn.

A description of dCAT for the other rank-one symmetric spaces is given in
Proposition 3.7.

As a consequence of Proposition 2.17, every isometry of X acts on ∂X as a
Möbius homeomorphism with respect to the cross-ratio associated to the visual
metric dCAT. A basic inverse problem is the reconstruction of X from the boundary
cross-ratio. The following result is an example of such a reconstruction.

Theorem 2.19 ([27]). Let S be a rank-one non-compact symmetric space, and let
X be a CAT(−1)-space. Assume the Riemannian metric of S is normalized so that
the maximum of the sectional curvatures is equal to −1. Then every embedding
∂S → ∂X, which preserves the cross-ratio, extends to a totally geodesic isometric
embedding S → X. In particular Isom(S) = Moeb(∂S).

The idea of proof is the following. Every geodesic in S or X is determined by
its two end-points in the boundary. The map ∂S → ∂X induces an injection from
the set of geodesics in S to the set of geodesics in X. By using the metric dCAT

one can show that concurrent geodesics are preserved.

3 Rank-one symmetric spaces

Examples of CAT(−1)-spaces include the rank-one non-compact symmetric spaces.
These are the hyperbolic spaces HnR, HnC, HnQ, H2

O, where n ≥ 2 and where Q and
O denote the quaternions and the octonions, respectively. In the sequel K denotes
one of the fields R,C,Q, and we set k := dimR K.

This section gives a brief presentation the rank-one (non-compact) symmetric
spaces and discusses some aspects of their boundaries. We start with a definition
of the hyperboloid and parabolic models of HnK. Then we describe the nilpotent
structure on ∂HnK \{∞}, and we compare the visual metric dCAT with the Carnot-
Carathéodory metric on ∂HnK. Althrough the material is standard – see [113, 116,
74, 37, 107] – we provide a detailed and self-contained exposition.
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Because O is non-associative, the space H2
O requires a different treatment. For

simplicity we consider only HnR, HnC, HnQ, and we refer to [113, 1] for the octonionic
case.

3.1 Hyperboloid model

Let n ≥ 1. We consider Kn+1 as a right K-module (1). Let B : Kn+1×Kn+1 → K
be the form

B(x, y) = x1y1 + ...+ xnyn − xn+1yn+1,

where x 7→ x denotes the standard involution of K. The associated quadratic form
is

q(x) := B(x, x) = |x1|2 + ...+ |xn|2 − |xn+1|2.

Let H = {x ∈ Kn+1 ; q(x) = −1}. The group U := {a ∈ K ; |a| = 1} acts on
H on the right, and preserves q. Moreover, when restricted to every orthogonal
tangent space of the U -orbits, q is positive definite.

The hyperboloid model of HnK is the manifold H/U equipped with the Rieman-
nian metric induced by q.

Observe that H/U lies in the projective space PnK. Indeed, it is the image of H
by the projection map π : Kn+1 \ {0} → PnK. The description of the Riemannian
metric is the following.

Proposition 3.1. Denote by g the Riemannian metric on HnK. Then for x ∈ H
and v ∈ TxH one has: gπ(x)(π∗(v), π∗(v)) = q(v) + |B(x, v)|2.

Proof. The tangent space to xU at x is x=K. Its orthogonal in TxH is the set of
v ∈ Kn+1 such that B(x, v) = 0. Since x ∈ H and v ∈ TxH, one has q(x) = −1
and B(x, v) ∈ =K. Thus the component of v along the orthogonal of xU is
w = v + xB(x, v). We obtain

gπ(x)(π∗(v), π∗(v)) = q(w) = B(w,w) = q(v) + |B(x, v)|2,

as expected.

In this model ∂HnK is identified with the submanifold {q(x) = 0}/K∗ of PnK. The
equation B(x, v) = 0 defines a codimension k−1 distribution in the tangent space
of {q(x) = 0}. Its leaves contain the tangent spaces of the K∗-orbits. Therefore it
induces in the quotient, a codimension k − 1 distribution on ∂HnK that we denote
by T . We remark that T is the maximal K-subbundle of the tangent bundle of
∂HnK.

The groups PO(n, 1), PU(n, 1), PSp(n, 1) act by isometries on HnR, HnC, HnQ
respectively, and they preserve T on the boundary. They are in fact equal to the
whole isometry groups of the corresponding symmetric spaces.

1This convention is only relevant when K is non abelian. It allows M(n+ 1,K) to act linearly
on Kn+1 by multiplication on the left.
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3.2 Parabolic model

We now describe a model of HnK where the point [0, ..., 0,−1, 1] ∈ ∂HnK lies at
infinity. It is called the parabolic model or Siegel domain.

We consider the K-hyperplane P in Kn+1 defined by xn+xn+1 = 1. It contains
the point (0, ..., 0, 1) and is parallel to the vector (0, ..., 0,−1, 1). We introduce the
following coordinates on P and PnK:

(x′, xn) ∈ Kn 7→ (x′,
1

2
− xn,

1

2
+ xn) ∈ P 7→ [x′,

1

2
− xn,

1

2
+ xn] ∈ PnK.

In these coordinates, the quadratic form q restricted to P is expressed as follows.
For (x′, xn) ∈ Kn:

q(x′, xn) = ‖x′‖2 − 2<xn,

with ‖x′‖2 := |x′1|2 + ...+ |x′n−1|2. Therefore, by setting ∞ := [0, ..., 0,−1, 1], one
gets the following expressions

HnK = {(x′, xn) ∈ Kn ; ‖x′‖2 − 2<xn < 0},

∂HnK \ {∞} = {(x′, xn) ∈ Kn ; ‖x′‖2 − 2<xn = 0}.

A computation based on Proposition 3.1 shows that the Riemannian metric is
expressed as follows. For x = (x′, xn) ∈ HnK and v = (v′, vn) ∈ Kn:

gx(v, v) =
‖v′‖2

2<xn − ‖x′‖2
+
( |{x′, v′} − vn|

2<xn − ‖x′‖2
)2

, (3.2)

where {·, ·} denotes the form {x′, y′} = x′1y
′
1+...+x′n−1y

′
n−1. Another computation

shows that the distribution T on ∂HnK \ {∞} is simply written as

{x′, v′} = vn. (3.3)

3.3 Nilpotent structure on ∂Hn
K \ {∞}

We use the coordinate system of the parabolic model. Let N be the Lie group
Kn−1 ×=K with the following multiplication law

(z′, zn) · (w′, wn) = (z′ + w′, zn + wn + ={z′, w′}).

Its Lie algebra is written as n = Kn−1 ⊕ =K, with =K central, and for every
z′, w′ ∈ Kn−1:

[z′, w′] = ={z′, w′}. (3.4)

Therefore when K 6= R the group N is two-step nilpotent and otherwise it is
abelian. It acts on HnK as follows. For (z′, zn) ∈ N and (x′, xn) ∈ HnK,

(z′, zn) · (x′, xn) = (x′ + z′, xn + zn + {z′, x′}+
1

2
‖z′‖2).
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By using the expression (3.2), one checks that it is an isometric action. Moreover
N acts simply transitively on ∂HnK \ {∞}. Therefore we get an identification

N → ∂HnK \ {∞}, (z′, zn) 7→ (z′, zn) · 0,

In these coordinates, the distribution T is equal to the left invariant distribution
on N generated by the subspace Kn−1 ⊂ n (this follows from (3.3)). The Lie
bracket expression (3.4) implies that

T ⊕ [T, T ] = T (∂HnK). (3.5)

Let (δt)t∈R be the 1-parameter subgroup of Isom(HnK) defined by

δt(x
′, xn) = (etx′, e2txn).

Its elements are hyperbolic isometries with axis (0,∞). It normalizes N . More
precisely we have for every (z′, zn) ∈ N :

δt ◦ (z′, zn) ◦ δ−1
t = (etz′, e2tzn).

The corresponding Lie algebra automorphisms are given by etα, where α is the
derivation of n, equal to id on Kn−1 and to 2id on =K.

The map δt preserves the distribution T . It acts as a similarity of ratio et on
the leaves of T equipped with any N -invariant Riemannian metric. Indeed the
distribution T is N -invariant, δt normalizes N , and its differential at the fixed
point 0 is a homothety of ratio et when restricted to the leaf of T at 0.

The above properties show that N is a Carnot group with associated Carnot
homotheties (δt)t∈R. The required definitions are the following.

Definition 3.6. A Carnot group is a pair (N, v), where N is a simply connected
Lie group, and v is a linear subspace of the Lie algebra n such that

n =
⊕
r≥1

vr,

with v1 := v and vr+1 := [v, vr]. The linear subspace v is called the horizontal
space. The linear map α, whose restriction to every vr is r · id, is a derivation of
n. The associated Carnot homotheties are the automorphisms of N induced by
etα ∈ Aut(n).

3.4 Carnot-Carathéodory and visual metrics

The sectional curvature of HnK is constant equal to −1 when K = R and lies in
[−4,−1] otherwise. Thus HnK is a CAT(−1)-space and its boundary carries the
visual metrics dCAT, see Proposition 2.17.

On the other hand, the relation (3.5) shows that the distribution T generates
the tangent space of ∂HnK. Thus, according to Chow’s theorem, any two boundary
points can be joined by a smooth horizontal curve, i.e. whose tangent vectors lie
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in T . Choose an origin O ∈ HnK, and equip T with a Riemannian metric that
is invariant under the isotropy group of O. The associated Carnot-Carathéodory
metric dCC is defined as follows. For every z, w ∈ ∂HnK, the distance dCC(z, w) is
the infimum of the lengths of the piecewise smooth horizontal curves joining z to
w.

Proposition 3.7. The metrics dCAT and dCC on ∂HnK are Lipschitz equivalent.
Their Hausdorff dimension is kn+ k − 2.

Proof. Observe that dCAT and dCC are both invariant under the isotropy group of
O. Since this group acts transitively on ∂HnK, it is enough to prove the existence
of a point z0 ∈ ∂HnK, such that dCAT(z0, ·) � dCC(z0, ·) in a neighborhood of z0.

Choose z0 to be the common fixed point of the Carnot homotheties δt, see
Subsection 3.3. As we saw in this subsection, δt multiplies by et the Carnot-
Carathéodory metric on ∂HnK \ {∞} associated to any N -invariant Riemannian
metric on T . Since this metric is Lipschitz equivalent to dCC in a neighborhood
of z0, one has for z in a neighborhood of z0 and t ≤ 0:

dCC(z0, δt(z)) � etdCC(z0, z).

On the other hand, the map δt is a hyperbolic isometry of HnK whose axis
contains z0 and whose translation length is |t|. Thus, with the definition of dCAT,
one has for z in a neighborhood of z0 and t ≤ 0:

dCAT(z0, δt(z)) � etdCAT(z0, z).

The expected property comes from these two homogeneity relations.
It remains to compute the Hausdorff dimension. Let dN be the Carnot-

Carathéodory metric on N ' ∂HnK\{∞} associated to an N -invariant Riemannian
metric on T . The metrics dN and dCC are locally Lipschitz equivalent, thus their
Hausdorff dimensions are equal. The distance dN is N -invariant and is multiplied
by et under δt. On the other hand, the fonction

φ(z′, zn) := ‖z′‖+ |zn|1/2 (3.8)

is positive on N \ {0} and δt-homogeneous. Therefore the function Φ(z, w) :=
φ(z−1w) on N2 is N -invariant and is multiplied by et under δt. It follows by
homogeneity that dN and Φ are Lipschitz equivalent. From definition (3.8) one
sees that

Hausdim(N, dN ) = dimR Kn−1 + 2 dimR =K = (n− 1)k + 2(k − 1) = nk + k − 2.

The statement follows.

4 Some geometric analysis

This section describes some dynamical and analytic tools and results that will
serve in the sequel. This includes the convergence property (Proposition 4.1),
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Sullivan’s characterization of Möbius homeomorphisms (Proposition 4.3), some
regularity properties of quasi-Möbius homeomorphisms between Loewner spaces
(Theorem 4.7), and the relations between quasi-Möbius and quasi-conformal home-
omorphisms of Loewner spaces (Theorem 4.10). We refer to the survey [78] for a
complementary viewpoint and more details on some parts of this section.

4.1 Convergence property of quasi-Möbius maps

A standard and classical property is the following convergence property of se-
quences of uniform quasi-Möbius maps. It will serve repeatedly in Section 6.

Proposition 4.1. Let Z1, Z2 be compact metric spaces. Let fk : Z1 → Z2 be a
sequence of uniform quasi-Möbius homeomorphisms (i.e. we assume the distortion
function η to be the same for every fk, k ∈ N). Then one of the following properties
occurs:

1. Up to a subsequence, (fk)k∈N converges uniformly on Z1 to a η-quasi-Möbius
homeomorphism f : Z1 → Z2.

2. Up to a subsequence, there exist a ∈ Z1 and b ∈ Z2, such that for every com-
pact subset K ⊂ Z \ {a}, (fk)k∈N converges uniformly on K to the constant
map b.

The crucial lemma is the following.

Lemma 4.2. Let fk : Z1 → Z2 be a sequence of uniform η-quasi-Möbius maps
between compact metric spaces. Suppose there exists three pairwise distinct points
a1, a2, a3 ∈ Z1 and three pairwise distinct points b1, b2, b3 ∈ Z2, such that for
i = 1, 2, 3, fk(ai) → bi when k → +∞. Then, up to a subsequence, (fk)k∈N
converges uniformly on Z to a η-quasi-Möbius map f : Z1 → Z2.

Proof. Let η be the common distortion function for the fk’s. We prove that the
sequence (fk)k∈N is equicontinuous, so the statement will follow from Ascoli’s
theorem. Let D = min{d(ai, aj) | i 6= j, i, j = 1, 2, 3}, and let z, w ∈ Z1 be
such that d(z, w) ≤ D/4. Then dist({z, w}, ai) ≤ D/4 for at most one of the ai’s.
Suppose for example that dist({z, w}, {a2, a3}) > D/4. We have

d(z, w)d(a2, a3)

d(z, a3)d(a2, w)
� d(z, w).

Since d(fk(z), b3) and d(b2, fk(w)) are bounded by above by diam(Z2) , we get for
every k ∈ N large enough:

d(fk(z), fk(w)) .
d(fk(z), fk(w))d(b2, b3)

d(fk(z), b3)d(b2, fk(w))

.
d(fk(z), fk(w))d(fk(a2), fk(a3))

d(fk(z), fk(a3))d(fk(a2), fk(w))

. η
(d(z, w)d(a2, a3)

d(z, a3)d(a2, w)

)
. η(Cd(z, w)),
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for some constant C ≥ 1 independent of k, z, w. Therefore (fk)k∈N is equicontin-
uous.

Proof of the Proposition. Let a1, a2, a3 be three distinct points in Z1. Up to a
subsequence we can assume that for i = 1, 2, 3, fk(ai) converges in Z2 when k →∞.
Let bi be their limits. If b1, b2, b3 are pairwise distinct then the previous lemma
applies.

Suppose b1 = b2 and write it b for simplicity. Let c ∈ Z2 \ {b} and consider
zk = f−1

k (c). Up to a subsequence we can assume that (zk)k∈N converges in Z1;
let a be its limit. We have a /∈ {a1, a2}. Let K ⊂ Z1 \ {a} be a compact subset.
For k ∈ N large enough and w ∈ K and, we have

d(fk(a1), fk(w))

d(fk(a1), fk(a2))
.
d(fk(a1), fk(w))d(fk(zk), fk(a2))

d(fk(a1), fk(a2))d(fk(zk), fk(w))

. η
(d(a1, w)d(zk, a2)

d(a1, a2)d(zk, w)

)
. η

( C

d(a,w)

)
,

for some constant C ≥ 1 independent of K, k, w. Therefore

d(fk(a1), fk(w)) . η
( C

d(a,w)

)
· d(fk(a1), fk(a2)),

and so fk converges uniformly on K to the constant map b.

4.2 Sullivan’s characterization of Möbius homeomorphisms

The following result is a main ingredient in Sullivan’s ergodic approach to Mostow’s
rigidity and its variants, that will be presented in Section 5. It will also serve
repeatedly in the sequel.

Proposition 4.3 ([128]). Suppose (Z1, d1) and (Z2, d2) are Q-regular metric
spaces for some Q > 0. Let H1,H2 be the Q-Hausdorff measures of Z1 and Z2

respectively. For i = 1, 2 let µi be the measure

µi(z, w) =
Hi(z)×Hi(w)

di(z, w)2Q

on Z2
i . Then a homeomorphism f : Z1 → Z2 is Möbius if and only if (f×f)∗µ2 =

Cµ1 for some constant C > 0.

Its proof will use the

Lemma 4.4. Let f : (Z1, d1) → (Z2, d2) be a Möbius homeomorphism between
metric spaces with no isolated points. Then

1. For every z ∈ Z1 the limit

|f ′(z)| := lim
w→z

d2(f(w), f(z))

d1(w, z)

exists and belongs to (0,+∞).
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2. For every z, w ∈ Z1 one has

d2(f(z), f(w))2 = |f ′(z)| · |f ′(w)| · d1(z, w)2.

Proof of Lemma 4.4. Since [f(z1), f(z2), f(w1), f(w2)] = [z1, z2, w1, w2], one gets

d2(f(z1), f(w1))d2(f(z2), f(w2)) =

=
d2(f(z1), f(w2))

d1(z1, w2)

d2(f(z2), f(w1))

d1(z2, w1)
d1(z1, w1)d1(z2, w2).

By letting zi → z and wi → w we obtain the second and then the first statement.

Proof of Proposition 4.3. Suppose that f is Möbius. Then, according to Lemma
4.4, we get f∗H2 = |f ′|QH1. By substituting in

(f × f)∗µ2(z, w) =
f∗H2(z)× f∗H2(w)

d2(f(z), f(w))2Q
,

it follows from Lemma 4.4.2. that (f × f)∗µ2 = µ1.
Conversely if (f×f)∗µ2 = Cµ1 then f∗H2 = ϕH1 for some measurable function

ϕ. Thus

(f × f)∗µ2(z, w) =
ϕ(z)H2(z)× ϕ(w)H2(w)

d2(f(z), f(w))2Q
.

Therefore for almost all (z, w) ∈ Z2
1 we have

ϕ(z) · ϕ(w)

d2(f(z), f(w))2Q
=

C

d1(z, w)2Q
.

By substituting in the cross-ratio expression, one obtains after cancellations that
f preserves the cross-ratio almost everywhere in Z4. Since the cross-ratio is con-
tinuous we get that f is Möbius.

4.3 Loewner spaces

Loewner spaces have been introduced by J. Heinonen and P. Koskela [90]. Most
of the classical Euclidean quasi-conformal analysis was generalized to the setting
of Loewner spaces. We present only the material that will be useful for us. More
discussions on the Loewner spaces can be found in [90, 89, 50, 91, 137, 100]. We
refer to [89] for a gentle introduction to Loewner spaces. We will use the shorthand
Loewner space for a metric space that is Q-regular and Q-Loewner for some Q > 1,
in the sense of [90].

Let Z be a Q-regular metric space with Q > 1, and let H be its Hausdorff
measure. Let F be a non-void family of continuous curves in Z. Its Q-modulus is
defined by

ModQ(F) = inf
ρ

∫
Z

(ρ)Q dH,
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where the infimum is over all F-admissible functions, i.e. measurable functions
ρ : Z → [0,+∞] which satisfy

∫
γ
ρ ≥ 1 for every rectifiable curve γ ∈ F . If there is

no rectifiable curve in F , we set ModQ(F) = 0. The modulus is an outer measure
on the full set of continuous curves in Z. Moreover if every curve in F2 contains
a curve in F1 one has ModQ(F2) ≤ ModQ(F1).

We denote by F(A,B) the family of curves joining two subsets A and B of Z
and by ModQ(A,B) its Q-modulus. When A ⊂ B(z, r) and B ⊂ Z \B(z,R) with
0 < 2r < R, then one has

ModQ(A,B) . (log
R

r
)1−Q.

Therefore ModQ(A,B) is small when diam(A) or diam(B) is small compared to
dist(A,B). The Loewner spaces are the spaces for which a kind of a converse
inequality occurs:

Definition 4.5. Denote by ∆(A,B) the relative distance between two disjoint
compact connected subsets A,B ⊂ Z i.e.

∆(A,B) =
dist(A,B)

min{diamA,diamB}
.

Then Z is a Loewner space if there exits a homeomorphism ϕ : [0,+∞)→ [0,+∞)
such that for every pair of disjoint compact connected subsets A,B ⊂ Z one has

ModQ(A,B) ≥ ϕ(∆(A,B)−1).

Example 4.6. Basic examples of Loewner spaces include the Euclidean spaces
of dimension at least 2, and the Carnot groups (Definition 3.6) equipped with
Carnot-Carathéodory metrics (see e.g. [84]). As a consequence, the boundaries
of rank-one symmetric spaces different from H2

R are Loewner, see Proposition 3.7.
Among the currently known examples of Loewner spaces, the only ones which
arise as boundaries of hyperbolic groups are the boundaries of rank-one symmetric
spaces (different from H2

R), and the boundaries of Fuchsian buildings [32].

Just from the definitions, one sees that bi-Lipschitz homeomorphisms preserve
the Loewner property. The situation for quasi-Möbius homeomorphisms is more
subtle. The following theorem is a combination of results from [137] and [90].

Theorem 4.7. Let f : (Z1, d1,H1) → (Z2, d2,H2) be a quasi-Möbius homeomor-
phism between Alhfors-regular metric spaces of dimensions Q1 and Q2 respectively.
Suppose Z1 is Loewner. Then Q2 ≥ Q1. Moreover if Q2 = Q1, then

1. Z2 is Loewner.

2. f is absolutely continuous with respect to H1 and H2.

3. f is absolutely continuous along almost curves γ : [a, b] → Z1. In other
words, for γ lying outside of a set of curves of zero modulus, the maps f ◦ γ
are absolutely continuous with respect to 1-dimensional Hausdorff measure
in the target.
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As an illustration, we mention

Corollary 4.8. Suppose S1 and S2 are quasi-isometric rank-one non-compact
symmetric spaces. Then S1 = S2.

Proof. By Theorem 2.12, the boundaries of S1 and S2 are homeomorphic. Thus
the boundaries have the same topological dimension. Among rank-one symmetric
spaces, H2

R is the only one whose boundary is a circle. Suppose now that S1 and S2

are different from H2
R. Then their boundaries are Loewner spaces. Thus, Theorem

4.7 implies that the Hausdorff dimensions of ∂S1 and ∂S2 are equal. Since the
topological and Hausdorff dimensions of ∂HnK are respectively kn−1 and kn+k−2
(Proposition 3.7), the statement follows.

4.4 Quasi-conformal homeomorphisms

We now discuss quasi-Möbius homeomorphisms in relation with the classical notion
of quasi-conformal homeomorphisms. Let f : Z1 → Z2 be a map between metric
spaces. For z ∈ Z1 and 0 < r < diam(Z1) define

Lf (z, r) = sup{d(f(z), f(w)) | w ∈ B(z, r)},

lf (z, r) = inf{d(f(z), f(w)) | w ∈ Z1 \B(z, r)}.

Definition 4.9. A homeomorphism f : Z1 → Z2 between metric spaces, is
quasi-conformal if there exists a H ≥ 1, such that for every z ∈ Z1 one has

lim supr→0
Lf (z,r)
lf (z,r) ≤ H.

Examples of quasi-conformal homeomorphisms include bi-Lipschitz homeomor-
phisms. It is easy to see that quasi-Möbius homeomorphisms are quasi-conformal
as well (with H = η(1)). For the compact Loewner spaces the notions of quasi-
conformal and quasi-Möbius homeomorphisms are equivalent:

Theorem 4.10 (Heinonen-Koskela [90]). Let Z1 and Z2 be compact Loewner
spaces with the same Hausdorff dimension Q, and let f : Z1 → Z2 be a home-
omorphism. The following properties are equivalent.

1. f is H-quasi-conformal.

2. There is a constant C ≥ 1 such that for every family F of curves in Z1, one
has C−1 ModQ(F) ≤ ModQ(f(F)) ≤ C ModQ(F).

3. f is η-quasi-Möbius.

Moreover the constants H, C and the distortion function η are quantitatively re-
lated just in terms of the geometric data of the spaces.

Here is an application to group actions, that will serve in Section 7.

Corollary 4.11 ([33]). Suppose Z is a compact Loewner space of dimension Q
and let H be its Q-Hausdorff measure. Let G be a group acting on Z by uniform
quasi-conformal homeomorphisms (i.e. there is H ≥ 1 such that every g ∈ G is
H-quasi-conformal). Suppose that G contains a subgroup Γ such that
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1. Γ ⊂ Moeb(Z).

2. The diagonal action of Γ on (Z2,H×H) is ergodic.

3. The diagonal action of Γ on

T (Z) := {(z1, z2, z3) ∈ Z3 | zi 6= zj for i 6= j}

is properly discontinuous and cocompact.

Then G ⊂ Moeb(Z).

Proof of the Corollary. Let G be the closure of G in Homeo(Z). According to
Theorem 4.10, G acts on Z by uniform quasi-Möbius homeomorphisms (i.e. we
can assume the distortion function to be the same for every g ∈ G). By continuity
G also acts by uniform quasi-Möbius homeomorphisms. By Proposition 4.1 it acts
properly on T (Z).

We will deduce the corollary from the Sullivan characterisation of Möbius
homeomorphisms (Proposition 4.3). Since G acts properly on T (Z), our third
assumption implies that Γ is a cocompact lattice in G. In particular the Haar
measure on G is bi-invariant. Let m be the finite measure on Γ\G obtained by
restricting the Haar measure to a fundamental domain of Γ in G. Let µ be the
measure on Z2 defined in Proposition 4.3. Let s : Γ\G → G be a measurable
section. We define a new measure ν on Z2 by

ν(B) =

∫
Γ\G

µ(s(g) ·B) dm(g)

for every Borel set B ⊂ Z2. By the first assumption and Proposition 4.3, the
measure µ is Γ-invariant. Since m is invariant under the right action of G, we
get that ν is G-invariant. Moreover ν is absolutely continuous with respect to
µ. Indeed, the group G acts on Z by quasi-Möbius homeomorphisms, and quasi-
Möbius homeomorphisms are absolutely continuous with respect toH (Proposition
4.7). With our second assumption we obtain that µ is equal to Cν for some C > 0.
Therefore µ is G-invariant and we conclude by using Sullivan’s characterization
(Proposition 4.3).

5 Mostow rigidity

This section is devoted to the proof of Mostow’s theorem. We also present two
generalizations: the Besson-Courtois-Gallot theorem (Theorem 5.2), and a gener-
alization of Mostow’s theorem to quasi-convex geometric actions (Theorem 5.4).
The section ends with a survey of several related results.

5.1 Mostow theorem

We state Mostow’s theorem (for rank-one non-compact symmetric spaces), and we
explain how it can be deduced from results of the previous sections.

As usual we normalize the Riemannian metric of the rank-one symmetric spaces
so that the maximum of the sectional curvatures is −1.
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Theorem 5.1. Let S1 and S2 be rank-one symmetric spaces different from H2
R.

For i = 1, 2 let Γi be a lattice in Isom(Si). Then any group isomorphism ϕ : Γ1 →
Γ2 is the conjugacy by an isometry from S1 to S2.

Mostow proved the cocompact lattice case [113]. G. Prasad extended the proof
to finite covolume lattices [119].

Proof. Suppose first that Γ1 and Γ2 are cocompact lattices. Then Γi acts geo-
metrically on Si. By Svarc-Milnor (Proposition 2.3), the isomorphism ϕ induces a
ϕ-equivariant quasi-isometry from S1 to S2. It extends to a ϕ-equivariant quasi-
Möbius homeomorphism f : ∂S1 → ∂S2 (see Theorem 2.12). Since S1 and S2 are
rank-one symmetric spaces different from H2

R, their boundaries (equipped with the
visual metrics dCAT) are Loewner spaces. Thus from Theorem 4.7, the Hausdorff
dimensions of ∂Si are equal and f is absolutely continuous with respect to the
Hausdorff measures. Therefore f × f is absolutely continuous with respect to the
measures µi defined in Proposition 4.3. Since µi is Γi-invariant and ergodic (The-
orem 2.14), and since f × f is equivariant, we get that (f × f)∗µ2 = Cµ1 for some
constant C > 0. Therefore Sullivan’s characterization (Proposition 4.3) implies
that f is a Möbius homeomorphism. Finally f is the boundary extension of an
isometry by Theorem 2.19.

In the non-cocompact case, Prasad [119] proved that the equivariant quasi-
isometry from S1 to S2 still exists, by using informations about the cusps. The
rest of the proof is similar.

This proof, arising from the Sullivan’s ergodic approach [128], is similar in
spirit to Mostow’s original proof [113]. At the end, Mostow’s argument is differ-
ent, it relies – in a delicate way – on absolute continuity and ergodicity, to show
that f preserves the R-circles (i.e. boundaries of curvature −1 totally geodesic
planes). Then he deduces from this property that f is the boundary extension of
an isometry.

5.2 Besson-Courtois-Gallot theorem

A remarkable generalization of Mostow’s theorem is due to Besson, Courtois, Gal-
lot [6, 7].

Let M be a compact connected Riemannian manifold M and let M̃ be its
universal cover. Pick O ∈ M̃ and define the volume entropy of M (independent
of O) by

h(M) := lim
R→+∞

1

R
ln Vol(B(O,R)),

where Vol(B(O,R)) denotes the volume in M̃ of the ball B(O,R).

Theorem 5.2. Let M0 and M be compact connected Riemannian manifolds of
the same dimension n. Suppose M0 is a locally symmetric manifold of negative
sectional curvature. Then for every non-zero degree continuous map f : M →M0,
one has the following inequality

h(M)n Vol(M) ≥ |deg(f)|h(M0)n Vol(M0).
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Moreover, for n ≥ 3, the equality holds if and only if M is a locally symmetric
space and f is homotopic to a homothetic covering.

The theorem admits several important applications in geometry, topology and
dynamics. We refer to [6, 7] for more informations (see also subsection 5.4). It
has been generalized to finite volume manifolds by Boland, Connell, Souto [12].

5.3 Quasi-convex geometric actions

We present a generalization of Mostow’s theorem to quasi-convex geometric actions
on CAT(−1)-spaces.

Definition 5.3. Let X be a proper hyperbolic space. A subset Y ⊂ X is quasi-
convex if there is a constant R ≥ 0 such that for every pair of points y1, y2 ∈ Y
the geodesic segments [y1, y2] ⊂ X lie in NR(Y ). A finitely generated group Γ acts
on X quasi-convex geometrically if it acts by isometries, properly discontinuously,
and if its orbits are quasi-convex subsets of X. The limit set of Γ is the following
subset of ∂X (independent of O ∈ X)

Λ = Γ ·OX∪∂X ∩ ∂X.

Several properties of geometric actions generalize to quasi-convex geometric
actions. In particular such groups are hyperbolic. The orbit map g ∈ Γ 7→
g ·O ∈ X is a quasi-isometric embedding. It extends canonically to a quasi-Möbius
homeomorphism from ∂Γ to Λ.

The following result was first proved by U. Hamenstädt [86] for geometric
actions on simply connected Riemannian manifold of curvature at most equal to
−1.

Theorem 5.4. Let S be a rank-one symmetric space different from H2
R. Sup-

pose its Riemannian metric is normalized so that the maximum of the sectional
curvatures is −1. Let Γ be a cocompact lattice in Isom(S). Assume that Γ acts
quasi-convex geometrically on a CAT(−1)-space X and let Λ ⊂ ∂X be its limit
set. Then Hausdim(∂S) ≤ Hausdim(Λ). Moreover the equality holds if and only
if there exists a Γ-equivariant totally geodesic isometric embedding of S into X.

The inequality is due to Pansu [117]. It is also a consequence of Theorem 4.7
since ∂S and Λ are quasi-Möbius homeomorphic. The equality case is proved in [27]
(the case X is a rank-one symmetric space has been treated independently by C.
Yue [144]). The proof is similar to the one we gave for the Mostow theorem, it relies
on Theorem 4.7. Theorem 5.4 has been generalized in [141, 60] to geometrically
finite actions of finite covolume lattices of Isom(S).

When S = H2
R and Γ is a lattice in Isom(H2

R), the same statement holds apart
from the fact that the isometric embedding is not Γ-equivariant in general. This
result is due to R. Bowen [36] when X = H3

R, and to M. Bonk and B. Kleiner [19]
for general CAT(−1)-spaces X.
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5.4 Further results

1) One expects that some versions of Mostow’s rigidity hold for quite general
hyperbolic spaces. For instance, given “reasonable” hyperbolic spaces X1 and X2,
and a group Γ acting on them geometrically, suppose that the canonical boundary
map is absolutely continuous with respect to the Hausdorff measures (recall that
the Hausdorff measure class is independent of the choice of a visual metric). Does
this imply that there exists a Γ-equivariant homothety from X1 to X2 ?

When X1 = X2 = H2
R, this was established by T. Kuusalo [104]. When X1

and X2 are metric trees, this is a result of Coornaert [54]. C. Croke [58] and J-P.
Otal [115] proved the case X1 and X2 are simply connected Riemannian surfaces
of negative curvature. Hersonsky-Paulin [93] generalized it to negatively curved
Riemannian surfaces with singularities. When X1 is a rank-one symmetric space,
and X2 is a simply connected negatively curved Riemannian manifold, this is due
to Hamenstädt [88] (by using the Besson-Courtois-Gallot theorem).

We remark that the above problem admits several equivalent formulations (in
terms of cross-ratio, marked length spectrum, geodesic flow, etc), see [106, 87].

In [111], I. Mineyev constructed Isom(X)-invariant conformal structures and
cross-ratios on boundaries of hyperbolic spaces X, that generalize the CAT(−1)
setting.

K. Biswas [10] proved that every Möbius homeomorphism between the bound-
aries of proper geodesically complete CAT(−1)-spaces X1 and X2 extends to a
(1, log 2)-quasi-isometry from X1 to X2 with 1

2 log 2-dense image in X2.

2) P. Storm [126] proved a version of the Besson-Courtois-Gallot theorem for
manifolds with boundary. As a consequence he solved the following conjecture
of Bonahon. Let ρ0, ρ1 be quasi-convex geometric actions of a group Γ on HnR
with n ≥ 3. Consider, for i = 0, 1, the convex hull Hi ⊂ HnR of the limit set
Λ(ρi) ⊂ Sn−1, and suppose that the boundary of H0 in HnR is totally geodesic.
Then Vol(H0/ρ0(Γ)) ≤ Vol(H1/ρ1(Γ)). Moreover the equality holds if and only if
ρ0 and ρ1 are conjugate in Isom(HnR).

We note that for such ρ0, ρ1, it is commonly conjectured that

Hausdim(Λ(ρ0)) ≤ Hausdim(Λ(ρ1)),

and that the equality holds if and only if ρ0 and ρ1 are conjugate in Isom(HnR).

3) Divergence groups form a vast generalization of quasi-convex geometric actions
on hyperbolic spaces X. A subgroup Γ ⊂ Isom(X) is a divergence group if it acts
properly discontinuously on X, if the critical exponent

δ(Γ) := inf{s > 0 |
∑
g∈Γ

exp(−sd(O, g ·O)) < +∞}

is finite, and if the sum
∑
g∈Γ exp(−sd(O, g ·O)) diverges at s = δ(Γ). See [93] for

several examples of such groups.
The limit set of a divergence group carries a natural finite measure called

the Patterson-Sullivan measure (it coincides with the Hausdorff measure when Γ
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acts quasi-convex geometrically). Its ergodic properties are well studied (see for
instance [128], [129], [39], [122]).

Sullivan [128], Burger-Mozes [39] and Yue [145] obtained several rigidity the-
orems for such actions. In particular, the following result is established in [39].
Let X1 and X2 be proper CAT(−1)-spaces and let Γ ∈ Isom(X1) be a divergence
group. Let Λ ⊂ ∂X1 be its limit set. Then, for every group homomorphism
ρ : Γ → Isom(X2) with non-elementary image, there is a unique ρ-equivariant
measurable map f : Λ → ∂X2, and almost all values of f belong to the limit set
of ρ(Γ).

Hersonsky-Paulin [93] obtained Mostow type theorems for divergence groups
of CAT(−1)-spaces, under the assumption that the above map is absolutely con-
tinuous with respect to the Patterson-Sullivan measures.

4) In [128], Sullivan addressed the following problem. Suppose Γ is a finitely
generated subgroup of Isom(HnR) such that the topological dimension of its limit
set Λ is equal to its Hausdorff dimension. Does it imply that Λ is a round sphere?

For quasi-convex subgroups, this was established by Yue [144] (in the statement
he assumed that Λ is a topological sphere, but his argument does not need the
latter assumption). M. Kapovich [97] proved it for geometrically finite groups, and
T. Das, D. Simmons and M. Urbańsky [59] for even more general Kleinian groups.

Bonk and Kleiner obtained the following generalization [18, 19]. Suppose that
a group Γ acts quasi-convex geometrically on a CAT(−1)-space X, and let Λ ⊂ ∂X
be its limit set. Let n ≥ 1 be the topological dimension of Λ. Then Hausdim(Λ) ≥
n, and equality holds if and only if Γ acts geometrically on an isometric copy of
Hn+1

R in X.

K. Kinneberg [101] established a coarse version of this result. Suppose a group
Γ acts geometrically on an ACu(−1)-metric space X. These are the metric spaces
with asymptotic upper curvature −1, a geometric property that is invariant by
rough isometries, and that has been introduced by Bonk and Foertsch [15]. If ∂X
is homeomorphic to Sn with n ≥ 2, and if the volume entropy of X is at most
equal to n, then Γ is virtually a cocompact lattice in Isom(Hn+1

R ) and X is roughly
isometric to Hn+1

R .

Kapovich considered the following situation. Let Γ be a discrete virtually
torsion free subgroup of Isom(HnR) and let δ(Γ) be its critical exponent as defined
above (when Γ is geometrically finite, δ(Γ) is equal to the Hausdorff dimension
of the limit set [129]). Kapovich proved in [97] that δ(Γ) + 1 is at least equal
to the virtual homological dimension of the pair (Γ,Π), where Π denotes a set of
representatives of the conjugacy classes of maximal virtually abelian subgroups of
virtual rank at least two. Its proof uses Besson-Courtois-Gallot techniques. When
Γ ⊂ Isom(HnR) is discrete finitely generated, he conjectures that δ(Γ)+1 is at least
equal to the virtual cohomological dimension of the pair (Γ,Π), and that equality
holds if and only if Γ is geometrically finite and its limit set is a round sphere of
dimension δ(Γ).
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6 The zoom method

The convergence property (Proposition 4.1) allows one to “zoom in” at some point
of the space by using a sequence of uniformly quasi-Möbius homeomorphisms.
Inspired by Mostow’s theorem, J. Ferrand [66, 67] exploited this idea to solve
the Lichnérowicz conjecture, which states that the conformal group of a compact
manifold M is compact, unless M is conformally equivalent to an Euclidean sphere.
Later, Tukia [133] used the zoom method to prove that every finitely generated
group quasi-isometric to HnR (with n ≥ 3) is virtually isomorphic to a cocompact
lattice in Isom(HnR). This section is devoted to these results and their proofs. We
also present a rather elementary proof of Mostow’s theorem in the real case, based
on the zoom method, and due to Tukia [132]. The section ends with a survey of
several related results.

6.1 Ferrand theorem

The following theorem solves the generalized Lichnérowicz conjecture.

Theorem 6.1. Let M be a Riemannian manifold of dimension n ≥ 2. Denote
by Conf(M) the group of conformal diffeomorphisms of M . Then Conf(M) acts
properly on M unless M is conformally equivalent to the Euclidean n-sphere or
n-space.

The compact manifolds case was treated by Ferrand in 1969-71 in [66, 67]
(Obata [114] proved it too, but only for Conf0(M)). Soon after, D.V.Alekseevskii
proposed a proof for the non-compact manifolds. His proof was accepted for more
than twenty years until R. Zimmer and K. Gutshera found a serious gap. Finally
Ferrand solved the non-compact case in [68] by introducing new global conformal
invariants. See [69] for a detailed story of the Lichnérowicz conjecture.

We will only prove Theorem 6.1 for compact manifolds, since in this case all
the geometric tools have been already defined. For an alternative proof, which
makes use of the Weyl tensor, see [70]. The generalized Lichnérowicz conjecture
is discussed in [78].

Proof of the compact manifold case. A compact Riemannian manifold is a Loewner
space, and a conformal diffeomorphism is a 1-quasi-conformal homeomorphism.
Therefore Theorem 4.10 implies that Conf(M) acts by uniform quasi-Möbius
homeomorphisms (i.e. we can assume the distortion function η to be the same
for every g ∈ Conf(M)).

Thus the convergence property (Proposition 4.1) in combination with the fact
that Conf(M) is closed in Homeo(M) (see [67, 46]), implies the following charac-
terization : Conf(M) is not compact if and only if there exists a sequence (gk)k∈N
of elements in Conf(M), and points a, b ∈M (possibly a = b), such that for every
compact subset K ⊂ M \ {a} the sequence (gk)k∈N converges uniformly on K to
the constant map b.

Assume now that Conf(M) is not compact and consider (gk)k∈N, a, b as above.
Pick three pairwise distinct points a1, a2, a3 ∈ K \ {a}. We claim that for every
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permutation α, β, γ of 1, 2, 3 and k large enough:

d(gk(aα), gk(aβ)) � d(gk(aα), gk(aγ)).

Indeed, let c ∈ M \ {b} and ck = g−1
k (c). One has ck → a when k → +∞. Since

gk(ai)→ b for i = 1, 2, 3, we have for k large enough,

d(gk(aα), gk(aβ))

d(gk(aα), gk(aγ))
� d(gk(aα), gk(aβ))d(c, gk(aγ))

d(gk(aα), gk(aγ))d(c, gk(aβ))

≤ η
(d(aα, aβ)d(ck, aγ)

d(aα, aγ)d(ck, aβ)

)
� 1.

Let exp : TbM →M be the Riemann exponential map. For every compact subset
K ⊂ M \ {a} the map exp−1 ◦gk is well defined on K for k large enough. The
previous discussion shows that for every permutation α, β, γ of 1, 2, 3 and k large
enough

‖ exp−1 ◦gk(aα)− exp−1 ◦gk(aβ)‖ � ‖ exp−1 ◦gk(aα)− exp−1 ◦gk(aγ)‖.

Thus there exist λk → +∞ when k → +∞, and affine homotheties hk of TbM ,
with ratios λk, so that for k large enough we have hk ◦ exp−1 ◦gk(a1) = 0, and

‖hk ◦ exp−1 ◦gk(ai)− hk ◦ exp−1 ◦gk(aj)‖ � 1,

for every distinct i, j ∈ {1, 2, 3}. The sequence (hk ◦ exp−1 ◦gk) is uniformly quasi-
Möbius on K and normalized on the three points a1, a2, a3. Therefore, by the
convergence property (Lemma 4.2), up to a subsequence, it converges uniformly
on K to a quasi-Möbius map fK : K → TbM , where TbM denotes the one point
compactification of TbM . Moreover, since (gk)k∈N converges uniformly on K to
the constant map b, and since the tangent map of exp−1 at b is the identity, fK is a
1-quasi-conformal homeomorphism onto its image. By considering an exhaustion
(Ki)i∈N of M \ {a}, a diagonal argument shows that there is a quasi-Möbius map
f : M \ {a} → TbM , which is a 1-quasi-conformal homeomorphism onto its image.

We now establish that f(M \ {a}) is equal to the sphere TbM minus a point.
The subset U := f(M \ {a}) is open in TbM . Suppose by contradiction that U
is different from TbM minus a point. Then U \ U contains at least two distinct
points z, w. Let zk, wk ∈ U with zk → z and wk → w when k → +∞. The points
f−1(zk) and f−1(wk) tend to a; thus [a1, f

−1(zk), a2, f
−1(wk)] tends to 0. But

[f(a1), zk, f(a2), wk] tends to [f(a1), z, f(a2), w] 6= 0, which contradicts the fact
that f is a quasi-Möbius map.

Therefore f extends to a quasi-Möbius homeomorphism from M to the Eu-
clidean n-sphere, which is 1-quasi-conformal on M \{a}. Such a map is a conformal
diffeomorphism [67, 46]. The proof is complete.

6.2 Sullivan-Tukia theorem

The following result characterizes the groups which are quasi-isometric to HnR.
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Theorem 6.2 (Sullivan [127] for n = 3, Tukia [133] in general). Let Γ be a finitely
generated group quasi-isometric to HnR, with n ≥ 3. Then there exists a cocompact
lattice Φ ⊂ Isom(HnR) and a surjective homomorphism of groups Γ→ Φ with finite
kernel.

The above statement holds for every rank-one non-compact symmetric space
too. Its proof for the hyperbolic plane H2

R relies on works by Tukia [134], Gabai
[71], Casson and Jungreis [49]. An alternative argument, using Perelman’s proof of
Thurston’s geometrization conjecture, is given in [62]. In [109], V. Markovic gives
a proof based on the recent work of Agol-Wise on cube complexes. The result for
the hyperbolic complex spaces HmC has been established by Chow [51]. For the
remaining rank-one symmetric spaces, it follows from Pansu’s theorem [116], see
Theorem 7.1.

We remark that in addition to Tukia’s original paper, there are several other
expositions of Tukia’s proof in the literature, e.g. [29], [98], [62].

Proof. Consider the isometric action of Γ on itself by left translations. Since Γ is
quasi-isometric to HnR, every element of Γ induces a quasi-isometry of HnR, which is
unique up to bounded distance, and with uniform quasi-isometry constants. Thus
by Theorems 2.12 and 4.10, Γ acts on Sn−1 = ∂HnR by uniform quasi-conformal
homeomorphisms. The kernel of this action is finite. We still denote by Γ the
quotient by the kernel.

We first search for a Γ-invariant structure on Sn−1. A measurable field of
ellipsoids on Sn−1 is a measurable map which assigns to a.e. z ∈ Sn−1 an (n− 2)-
ellipsoid centered at 0 in TzSn−1.

We are only concerned with non-degenerate ellipsoids, up to homothety, and
centered at 0. The space of such ellipsoids in Rn−1 is the symmetric space

X := SLn−1(R)/SO(n− 1).

Since quasi-conformal homeomorphisms of Sn−1 are differentiable a.e. (Rademacher-
Stepanov’s Theorem [138]) and absolutely continuous (Theorems 4.10 and 4.7),
every quasi-conformal homeomorphism f : Sn−1 → Sn−1 acts on the space of mea-
surable fields of ellipsoids, as follows. If ξ = {ξz}z∈Sn−1 is a measurable field of
ellipsoids, then :

(f∗ξ)z := Df−1(z)f(ξf−1(z)).

Lemma 6.3. There exists a bounded Γ-invariant measurable field of ellipsoids on
Sn−1.

Proof of the lemma. For a.e. z ∈ Sn−1, let

Ez =
{
Dg−1(z)g(Sg−1z) | g ∈ Γ

}
,

where Sz is the unit sphere in TzSn−1. By choosing a measurable trivialisation of
the orthonormal frame bundle of Sn−1, each set Ez can be identified with a subset
of the symmetric space X defined above. In addition we have for g ∈ Γ, and a.e.
z ∈ Sn−1

Eg(z) = Dzg(Ez),
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where Dzg acts on X by isometry (indeed SLn−1(R) does). The eccentricities of
the ellipsoids in Ez are bounded by the uniform quasi-conformal constant of the
Γ-elements. Thus Ez is a bounded subset of X. Every bounded subset A in a
Hadamard manifold, admits a well-defined canonical “center”, namely the center
of the unique smallest closed ball containing A. Define ξz to be the center of Ez.
The field {ξz}z∈Z possesses the expected properties.

Let ξ = {ξz}z∈Sn−1 be a bounded Γ-invariant measurable field of ellipsoids.
Our goal is now to construct a quasi-conformal homeomorphism f of Sn−1 such
that

fΓf−1 ⊂ Conf(Sn−1).

For n = 3, Sullivan observed that the measurable Riemann mapping theorem im-
plies that there exists a quasi-conformal homeomorphism f of S2 such that f∗ξ is
a field of circles. Therefore fΓf−1 is a group of quasi-conformal homeomorphisms
that are 1-quasi-conformal a.e. Such homeomorphisms are conformal diffeomor-
phisms (see e.g. [136]). Thus f admits the expected property.

When n ≥ 4, the measurable Riemann mapping theorem is not valid. Instead,
Tukia proposed the following argument based on the zoom method.

The field ξ is measurable, so it is approximately continuous a.e. In other words
for a.e. z ∈ Sn−1 and every ε > 0, we have

lim
r→0

H
{
w ∈ B(z, r) | dX(ξz, ξw) < ε

}
/H(B(z, r)) = 1,

where H denotes the spherical measure on Sn−1. Let z0 ∈ Sn−1 such that ξ is
approximately continuous at z0. By conjugating Γ by a projective isomorphism of
Sn−1 if necessary, we may assume that ξz0 is a round sphere. Let O ∈ HnR be an
origin, and let (gk)k∈N be a sequence in Γ so that gk · O → z0 when k → ∞, and
distHn

R
(gk ·O, [O, z0)) is uniformly bounded. (The existence of (gk)k∈N comes from

the fact that Γ and HnR are quasi-isometric.) Let hk ∈ Isom(HnR) be a loxodromic
element whose axis contains the ray [O, z0) and such that (hk ◦gk) ·O is uniformly
close to O. By considering an ideal triangle ∆(a, b, c) ⊂ HnR centered at O, and its
images by the hk ◦ gk’s, it follows from Lemma 4.2 that (hk ◦ gk)k∈N subconverges
to a quasi-conformal homeomorphism f .

Since ξ is Γ-invariant, the group (hk ◦ gk)Γ(hk ◦ gk)−1 leaves invariant the field
hk∗ξ. Because ξ is approximately continuous at z0 and ξz0 is a round sphere, the
sequence (hk∗ξ)k∈N converges in measure to the field of round spheres. Therefore
for every g ∈ Γ, the eccentricity of the differential of (hk ◦ gk) ◦ g ◦ (hk ◦ gk)−1

converges in measure to the constant function 1. This implies that the limit map
f ◦ g ◦ f−1 is a conformal diffeomorphism (see [133] Lemma B2 for more details).
Thus we have fΓf−1 ⊂ Conf(Sn−1).

We know that Conf(Sn−1) = Moeb(Sn−1) = Isom(HnR). Indeed the first equal-
ity follows from Liouville’s theorem. The second one is a standard result in classical
hyperbolic geoemetry (it is also a particular case of Theorem 2.19). Thus we obtain
that fΓf−1 ⊂ Isom(HnR).

It remains to prove that fΓf−1 is a cocompact lattice of IsomHnR. By Proposi-
tion 2.15, Γ acts properly discontinuously and cocompactly on the space of triples
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of pairwise distinct points of ∂Γ. Thus fΓf−1 acts properly discontinuously and
cocompactly on the space of triples of parwise distinct points of Sn−1. Therefore
it is a cocompact lattice in Isom(HnR), thanks to Proposition 2.15.

6.3 Another proof of Mostow’s theorem for Hn
R

Mostow’s theorem is stated in Subsection 5.1. The following proof (for K = R)
is based on the zoom method. It is due to Tukia [132]. It appears also in [96].

Suppose ϕ : Γ1 → Γ2 is an isomorphism between two cocompact lattices in
Isom(HnR) with n ≥ 3. Let f : Sn−1 → Sn−1 be the induced ϕ-equivariant
quasi-conformal homeomorphism. By Rademacher-Stepanov’s theorem (see e.g.
[138]) it is differentiable a.e. Since quasi-conformal homeomorphisms that are
1-quasiconformal a.e. are conformal diffeomorphims (see e.g. [136]), and since
Conf(Sn−1) = Moeb(Sn−1) = Isom(HnR) by Liouville’s theorem, it is enough to
prove that Dzf is a conformal linear map for a.e. z ∈ Sn−1.

Suppose f is differentiable at z0 ∈ Sn−1 and set L := Dz0f . In the upper
half-space model of HnR, let 0 = (0, ..., 0) and O = (0, ..., 0, 1). We can assume
that z0 = f(z0) = 0. Let hk ∈ Isom(HnR) be a linear homothety of ratio k ∈ N.
The maps hk ◦ f ◦ h−1

k converge uniformly to L on compact subsets of Rn−1 when
k →∞.

Let gk ∈ Γ1 be such that dHn
R
(O, hk ◦ g−1

k (O)) is bounded independently of k.

According to Lemma 4.2, the sequence (hk ◦ g−1
k )k∈N subconverges uniformly on

∂HnR. Let l1 ∈ Moeb(Sn−1) = Isom(HnR) be the limit of a subsequence. Since we
have

(hk ◦ f ◦ h−1
k ) ◦ (hk ◦ g−1

k ) = (hk ◦ ϕ(gk)−1) ◦ f,

Lemma 4.2 implies that the sequence (hk ◦ ϕ(gk)−1)k∈N subconverges uniformly
too. Let l2 ∈ Moeb(Sn−1) = Isom(HnR) be the limit of a subsequence.

The homeomorphism hk ◦ f ◦ h−1
k conjugates (hk ◦ g−1

k )Γ1(hk ◦ g−1
k )−1 to the

group (hk ◦ ϕ(gk)−1)Γ2(hk ◦ ϕ(gk)−1)−1. Therefore, by considering limits, the
linear isomorphism L conjugates l1Γ1l

−1
1 to l2Γ2l

−1
2 .

The field of round (n − 2)-spheres in Rn−1 = ∂HnR \ {∞} is stabilized by the
group l1Γ1l

−1
1 . Thus the group l2Γ2l

−1
2 stabilizes the constant field of ellipsoids

equal to L(Sn−2) (measurable fields of ellipsoids are defined in Subsection 6.2).
Suppose by contradiction that L is not conformal. Then the linear subspace

generated by the largest axes of L(Sn−2) is a proper non-zero subspace E of Rn−1.
The constant Grassmannian field on Rn−1 associated to E is invariant by l2Γ2l

−1
2 .

Therefore the associated foliation of Rn−1 is also invariant. But the induced fo-
liation on Sn−1 = Rn−1 ∪ {∞} is singular at ∞. Thus l2Γ2l

−1
2 fixes ∞, which

contradicts the fact that it is a lattice in Isom(HnR). �

6.4 Further results

1) The zoom method is a main ingredient in the proof of the following result by
R. Schwartz [123]. Let S1 and S2 be rank-one non-compact symmetric spaces
different from H2

R. Let Γ1 and Γ2 be non-cocompact lattices in Isom(S1) and
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Isom(S2) respectively. Then, for any quasi-isometry F : Γ1 → Γ2, there exists a
homothety h : S1 → S2 and finite-index subgroups Φi ⊂ Γi (i = 1, 2), such that h
conjugates Φ1 to Φ2 and lies within finite distance from F .

This result is in keeping with the following general problem called pattern
rigidity. For i = 1, 2, let Γi be a finitely generated group and let Hi be a finite
collection of quasi-convex subgroups of Γi. Suppose we are given a quasi-isometry
F : Γ1 → Γ2 and a constant R ≥ 0 that enjoy the following properties :

1. For every g1 ∈ Γ1 and every H1 ∈ H1 there exists g2 ∈ Γ2 and H2 ∈ H2 such
that F (g1H1) and g2H2 lie within Hausdorff distance at most R.

2. For every g2 ∈ Γ2 and every H2 ∈ H2 there exists g1 ∈ Γ1 and H1 ∈ H1 such
that F (g1H1) and g2H2 lie within Hausdorff distance at most R.

Do there exist finite-index subgroups Φi ⊂ Γi and an isomophism ϕ : Φ1 → Φ2

that lies at bounded distance from F ?
The above Schwartz theorem solves this problem in the case the Γi’s are non-

cocompact lattices in Isom(HnK) and the Hi’s are the patterns of the parabolic
subgroups. The question of pattern rigidity has also been solved by Schwartz
[124] for Γ a cocompact lattice in Isom(HnK) and H a pattern associated to a finite
collection of closed geodesics. In [11] Biswas and Mj generalize Schwartz’s result
to certain duality subgroups of Γ. Biswas [9] completely solved the pattern rigidity
problem for Γ a cocompact lattice in Isom(HnR) and H any infinite quasi-convex
subgroup of infinite index. Mj [112] proved the following non-linear pattern rigidity
result. Let Γ be a hyperbolic Poincaré duality group and let H be a quasi-convex
codimension one filling subgroup. Suppose ∂Γ carries a visual metric d such that

Hausdim(∂Γ, d) ≤ Topdim(∂Γ) + 2.

Then the pattern-preserving quasi-isometry group of (Γ, H) is a finite extension
of Γ.

2) The notion of zooming into the space at a point is exploited by Bonk and
Kleiner in a somewhat different way in [18, 21].

Recall that a weak tangent space of a metric space (Z, d) is the Gromov-
Hausdorff limit (as k → ∞) of a sequence of pointed metric spaces of the form
(Z, zk,

1
εk
d), where zk ∈ Z and εk → 0. See [38] for more details.

Suppose that Γ is a hyperbolic group, and let d be a visual metric on ∂Γ. Bonk
and Kleiner deduce from the convergence property (Subsection 4.1) that every
weak tangent space of (∂Γ, d) is quasi-Möbius homeomorphic to (∂Γ \ {w}, d), for
some w ∈ ∂Γ. In combination with previous works of B. Bowditch and G. Swarup
[35, 130], they show that ∂Γ is linearly locally connected as soon as it is connected.
In other words there exists C ≥ 1 such that

1. For every ball B(z, r) ⊂ ∂Γ and every pair {w1, w2} ⊂ B(z, r), there exists
an arc γ ⊂ B(z, Cr) that joins w1 to w2.

2. For every ball B(z, r) ⊂ ∂Γ and every {w1, w2} ⊂ ∂Γ \ B(z, r), there exists
an arc γ ⊂ ∂Γ \B(z, rC ) that joins w1 to w2.
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Further developments on connectedness properties of ∂Γ can be found in [18,
21, 108, 48].

3) The Sullivan-Tukia theorem can also be stated as follows. Suppose that Γ is a
hyperbolic group whose boundary is quasi-Möbius homeomorphic to the Euclidean
sphere Sn−1, with n ≥ 3. Then Γ is virtually a cocompact lattice in Isom(HnR).

Bonk and Kleiner have considerably weakened the above assumption. They
proved in [18] that if the boundary of a hyperbolic group Γ is quasi-Möbius home-
omorphic to an (n− 1)-regular metric space of topological dimension n− 1, with
n ≥ 3, then Γ is virtually a cocompact lattice in Isom(HnR).

4) P. Häıssinsky [81] recently proved the following generalization of Sullivan’s
theorem: every finitely generated group that admits a quasi-isometric embedding
into H3

R, contains a finite-index subgroup that acts quasi-convex geometrically on
H3

R (see Definition 5.3).

5) T. Dymarz and X. Xie [64] established Sullivan-Tukia type theorems for actions
of amenable groups on the boundary of certain (non symmetric) negatively curved
homogeneous manifolds M . In particular, for M = Rn oA R where A is an
expansive matrix diagonalisable over C, they proved that every amenable group
Γ that acts on M by uniform quasi-conformal homeomorphisms and cocompactly
on ∂3M , is conjugate to a conformal group. They obtained applications to quasi-
isometry rigidity of lattices in certain solvable Lie groups like cyclic extensions of
abelian groups.

7 Rigidity of quasi-isometries

The proof of the Mostow theorem shows that a quasi-isometry of a rank-one sym-
metric space (different from H2

R) which is equivariant with respect to a lattice,
lies within bounded distance from an isometry. What about the non-equivariant
quasi-isometries? This section gives examples of hyperbolic spaces where every
quasi-isometry lies within bounded distance from an isometry. In particular we
will give some ideas of the proof of the following theorem.

Theorem 7.1 (Pansu [116]). Let S = HnQ with n ≥ 2, or H2
O. Then any quasi-

isometry of S lies within bounded distance from an isometry.

We note that Theorem 7.1 is false for HnR and HnC (see [103] for the complex
case). Observe that Theorem 7.1, in combination with Proposition 2.15, implies
that the Sullivan-Tukia theorem (Theorem 6.2) holds for HnQ and H2

O.

Subsections 7.1 and 7.2 are devoted to the proof of Theorem 7.1. Subsection
7.3 discusses quasi-isometry rigidity of Fuchsian buildings. Subsection 7.4 contains
a survey on several related results.

7.1 Differentiability in Carnot groups

The boundary of HnK minus a point is modeled on a Carnot group (see Subsec-
tion 3.3). Pansu defined a notion of differentiability in Carnot groups by us-
ing the Carnot homotheties to zoom in at a point (Definition 7.2). He proved
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a Rademacher-Stepanov type theorem for quasi-conformal homeomorphisms of
Carnot groups (Theorem 7.3). This result, with a compactness property (Propo-
sition 7.4), form together the core of the proof of Theorem 7.1.

Let (N, v) be a Carnot group and (δt)t∈R its Carnot homotheties (see Definition
3.6). We fix a scalar product on v and we propagate v to a N -invariant distribution
in the tangent space of N . These data determine a Carnot-Carathéodory metric
dN on N , which is N -invariant and multiplied by et under δt (see Subsection 3.4).

Definition 7.2 ([116]). Let N,N ′ be Carnot groups with Carnot homotheties
δt, δ

′
t respectively. A map f : N → N ′ is δ-differentiable at z ∈ N if the maps

w ∈ N 7→ δ′t(f(z)−1f(zδ−t(w)) ∈ N ′

converge as t → +∞, uniformly on compact subsets of N , to a group homomor-
phism Dzf : N → N ′, which commutes with δt and δ′t.

We equipN with its Haar measure (which coincides with the Hausdorff measure
of (N, dN ), see for instance [84]). The following version of Rademacher-Stepanov’s
theorem holds :

Theorem 7.3 ([116]). Every quasi-conformal homeomorphism f : (N, dN ) →
(N ′, dN ′) is δ-differentiable almost everywhere.

Recall from Subsection 3.3, that ∂HnK \ {∞} may be identified with a Carnot
group (N, v). Its Lie algebra is n = Kn−1 ⊕ =K, with =K central, and for x, y ∈
Kn−1:

[x, y] = ={x, y}.

The horizontal space is v = Kn−1, and [v, v] = =K (2). Let α be the associated
derivation of n. The key point in the proof of Theorem 7.1, which distinguishes
between the case R,C and the case Q,O, is the following compactness result :

Proposition 7.4 ([116]). For K = Q or O, the subgroup of Aut(n) which com-
mutes with (etα)t∈R, is a semidirect product of a compact group with (etα)t∈R.

The following proof of Proposition 7.4 is rather different from [116]. It relies
on two lemmata. The first one, due to A. Kaplan and A. Tiraboschi, is of general
interest.

Let n = v ⊕ z be a two-step nilpotent Lie algebra with center z. Let α be the
associated derivation of n, and let H ⊂ Aut(n) be the subgroup that commutes
with (etα)t∈R. It can be written as

H = {
(
a 0
0 b

)
| a ∈ GL(v), b ∈ GL(z), [ax, ay] = b([x, y])}.

Let H1 = {
(
a 0
0 b

)
∈ H | det(a) = ±1} and H0 = {

(
a 0
0 b

)
∈ H1 | b = id}.

2These expressions have been established in Subsection 3.3 for K = R,C,Q. They are also
valid when K = O, see [113] p. 141.
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We remark that H is the semidirect product of H1 with (etα)t∈R, and that H0 is
closed and normal in H1. Moreover the group H1/H0 is isomorphic to the image
of H1 by the projection map

π :

(
a 0
0 b

)
∈ H 7→ b ∈ GL(z).

Lemma 7.5 (Kaplan-Tiraboschi [94]). Suppose that for every non-zero x ∈ v, the
map adx : n→ z is surjective. Then π(H1) is a compact subgroup of GL(z).

Proof. We follow the proof in [94]. Fix arbitrary scalar products on v and z. For
x, y ∈ v and z ∈ z, the relation

〈x, Tzy〉v = 〈[x, y], z〉z

defines a linear map z 7→ Tz from z to End(v). By our hypothesis on adx, one has
Tz ∈ GL(v) for z 6= 0. Set

P (z) := det(Tz).

It is a homogeneous polynomial that is nonzero on z \ {0}. Therefore its level sets
are bounded.

Let now g =

(
a 0
0 b

)
∈ H. Then we have

Tb∗z = a∗Tza.

Indeed, 〈x, Tb∗zy〉v = 〈[x, y], b∗z〉z = 〈b([x, y]), z〉z = 〈[ax, ay], z〉z = 〈ax, Tzay〉v =
〈x, a∗Tzay〉v. Therefore P (b∗z) = (deta)2P (z), and so P is π(H1)∗-invariant.
Since the level sets of P are bounded, the group π(H1)∗ is bounded in GL(z), and
so is π(H1).

On the other hand, H1 is a real algebraic group and π is a regular map. Thus
π(H1) is open in its closure (see [146] 3.1.3). Since we know from above that the
closure of π(H1) is compact, we obtain that π(H1) is compact too.

Lemma 7.6. Let n be a Lie algebra as in Proposition 7.4. Then the group H0 is
compact.

Proof. We prove it for Q, and leave the reader adapt the proof to the octonions.
Let 〈·, ·〉 be the scalar product on v defined by 〈x, y〉 = <{x, y}. Let i, j, k be the
standard basis of =Q. For α = i, j, k, denote by ωα the symplectic form on v, so
that

[x, y] = ωi(x, y)i+ ωj(x, y)j + ωk(x, y)k.

These forms are given by
ωα(x, y) = −〈x, Tαy〉,

where Tα is the right multiplication by α.
Let now a ∈ GL(v) such that [ax, ay] = [x, y]. For α = i, j, k, we have

ωα(ax, ay) = ωα(x, y), and so
a∗Tαa = Tα.
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This formula applied to a−1 yields by taking the inverses in both sides:

aTαa
∗ = Tα,

because T−1
α = −Tα. It follows that aTiTj = Ti(a

∗)−1Tj = TiTja. Thus a
commutes with TiTj = −Tk. Since we also have a∗Tka = Tk, we obtain that
a∗a = id. Thus a preserves the scalar product.

Proof of Proposition 7.4. From Lemma 7.5, the group H1/H0 is compact. Accord-
ing to Lemma 7.6, H0 is compact too. Thus H1 is compact.

7.2 Proof of Theorem 7.1

Suppose that S = HnQ or H2
O. Recall from Proposition 3.7 that the metrics dCAT

and dCC are Lipschitz equivalent on ∂S. Moreover we have Moeb(∂S, dCAT) =
Isom(S), thanks to Theorem 2.19.

Let G ⊂ Homeo(∂S) be the group of quasi-Möbius homeomorphisms. Theorem
7.3 and Proposition 7.4 show that there exists a H ≥ 1 such that every g ∈ G
is a.e. H-quasi-conformal. This implies – because ∂S is Loewner – that G is a
uniform quasi-conformal group (see Theorems 4.7 and 4.10).

Let Γ ⊂ Isom(S) be a cocompact lattice. It follows from above and from
Subsection 2.4, that G and Γ satisfy the assumptions of Corollary 4.11. Therefore
G ⊂ Moeb(∂S, dCAT) = Isom(S). Theorem 2.12 completes the proof. �

Pansu’s original proof differs a little bit at the end from the one above. His
argument is the following. Theorem 7.3 and Proposition 7.4 imply that every
g ∈ G is a 1-quasi-conformal homeomorphism of (∂S, dCC). Pansu proves that
every 1-quasi-conformal homeomorphism f of N is the boundary extension of an
isometry of S. To do so, he shows that f can by written as a Carnot homothety
composed with an isometry of N . The argument is based on the fact that 1-
quasi-conformal homeomorphisms preserve moduli of curves (see subsection 4.3).
To complete the proof, it remains to show that the isometries of N that fix the
identity lie in Aut(N), and that Aut(N) ⊂ Isom(S).

7.3 Right-angled Fuchsian buildings

Another family of hyperbolic spaces for which rigidity of quasi-isometries holds is
provided by the so-called Fuchsian buildings. Fuchsian buildings are Tits buildings
whose apartments are isomorphic to a Coxeter tiling of H2

R. For simplicity we will
consider only the right-angled ones. We refer to [61] and its references for Tits
buildings, and to [28, 33] for right-angled Fuchsian buildings.

A nice way to define right-angled Fuchsian buildings uses complexes of groups.
Let r ≥ 5 be an integer, let R be a regular right angled r-gon in H2

R, and let
(q1, ..., qr) be an r-tuple of integers with all qi ≥ 2. We label clockwise the edges of
R by {1}, ..., {r}, and its vertices by {1, 2}, ..., {r−1, r}, {r, 1} in a way compatible
with the adjacence relation. Then we define a complex of groups as follows. To
the face of R, we attach the group Γ∅ := {1}; to the edge {i}, the group Γ{i} :=
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Z/(qi + 1)Z; to the vertice {i, i + 1}, the group Γ{i,i+1} := Γ{i} × Γ{i+1}. An
abstract theorem of Haefliger [37] shows that the complex of groups is developable,
i.e.

1. There exits a contractible 2-cell complex ∆, called the universal cover of
the complex of groups; its 0 and 1-cells are labelled by the same symbols as
above, and its 2-cells are isomorphic to the labeled complex R.

2. There exists a group Γ, called the fundamental group of the complex of
groups. It acts geometrically and label-preserving on ∆, with Γ\∆ = R, and
in such a way that the stabilizer in Γ of a 2-cell, or a 1-cell {i}, or a 0-cell
{i, i+ 1}, is isomorphic to the group Γ∅, Γ{i}, Γ{i,i+1}, respectively.

The group Γ admits the following presentation

Γ = 〈si, i ∈ Z/rZ | sqi+1
i = 1, [si, si+1] = 1〉.

The link of a vertex {i, i+ 1} of ∆ is the complete bipartite graph with (qi + 1) +
(qi+1 + 1) vertices (3). Since this graph is a spherical building of girth 4, and since
4× π/2 = 2π, one obtains that ∆ is a building. More precisely:

1. Its chambers are the 2-cells; its apartments are the subcomplexes that are
isomorphic to the Coxeter tiling of H2

R by copies of R.

2. Any pair of chambers is contained in an apartment.

3. If A1 and A2 are apartments whose intersection is not empty, there exists
an isomorphism of labelled cell complexes φ : A1 → A2 stabilizing pointwise
A1 ∩A2.

We endow ∆ with the length metric induced by its 2-cells. Then ∆ is a CAT(−1)-
space. It enjoys the following properties:

• Its boundary is homeomorphic to the Menger curve [4, 99, 63].

• The group Isom(∆) is locally compact totally disconnected, and Γ is a co-
compact lattice.

• The label-preserving isometries of ∆ form a non-linear, simple, finite index
subgroup of Isom(∆) [77].

Theorem 7.7 ([33]). Let ∆1 and ∆2 be right-angled Fuchsian buildings. Then
any quasi-isometry F : ∆1 → ∆2 lies within bounded distance from an isometry.

As a consequence, the Mostow theorem and the Sullivan-Tukia theorem hold
for the right-angled Fuchsian buildings too. Xie [140] generalized Theorem 7.7 to
all Fuchsian buildings that admit a geometric action.

The strategy of the proof is similar in spirit to the one of Theorem 7.1. One
proves that there exists an H > 0 such that every quasi-Möbius homeomorphism

3The link of a vertex v is the graph whose vertices are the edges of ∆ that contain v, and
whose edges are the pair of edges of ∆ that are contained in a 2-cell.



Mostow type rigidity theorems 35

f : ∂∆1 → ∂∆2 is H-quasi-conformal. The analytic ingredients consist of a
Loewner metric on ∂∆ and some reasonable differential properties of quasi-Möbius
homeomorphisms f : ∂∆1 → ∂∆2. More precisely, we show that for almost every
z ∈ ∂∆1 and every apartment A ⊂ ∆1 such that z ∈ ∂A, the limit

f ′∂A(z) := lim
w∈∂A
w→z

d(f(w), f(z))

d(w, z)

exists and belongs to (0,+∞). To prove that f is H-quasi-conformal for some
uniform H, a key observation is that f ′∂A(z) depends only on z and not on ∂A.
This follows from that fact that for every pair of apartments A1, A2 with z ∈ ∂Ai,
there exists an apartment A3 whose boundary contains z and locally coincides
with ∂A1 on the left side of z, and with ∂A2 on the right side of z.

It is worth mentioning that, although ∆ is a CAT(−1)-space, the metric dCAT

on ∂∆ is not Loewner. The Loewner metric on ∂∆ is associated to a chamber
distance in ∆, see [32, 33].

7.4 Futher results

1) Kapovich and Kleiner [99] gave examples of hyperbolic groups Γ with connected
boundary such that Homeo(∂Γ) = Γ. Therefore any quasi-isometry of Γ lies within
bounded distance from the left multiplication by a g ∈ Γ. This situation contrasts
with the case of rank-one symmetric spaces and Fuchsian buildings, where the
homeomorphim group of the boundary is infinite dimensional.

2) Two subgroups Γ1 and Γ2 of a group G are said to be commensurable if there is
g ∈ G such that gΓ1g

−1∩Γ2 is of finite index in gΓ1g
−1 and in Γ2. F. Haglund [76]

worked out the commensurability question of cocompact lattices in the isometry
group of certain negatively curved simplicial complexes. In particular, for right-
angled Fuchsian buildings ∆ (with r ≥ 5 and qi = q ≥ 3) he showed that all
cocompact lattices in Isom(∆) are commensurable and linear.

Note that commensurability and linearity fail for non-cocompact lattices in
Isom(∆) [131, 121]. For a survey on recent developments on buildings and groups,
see for instance [120].

3) (4) By Heintze’s theorem [92], every negatively curved homogeneous manifold is
isometric to a solvable Lie group (with a certain left invariant Riemannian metric)
of the form G = N o R, where N is a simply connected nilpotent Lie group ,
and R acts on N by expanding automorphisms. More precisely, the R-action is
given by etα, where α is a derivation of the Lie algebra n of N whose eigenvalues
all have positive real parts. Such groups G are called Heintze groups. When all
eigenvalues are real, G is said to be purely real. It is known that every Heintze
group is bi-Lipschitz homeomorphic to a purely real Heintze group [57]. A Heintze
group G is of Carnot type, if it is bi-Lipschitz homeomorphic to N oα R, where N
is a Carnot group and α is the derivation associated to the Carnot decomposition

4I owe Matias Carrasco several explanations about the material in this paragraph.
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of n, see Definition 3.6. Observe that the boundary at infinity of every Heintze
group G is identified canonically with the one point compactification N ∪ {∞}.

There are three major conjectures about Heintze groups G:

Conjecture 7.8 (Pointed sphere conjecture [57]). Any quasi-isometry of G sta-
bilizes ∞ unless G is bi-Lipschitz homeomorphic to a rank-one symmetric space.

Conjecture 7.9 (Quasi-isometric classification [85, 57]). Let G1 and G2 be purely
real Heintze groups. If they are quasi-isometric, then they are isomorphic.

Conjecture 7.10 (Quasi-isometric rigidity [143]). Any quasi-isometry F : G1 →
G2 between Heintze groups lies at bounded distance from an almost similarity (5)
unless one of the groups is bi-Lipschitz homeomorphic to a symmetric space.

Conjecture 7.8 was proved by Pansu [117] for the non-Carnot type Heintze
groups with α diagonalizable over C. It was generalized by Carrasco [47] to all
non-Carnot type Heintze groups. Conjecture 7.9 was established by Pansu [116]
for the Carnot type Heintze groups, by using Theorem 7.3. The three conjectures
hold when N is abelian (Shanmugalingam-Xie [125] and Xie [142]). They also hold
when N is a Heisenberg group and α is diagonalizable over R [143]. Conjecture
7.10 was proved by Carrasco [47] for the non-Carnot type Heintze groups, and by
Le Donne and Xie [105] for the reducible (6) Carnot type Heintze groups.

8 Some recent developments and perspectives

This section reports on recent progress on some open problems about quasi-
conformal geometry of group boundaries. We discuss the Cannon conjecture in
Subsection 8.1 and the combinatorial Loewner property in Subsection 8.2. As
usual the section ends with a survey of several related results.

8.1 Cannon conjecture

A major problem in geometric group theory is the following conjecture.

Conjecture 8.1 (Cannon’s conjecture [45]). Suppose Γ is a hyperbolic group
whose boundary is homeomorphic to the Euclidean 2-sphere, then Γ acts geomet-
rically on H3

R.

Historically, this conjecture was motivated by Thurston’s hyperbolization con-
jecture (recently solved by Perelman): Every closed, aspherical, irreducible, atoroidal
3-manifold admits a Riemannian metric of constant curvature −1. Cannon’s con-
jecture also provides an approach to solve an open problem due to Wall: Is every
3-dimensional Poincaré duality group a 3-manifold group?

Sullivan-Tukia rigidity (Theorem 6.2) implies that Cannon’s conjecture is equiv-
alent to:

5An almost similarity is a quasi-isometry whose left and right handside multiplicative con-
stants are equal.

6A Carnot group (N, v) is reducible if the horizontal subspace v contains a proper non-trivial
subspace that is invariant by the graded automorphisms of (N, v).
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Conjecture 8.2 (Uniformization conjecture). Suppose that Γ is a hyperbolic group
whose boundary is homeomorphic to the Euclidean sphere S2, then ∂Γ is quasi-
Möbius homeomorphic to S2.

Hence Cannon’s conjecture reduces to a problem of quasi-conformal geometry.
We remark that the analogous problem for the circle is solved, since every approx-
imately self-similar metric circle is quasi-Möbius homeomorphic to the Euclidean
one [135]. It follows that the analog of Cannon’s conjecture for H2

R holds (see
the discussion after Theorem 6.2). On the other hand, there is no analog of Can-
non’s conjecture for HnR when n ≥ 4. For example ∂H2

C and ∂H4
R are topological

3-spheres, but H2
C and H4

R are not quasi-isometric (Corollary 4.8). See subsection
8.3 for more examples.

We describe in the sequel an approach to Conjecture 8.2 based on the so-called
combinatorial modulus – a combinatorial variant of the analytic modulus defined
in Subsection 4.3. Versions of the combinatorial modulus have been considered by
several authors in connection with the Cannon conjecture [41, 45, 43, 17, 79], and
in a more general context [117, 137]. Our presentation follows [30].

Let Z be a compact metric space, let k ∈ N, and let κ ≥ 1. A finite graph
Gk is called a κ-approximation of Z on scale k, if it is the incidence graph of a
covering of Z, such that for every vertex v ∈ G0

k there exists zv ∈ Z with

B(zv, κ
−12−k) ⊂ v ⊂ B(zv, κ2−k),

and for v, w ∈ G0
k with v 6= w:

B(zv, κ
−12−k) ∩B(zw, κ

−12−k) = ∅.

Note that we identify every vertex v of Gk with the corresponding subset in Z. A
collection of graphs {Gk}k∈N is called a κ-approximation of Z, if for each k ∈ N
the graph Gk is a κ-approximation of Z on scale k.

Let γ ⊂ Z be a continuous curve and let ρ : G0
k → R+ be any function. The

ρ-length of γ is

Lρ(γ) =
∑
v∩γ 6=∅

ρ(v).

For p ≥ 1 the p-mass of ρ is

Mp(ρ) =
∑
v∈G0

k

ρ(v)p.

Let F be a non-empty family of (continuous) curves in Z. We define the Gk-
combinatorial p-modulus of F by

Modp(F , Gk) = inf
ρ
Mp(ρ),

where the infimum is over all F-admissible functions, i.e. functions ρ : G0
k → R+

which satisfy Lρ(γ) ≥ 1 for every γ ∈ F . It enjoys the following properties
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1. The function Modp(·, Gk) is non-decreasing and finitely subadditive.

2. If every curve in F2 contains a curve in F1, then one has Modp(F2, Gk) ≤
Modp(F1, Gk).

3. When Z is a doubling metric space (7) the combinatorial modulus does not
depend on the choice of the graph approximation, up to a multiplicative
constant.

4. If Z1 is quasi-Möbius homeomorphic to a p-regular metric space Z2, then
the combinatorial p-modulus on Z1 is comparable to the analytic p-modulus
on Z2 [79].

The following quasi-Möbius characterization of the Euclidean 2-sphere appears
in [30]. It is a straightforward application of techniques and results developed in
[43, 17].

Theorem 8.3. Suppose that Z is an approximately self-similar metric 2-sphere.
Let {Gk}k∈N be a κ-approximation of Z. For d0 > 0 denote by F0 the set of
curves γ ⊂ Z with diam(γ) ≥ d0. Then Z is quasi-Möbius homeomorphic to the
Euclidean 2-sphere, if and only if, for every d0 > 0 small enough, there exists a
constant C ≥ 1 such that for every k ∈ N one has

Mod2(F0, Gk) ≤ C .

Sketch of proof. The direct implication is a consequence of Property 4 above. Our
proof of the reverse implication combines several arguments from [17]. First, self-
similarity allows one to improve the modulus control assumption as follows. There
exists a positive increasing function ψ of (0,+∞) with limt→0 ψ(t) = 0, such that
for every pair of disjoint non-degenerate compact connected subsets A,B ⊂ Z and
every integer k satisfying 2−k ≤ min{diam(A),diam(B)}, one has

Mod2(A,B,Gk) ≤ ψ(∆(A,B)−1), (8.4)

where ∆(A,B) denotes the relative distance, defined in (4.5).
Secondly, Z being an approximately self-similar compact manifold, it is dou-

bling and linearly locally contractible i.e. there exists a constant λ ≥ 1 such that
every ball B(z, r) ⊂ Z with 0 < r < diam(Z)/λ is contractible in B(z, λr). Bonk
and Kleiner use the last properties to construct a κ-approximation {Gk}k∈N of Z
such that each graph Gk is (essentially) homeomorphic to the 1-skeleton of a tri-
angulation of the 2-sphere. Therefore, according to the Andreev-Koebe-Thurston
theorem, Gk is the incidence graph of a circle packing in the Euclidean sphere S2

(unique up to a homography). For every k ∈ N and v ∈ G0
k, let zv ∈ Z be such

that B(zv, κ
−12−k) ⊂ v ⊂ B(zv, κ2−k). We obtain a map fk : {zv | v ∈ G0

k} → S2

7A metric space is said to be doubling if there is a constant n ∈ N such that every ball B(z, r)
can be covered by at most n balls of radius r/2. For instance Ahlfors-regular metric spaces
(Definition 2.13) are doubling.
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which sends zv to the center of the corresponding disc. Now the fk’s, when appro-
priately normalized, form an equicontinuous sequence that converges to a home-
omorphism f : Z → S2, which satisfies for every pair of disjoint non-degenerate
compact connected subsets A,B ⊂ Z:

∆(f(A), f(B)) ≥ η(∆(A,B)), (8.5)

where η is a positive function of (0,+∞) that satisfies limt→+∞ η(t) = 0. To prove
these properties, one uses the modulus bounds (8.4), and relates the modulus
associated to circle packings with the analytic modulus of S2. Finally, inequality
(8.5) implies that f is quasi-Möbius (Lemmata 2.10 and 3.3 in [17]).

Theorem 8.3 provides a strategy to prove Cannon’s conjecture. Let Γ be a
2-sphere boundary hyperbolic group. To show that ∂Γ satisfies the assumptions
of Theorem 8.3, one can try to use the action of Γ on ∂Γ. A crucial observation
is the following. Say that two curve families F ,G in ∂Γ cross, if every curve in F
crosses every curve in G. When F ,G cross, then one has:

Mod2(F , Gk) ·Mod2(G, Gk) ≤ 1. (8.6)

This is indeed a classical property of the analytic modulus in the Euclidean 2-
sphere. It generalizes to metric 2-spheres and combinatorial 2-modulus [43, 79].
Now, suppose that we are given a curve family F in ∂Γ and g ∈ Γ such that F and
g(F) cross. Since Mod2(·, Gk) is invariant by bi-Lipschitz homeomorphism up to
a multiplicative constant, we obtain from (8.6) that Mod2(F , Gk) is bounded by
above independently of k.

This strategy, in a more elaborate form, can be applied to Coxeter groups. We
obtain (8):

Theorem 8.7 ([30]). Let Γ be a hyperbolic Coxeter group whose boundary is
homeomorphic to the 2-sphere. Then Γ acts geometrically on H3

R.

8.2 Combinatorial Loewner property

Most of the rigidity results discussed so far rely on the Loewner property of the
boundary. Unfortunately, among the currently known examples of Loewner spaces,
the only ones which arise as boundaries of hyperbolic groups are the boundaries
of rank-one symmetric spaces and Fuchsian buildings. In order to make a step
toward improving this situation, Kleiner [102] introduced a combinatorial variant
called the combinatorial Loewner property.

Suppose thet Z is an arcwise connected compact doubling metric space. Let
{Gk}k∈N be a κ-approximation of Z. Denote by F(A,B) the family of curves

8M. Davis pointed out to the author that Theorem 8.7 can be also established as follow. A
theorem of Bestvina-Mess [8] and the boundary hypothesis show that Γ is a virtual 3-dimensional
Poincaré duality group. Then Theorem 10.9.2 of [61] implies that Γ decomposes as Γ = Γ0×Γ1,
where Γ0 is a finite Coxeter group and where Γ1 is a Coxeter group whose nerve is a 2-sphere.
By applying Andreev’s theorem to the dual polyhedron to the nerve, one obtains that Γ1 acts
on H3

R as a cocompact reflection group.
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joining two subsets A,B ⊂ Z and by Modp(A,B,Gk) its Gk-combinatorial p-
modulus. Recall that ∆(A,B) denotes the relative distance defined in (4.5).

Definition 8.8. Suppose that p > 1. Then Z satisfies the combinatorial p-
Loewner property if there exist two positive increasing functions φ, ψ on (0,+∞)
with limt→0 ψ(t) = 0, such that

1. For every pair of disjoint compact connected subsets A,B ⊂ Z, and every k
with 2−k ≤ min{diamA,diamB}, one has:

φ(∆(A,B)−1) ≤ Modp(A,B,Gk).

2. For every pair of concentric balls B(z, r), B(z,R) ⊂ Z with 0 < 2r ≤ R, and
every k with 2−k ≤ r, one has:

Modp(B(z, r), Z \B(z,R), Gk) ≤ ψ(r/R).

We say that Z satisfies the combinatorial Loewner property (CLP) if it satisfies
the combinatorial p-Loewner property for some p > 1.

Theorem 8.9 ([30]).

1. If Z is a compact Ahlfors p-regular Loewner space, then Z satisfies the com-
binatorial p-Loewner property.

2. If Z1 satisfies the CLP and Z2 is quasi-Möbius homeomorphic to Z1, then
Z2 also satisfies the CLP (with the same exponent).

Conversely, Kleiner made the following conjecture.

Conjecture 8.10 ([102]). If Z satisfies the CLP and is approximately self-similar,
then Z is quasi-Möbius homeomorphic to a Loewner space.

Since the CLP is invariant under quasi-Möbius homeomorphisms — unlike the
Loewner property (see Theorem 4.7) — it is in principle easier to verify that a given
metric space admits the CLP, than to prove that it is quasi-Möbius homeomorphic
to a Loewner space.

In addition to the already known Loewner spaces, examples of metric spaces
that satisfy the CLP include the standard Sierpinski carpet and Menger curve
[30], the boundaries of some hyperbolic Coxeter groups [30], and the boundaries
of some hyperbolic buildings of dimension 3 and 4 [52]. See also [31] for examples
of hyperbolic group boundaries which do not satisfy the CLP.

8.3 Further results

1) Gromov and Thurston [75] constructed, for every n ≥ 4, examples of compact
n-manifolds whose sectional curvatures are arbitrarly close to −1, but whose uni-
versal covers are not quasi-isometric to any symmetric space. Y. Benoist [5] con-
structed examples of compact locally CAT(−1) 4-manifold, whose universal cover
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is not quasi-isometric to any symmetric spaces, but whose fundamental groups
admit a properly discontinuous cocompact projective action on a strictly convex
open subset of the projective space P4

R.

2) Bonk and Kleiner [17] obtained several quasi-Möbius characterizations of the
Euclidean sphere S2. In particular

• Let Z be an Ahlfors 2-regular metric space homeomorphic to S2. Then Z is
quasi-Möbius to S2 if and only if Z is linearly locally contractible (see the
definition in the proof of Theorem 8.3).

• Let Q ≥ 2 and Z be an Ahlfors Q-regular metric space homeomorphic to S2.
If Z is Loewner, then Q = 2 and Z is quasi-Möbius to S2.

The techniques of proof are those at the origin of Theorem 8.3.

3) As a consequence of Theorem 4.7, the Hausdorff dimension of a Loewner space
is minimal among all quasi-Möbius homeomorphic Ahlfors-regular metric spaces.
Bonk and Kleiner [20] established a converse statement for boundaries of hyper-
bolic groups. Let Q > 1 and let Z be an Ahlfors Q-regular metric space quasi-
Möbius homeomorphic to the boundary of a hyperbolic group. Suppose Q is
minimal among all Ahlfors-regular metric spaces quasi-Möbius homeomorphic to
Z. Then Z is a Loewner space.

4) Kapovich and Kleiner [99] conjectured that every hyperbolic group whose
boundary is homeomorphic to the Sierpinski carpet, is virtually the fundamental
group of a compact 3-manifold with constant curvature −1 and non-empty totally
geodesic boundary. They observed that this conjecture is implied by Cannon’s
conjecture.

Bonk and Kleiner [13] announced the Kapovich-Kleiner conjecture under the
additional assumption that the boundary is quasi-Möbius homeomorphic to a Q-
regular metric space with Q < 2.

Häıssinsky [81] proved more generally that a hyperbolic group whose boundary
is planar and quasi-Möbius homeomorphic to a Q-regular metric space with Q < 2,
acts quasi-convex geometrically on H3

R.
In [30] the Kapovich-Kleiner conjecture is established for Coxeter groups, as a

consequence of Theorem 8.7.

5) Markovic [109] proved that Cannon’s conjecture holds if one assumes in ad-
dition that every two distint points in ∂Γ can be separated by the limit set of a
quasi-convex surface subgroup of Γ. Häıssinsky [81] proved more generally that
a hyperbolic group, whose boundary is planar and satisfies the above separation
assumption, acts quasi-convex geometrically on H3

R.

5) In addition to hyperbolic group boundaries, we remark that discrete quasi-
conformal techniques apply to several other dynamical situations. This includes
finite subdivision rules [44, 42], rational maps and ramified covers [13, 82, 110, 83,
24], quasiconformal geometry on fractals like the Sierpinski carpets [13, 23, 14, 22,
78].
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