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Introduction

We propose to address the increasing complexity of industrial flows by extending the predictivity of hybrid models by the introduction of intermittency together with making easier the research of efficient and converged space and time approximations by introducing adaptation algorithms.

Modelization:

The base ingredients of our hybrid turbulence strategies are:

• Baseline RANS components: two low Reynolds RANS models are used in our hybrid models, more specifically they are the k -ε model proposed in [START_REF] Goldberg | A wall-distance-free k -ε model with Enhanced Near-Wall Treatment[END_REF] and the k -R model recently introduced by [START_REF] Zhang | Development of k-R turbulence model for wall-bounded flows[END_REF]. They have been chosen for their abilities to properly predict separated flows with adverse pressure gradients.

• Transition model for boundary layer: Let P k = τ : ∇u and D k = ρε be the turbulent kinetic energy production and destruction terms. Let us define the laminar and turbulent flow regions in the boundary layer:

L = {x ∈ Ω f | Re θ (x) < Re θ,S (x)}, T u = complement(L),
where Re θ denotes the Reynolds number based on the boundary layer thickness which is defined by Re θ = 0.664 Re|x|.

Re

θ,S = 163 + exp F λ - 100F λ 6.91 2 3 k .
with

F λ = 6.91 + 2.48λ -12.27λ 2 , λ > 0, 6.91 + 2.48λ + 63.64λ 2 , λ < 0. and λ = 0.664 2 1 Re ∂u x ∂x (x -x 0 )
where x 0 denotes the abscissa of the front body point. Following the work of Menter et al. (2015) and the works of [START_REF] Akhter | Development of Prediction Method of Boundary Layer Bypass Transition using Intermittency Transport Equation[END_REF][START_REF] Akhter | Numerical Simula-tion of Bypass Transition by the Approach of Intermittency Transport Equation[END_REF][START_REF] Akhter | Numerical simulation of heat transfer coefficient on turbine blade using intermittency factor equation[END_REF], the present transition model is defined as follows :

∂ρk ∂t + ∇ • (ρuk) = P k -D k + ∇ • [(µ + µ t σ k ) ∇k] ∂ρε ∂t + ∇ • (ρuε) = (c ε1 P k -c ε2 D k + E) T -1 t + ∇ • [(µ + µ t σ ε ) ∇ε] ∂ργ ∂t + ∇ • (ρuγ) = c g1 γ(1 -γ) P k k + ρc g2 k 2 ε ∇γ • ∇γ+ ∇ • [σ γ (µ + µ t )∇γ] .
The intermittency model interacts with the turbulence model by modifying the turbulent kinetic energy equation. The new production and destruction terms are defined by : where the model constants are defined by γ 1 = 0 and γ 2 = 0.1. From the above equations, one can notice that the baseline RANS model is recovered for an intermittency value γ = 1 (fully turbulent mode). A zero normal flux is also imposed on γ at the wall.

P k = 0 if x ∈ L, max (γ, γ 1 ) P k otherwise. D k = 0 if x ∈ L, max (γ, γ 2 ) D k otherwise.
• DDES component: in this work, the classical DDES approach , [START_REF] Spalart | A new version of detached-eddy simulation, resistant to ambiguous grid densities[END_REF], is based either on the Spalart-Allmaras model or the k -ε model of [START_REF] Goldberg | A wall-distance-free k -ε model with Enhanced Near-Wall Treatment[END_REF].

• LES-like component: the DVMS approach proposed in Moussaed et al. (2014) is used as the LES part of our hybrid models. In this approach, the variational multiscale (VMS) model, aiming to limit the effects of the subgrid-scale (SGS) model to the smallest resolved scales, is combined with the dynamic procedure which provides a tuning of the SGS dissipation in space and time, so that the resulting DVMS model enjoys synergistic effects.

• Hybrid models Our hybrid strategies blend either a RANS or DDES model with the DVMS approach.

3 Mesh adaptative discretization :

The baseline discretization is an upwind, vertex centered, finite-volume approximation on tetrahedra. Diffusion terms are accounted for with the P 1 -Galerkin approximation. The numerical diffusion involved in upwinding is made of sixth-order derivatives of primitive variables.

The capture of high Reynolds number flows with a mesh adaptation algorithm demands an algorithm able to find the boundary layer when starting from a uniform flow. This is obtained by using (1) an adequate adaptation criterion and (2) a stable and convergent fixed point for the coupling of flow and mesh. Main principles for a successful adaptation can be found in [START_REF] Dervieux | Mesh adaptation for Computational Fluid Dynamics[END_REF]. The transient fixed point (TFP) was introduced and discussed in [START_REF] Alauzet | Adaptation de maillages non structurés pour des problèmes instationnaires[END_REF] and [START_REF] Alauzet | 3D transient fixed point mesh adaptation for timedependent problems: Application to CFD simulations[END_REF]. The simulation time frame [0, T ] is split into several subintervals (Figure 1):

[0, T ] = [0 = t 0 , t 1 ]∪...∪[t i , t i+1 ]∪...∪[t n-1 , t n = T ].
The TFP is extended as in [START_REF] Sauvage | A spacetime mesh Transient Fixed Point for mesh adaptation[END_REF] by defining a space-time continuous mesh (M, τ, nstep) as the knowledge of the following ingredients:

-a number nstep of time intervals.

-a timestep function:

t ∈]0, T [ → τ (t) ∈]0, T [ valid in the sense that T 0 (τ (t)) -1 dt = nstep.
-for every t ∈]0, T [ a spatial metric M(t), constant on each subinterval, of spatial complexity n(t) = C sp (M(t)).The space-time complexity C(M, τ, nstep) of a space-time continuous mesh (M, τ, nstep) is:

C(M, τ, nstep) = T 0 C sp (M(t))(τ (t)) -1 dt. (1)
To any space-time continuous mesh (M, τ, nstep) corresponds an estimate of the resulting error of a calculation working on the space-time mesh build with it. With a BDF2 time advancing scheme and a secondorder spatial approximation, this estimate can be (in practice we choose p = 4):

E 0 (M h , τ ) = T 0 Ω (τ 2 | ∂ 3 u ∂t 3 |+∆x H u ∆x p dtdx.
(2) The sensor u is in our examples taken as the local Mach number of the computed flow. Minimizing the error E 0 (M h , τ ) with respect to (M h , τ ) under the constraint of a fixed space-time complexity C(M, τ, nstep) = N prescribed can be done analytically, allowing the building of a new space-time mesh. The process is repeated in the TFP loop.

In the approach chosen here, we restrict to LES flows for which a global shedding period T s can be estimated, and we use T s as the size of the subintervals. Due to quasi-periodicity, the different subinterval meshes are very similar, and we reduce them to an unique mesh in which quasi-steady features like boundary layers are accurately followed by the mesh, while unsteady vortices travel in a rather uniformly refined region.

Impact of the intermittency model:

The new intermittency model has been tested on the flow past a cylinder at Reynolds number around the drag crisis. At Reynolds 3900, the physical boundary layer is laminar, the intermittency model inhibits the statistical model and numerically predicts the laminar boundary layer (Figure 2). The quality of the prediction is of same level as with a pure LES calculation, e.g. by Moussaed et al. (2014). At Reynolds 380K, the physical boundary layer presents a dissymmetry between top and bottom, one layer being laminar while the other one is turbulent. This is well predicted with the help of the intermittency model, Figure 3. At Reynolds 1M the physical boundary layers are both turbulent and are again well predicted by the proposed model, Figure 4. The improvement carried in drag prediction by the intermittency equation is put in evidence in Figure 5.

The new intermittency model is now applied to the flow around a 3D wing based on the NACA0018 air- foil. At zero angle of attack, the slight vortex shedding is captured, Figure 6. For the intermediate α = 6 degrees case, the unstable extrados boundary layer is also predicted (Figure 7). The α = 15 degrees case is depicted in Figure 8 and global behavior of the prediction is in accordance with experiments of [START_REF] Nakano | Experimental study on flow and noise characteristics of NACA0018 Aifoil[END_REF], of [START_REF] Du | Numerical and experimental investigations of Darrieus wind turbine start-up and operation[END_REF], and of [START_REF] Boutilier | Effects of end plates and blockage on low-reynolds-number flows over airfoils[END_REF].

Mesh adaptative computations

We essentially present experiments performed with 2D test cases.

• Flow around a cylinder

We present 2D computations of a flow around a cylinder at Reynolds number 3900 with the Spalart-Allmaras turbulence model. Mesh adaptation options are : -only one time interval, therefore only one adapted spatial mesh.

-the Space-Time complexity N st is prescribed succes- sively to 10M, 20M, 100M, 200M. An example of adapted mesh is given in Figure 9. Space-time statistics are presented in Table 1. We ob- Table 1: Space-time statistics for circular cylinder case at Reynolds number 3900. k is the number of fixed points, Csp holds for the spatial complexity (≈ number of space nodes), # ∆t for the number of time steps, Esp and Etime for the resulting space and time error integrals.

N st k C sp # ∆t E sp E time 10M 1 27K 361 
serve that space error and time error tend to equilibrate, but yet imperfectly.

• Flow around an airfoil

The second case is the flow around a NACA0021 at Reynolds number 270K and an angle of attack 60 degrees, again with the Spalart-Allmaras turbulence model. Mesh adaptation options are : -only one adapted spatial mesh, -Space-time complexity is prescribed to 10M, 20M, 100M, 200M. An example of adapted mesh is presented in Figure 10. Space-time statistics are presented in Table 2.

In Figure 11, the adaptive time step (function of physical time) produced by the space-time optimization is depicted, showing the increase of time-step, reducing computational cost while preserving the global accuracy. 

N st k C sp # ∆t E sp E time 2M
1 1766 1132 1.7 10 -1 2.4 10 In Figure 12 we present the evolution (with Transient Fixed point Iterations) of the two components of the error, converging to each other. The novel mesh adaptation approach has been tested on the 3D unsteady flow around a NACA0018 at an angle of attack of 8 degrees. The VMS model is applied and produces a rather unsteady flow for which the adaptation is able to both concentrate anisotropicly on boundary layers and manage a rather uniform for large structures propagation, Figures 13,14.

The method is also being applied to a MRF flow [START_REF] Chargy | A mesh adaptative method for rotating machines[END_REF] 
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 1 Figure 1: Time splitting of the Transient Fixed Point mesh adaptation algorithm. Sub-intervals (in green) used for the transient process and timesteps (in red).
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 2345 Figure 2: Flow around a cylinder: impact of the intermittency model on the drag crisis prediction, vorticity at Rey=3900
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 6 Figure 6: Flow around NACA0018 wing, α = 0 degree.

Figure 7 :

 7 Figure 7: Flow around NACA0018 wing, α = 6 degrees.

Figure 8 :

 8 Figure 8: Flow around NACA0018 wing, α = 15 degrees.

Figure 9 :

 9 Figure 9: Cylinder at Reynolds number 3900. Example of adapted mesh.

Figure 10 :

 10 Figure 10: Naca0021 at high angle of attack. Example of the adapted mesh.

Figure 11 :

 11 Figure 11: Bottom: Timestep lengths of initial flow at CFL=50, 1132 timesteps on 1766 vertices, and top: first timestep lengths proposed by the adaptation algorithm, 123 timesteps on 16K vertices.

Figure 13 :

 13 Figure 13: Flow around NACA0018 at 15 degrees angle of attack. LES-adapted mesh with an instantaneous flow obtained with it (velocity magnitude).

Figure 14 :

 14 Figure 14: Flow around NACA0018 at 15 degrees angle of attack. LES-adapted mesh with an instantaneous flow obtained with it (velocity magnitude).

Figure 12 :

 12 Figure 12: Evolution of theorical space error Esp (top) and time error Etime (bottom) with TFP iterations.

  around a Caradonna-Tung wing rotating above a Robin helicopter shape, Figures15,16

  .

Figure 15 :

 15 Figure 15: Flow around a Caradonna-Tung wing rotating above a Robin helicopter. LES-adapted mesh.

Figure 16 :

 16 Figure 16: Flow around a Caradonna-Tung wing rotating above a Robin helicopter. An instantaneous flow obtained with the adapted mesh (velocity magnitude).

Table 2 :

 2 Space-time statistics for NACA0021 at Reynolds number 270K.
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