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ABSTRACT 15 

With the omnipresence of plastic litter from oyster farming in marine coastal areas, the objective of 16 

this work was to better understand the weathering of plastics used in this field, focusing on oyster spat 17 

collectors. During their use, around fifteen years, collectors made of polypropylene (PP) undergo 18 

numerous degradations, alternatively submerged, emerged in seawater, and stored outdoor until the 19 

next cycle. They weaken, crack, break, end up fragmenting and disseminated in the environment as 20 

microplastics associated to persistant organic pollutants. In this work, a comparison of 55 months of in 21 

situ weathering with five months of artificial weathering in air or in artificial seawater in a homemade 22 

UV chamber was conducted to better understand the mecanisms involved. Chemical, thermal and 23 

surface characterizations of virgin and weathered samples were conducted using Fourier Transform 24 

Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Environmental Scanning 25 

Electron Microscopy (ESEM). After 55 months of in situ weathering, collectors were notably 26 

damaged with large fissures and loss of microplastics (MPs) associated with an increase of carbonyl 27 
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index values and a decrease of melting temperatures and crystallinity rates. Considering only UV 28 

irradiation, five months of artificial weathering at 30°C under continuous irradiation of 6.9 W/m
2
 29 

under UV lamps (295 - 400 nm) reproduced approximately 4.4 months of natural sunlight. Artificial 30 

weathering confirmed that photooxidation by combined effects of UV rays and oxygen was the main 31 

weathering mechanism and was reduced in seawater. These results help to understand the mechanisms 32 

involved in the weathering of these collectors in the marine environment and provide valuable 33 

informations for industrials and professionals. Our study suggests a better storage away from UV rays 34 

and a reduction of the duration of use compared to current pratices.  35 

 36 
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1. INTRODUCTION 44 

At now, a total of five ocean gyres with high concentrations of plastics debris have been identified 45 

(Avio et al., 2017; Law et al., 2010). 80 % of theses marine debris are land-based sources and 20 % 46 

are ocean-based sources like fisheries and maritime activities (Avio et al., 2017; Bringer et al., 47 

2021b). Since the arrival of plastic from petrochemicals in the 1950s, professionals in aquaculture 48 

activities have progressively turned to this new material, which is more resistant, durable, and 49 

economical. Due to their stabilility, plastics persist in the environnement for hundreds of years (Cai et 50 

al., 2018; Gewert et al., 2015a). Degradation of plastics can proceed by chemical, physical 51 

degradations and biological degradations (Gewert et al., 2015; Singh and Sharma, 2008; Song et al., 52 

2017). Degradation rates are dependent on the manufacturing process (Han et al., 2018), the presence 53 

of stabilizers, additives and the weathering conditions including sunlight, temperature, and mechanical 54 

stress (Avio et al., 2017a; Kalogerakis et al., 2017a; Masry et al., 2021a; Rajakumar, Sarasvathy, 55 

Thamarai Chelvan, et al., 2009). In seawater, degradation rates are lower and more uniform compared 56 

to landfill due to lower and less variable conditions as UV irradiation, oxygen content and 57 

temperatures (Cai et al., 2018; Gewert et al., 2015). But in any cases, degradations finally lead to the 58 

release of microplastics (MPs) in the environment which can be accumulated by a wide range of 59 

marine organisms from zooplankton (Cole et al., 2013), to fishes throught bivalves (Bringer et al., 60 

2021a) being transferred along food chains until humans (Avio et al., 2017a). Some studies have 61 

reported the presence of MPs in human organs (Hermabessiere et al., 2017), blood (Leslie et al., 2022) 62 

and faeces (Zhang et al., 2021). MPs exposure by ingestion, inhalation or dermal contact can cause 63 

physical damages, with oxidative stress, or inflammatory lesions (Prata et al., 2020). 64 

 65 

Furthermore, plastics are associated with additives and stabilizers (Zhang et al., 2021). Plasticizers as 66 

di-n-butyl phtalate, antioxidant agents as bisphenol A, flame retardants as tris-2-chloro-éthyl 67 

phosphate, are chemicals added during the manufacturing process to obtain certain desired properties 68 

(Avio et al., 2017a; Masry et al., 2021a). Because they are usually not covalently bonded to the 69 

polymers (Gewert et al., 2015; Paluselli et al., 2019; Wang et al., 2020), these chemicals can migrate 70 

https://www.zotero.org/google-docs/?idSaIz
https://www.zotero.org/google-docs/?idSaIz
https://www.zotero.org/google-docs/?nKz22D
https://www.zotero.org/google-docs/?nKz22D
https://www.zotero.org/google-docs/?sou53n
https://www.zotero.org/google-docs/?IL5krd
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from the polymeric matrix towards the surrounding environnement. In seawater, leaching of these 71 

chemicals by diffusion is dependent on their solubility, their polarity, and their affinity to the matrix 72 

(Paluselli et al., 2019). Some of these chemicals are know to be harmful to the marine ecosystems and 73 

humans causing dysfunctions of the immune and reproductive systems, cancers and neurodegenerative 74 

disorders (Avio et al., 2017; Hermabessiere et al., 2017).  75 

 76 

Plastics are also able to absorb various pollutants called persistent organic pollutants (POPs) present in 77 

the marine environment such as pesticides as dichlorodiphenyltrichloroethane, polycyclic 78 

hydrocarbons as naphtalene, and heavy metals as cadmium and lead for examples (Boucher et al., 79 

2016; Gewert et al., 2015; Hermabessiere et al., 2017; Holmes et al., 2012; León et al., 2018; Paluselli 80 

et al., 2019). These pollutants can be ingested and bioaccumulated by marine organisms and humans, 81 

often vectorized by MPs (Avio et al., 2017; Gewert et al., 2015; Guo and Wang, 2019; Prata et al., 82 

2020). The risks that MPs and these persistant organic pollutants (POPs) pose to marine life and 83 

humans are widely recognized and have been included in national and international marine protection 84 

strategies, policies, and legislation (EU Marine Strategy Framework Directive).  85 

 86 

With nearly 30,000 tons of Pacific oysters Crassostrea gigas produced each year, the department of 87 

Charente-Maritime in France represents the first French production area with one third of the national 88 

production (AGRESTE 2019). Different types of plastics such as polypropylene (PP), polyethylene 89 

(PE) and polyvinyl chloride (PVC) are now used at each stage of production. Oyster spats collection is 90 

the first phase of production in traditional oyster farming. Collectors have a specific design of a disc of 91 

160 mm diameter, slightly concave, flexible and ribbed, with a thickness of 0.6 mm, designed in order 92 

to collect a maximum of oyster spats in seawater during the reproductive period between July and 93 

March. After collecting, collectors are taken out of seawater, oysters are detached and then transferred 94 

to oyster bags. The environmental image of the profession is criticized today given the omnipresence 95 

of plastic waste from oyster farming in coastal areas. Around 200 tons of plastic waste from oyster 96 

farming, including 60 tons of oyster spat collectors, are found each year in the Atlantic south coast 97 

https://www.zotero.org/google-docs/?zS75n3
https://www.zotero.org/google-docs/?y9WsL8
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(FEAMP 2020). During their use around fifteen years, collectors made of PP or PE undergo numerous 98 

degradations. They weaken, crack, break, end up fragmenting, disseminating MPs and chemicals in 99 

the marine environment. The toxicity of weathered MPs and associated chemicals from oyster farming 100 

was recently evaluated on early stages of bivalve development (Bringer, Cachot, et al., 2021). 101 

Diméthylphtalate used as plasticizer and naphthalene as polycyclic hydrocarbons absorbed in the 102 

marine environment have been identified on weathered oyster crops, collectors, and pipes (Bringer, Le 103 

Floch, et al., 2021) . Faced with the growing risk associated to plastics used in oyster farming for 104 

marine life and humans, it is necessary understand and reduce their anthropogenic impacts. 105 

 106 

In situ and artificial weathering of PP have been described in many studies (Badji et al., 2018a; Lv et 107 

al., 2015; Rajakumar, Sarasvathy, Thamarai Chelvan, et al., 2009; Tang et al., 2019a) but were never 108 

established for PP oyster spat collectors. These collectors are interesting because they have a chemical 109 

composition and mechanical properties, with additives and stabilizers designed for aquaculture 110 

activities specifications and because, in fine, oysters are destined for human consumption. In this 111 

work, a comparison of 55 months in situ weathering with five months of artificial weathering in a 112 

homemade UV chamber was conducted to better understand the mechanisms involved in PP collectors 113 

degradations. With the aim of understanding the mechanisms of degradation of these collectors in the 114 

marine environment, chemical, thermal, and structural characterizations of virgin and weathered 115 

collectors were performed using Environmental Scanning Electron Microscopy (ESEM), Differential 116 

Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR).  117 

 118 

2. MATERIALS AND METHODS 119 

2.1 Oyster collectors 120 

2.1.1 In situ weathering 121 

In 2017, a project conducted by the Center for Aquaculture, Fisheries, and the Environment of 122 

Nouvelle-Aquitaine (CAPENA) had the objective to compare petrosourced and biosourced collectors 123 

in terms of oyster spat collection efficiencies. Collectors have a specific design of a disc of 160 mm 124 

https://www.zotero.org/google-docs/?LaKqBV
https://www.zotero.org/google-docs/?JOWkn5
https://www.zotero.org/google-docs/?JOWkn5
https://www.zotero.org/google-docs/?VuBIdk
https://www.zotero.org/google-docs/?VuBIdk


6 

 

diameter, slightly concave, flexible and ribbed, with a thickness of 0.6 mm. These collectors were 125 

immerged in the area of the Pertuis Charentais, in the French department Charente-Maritime 126 

(45°51'41.7"N 1°12'19.0''W) during three cycles of eight months collecting oyster spats in seawater 127 

between 2017 and 2020. These collectors were alternatively submerged and emerged in seawater 128 

during collection and were stored outdoors until the next collection cycle. Each cycle started in July 129 

and stopped in March. In total, these collectors spent 24 months in seawater, and 31 months stored 130 

outdoors until the start of this work in January 2022. A continuous environnemental monitoring during 131 

in situ weathering measured seawater temperature from 6 to 21 °C, salinitity from 26 to 34 g/L, 132 

outdoor temperature from 5 °C to 23 °C and a mean solar irradiance of 1200 kW/h/m
2
/year. Virgin 133 

collectors, as references, were stored indoors and protected from humidity and UV rays. Virgin and in 134 

situ weathered collectors were characterized by FTIR, DSC, and ESEM as described below.  135 

 136 

2.1.2 Artificial weathering 137 

Inspired by ISO 4892:2016 part 3 and ATSM G154:06, a homemade UV chamber was equipped with 138 

five UV lamps with wavelength between 295 and 400 nm (KFMS reference PH710932 15W). These 139 

UV lamps were selected because they can give a good reproduction of natural sunlight in the UV 140 

range (Andrade et al., 2019; Cai et al., 2018) and because this medium energy is particularly efficient 141 

in facilitating photodegradation of PP (Andrady, 2015). Virgin PP collectors were weathered under 142 

UV rays in two different conditions: in air (UV+) or immerged in artificial seawater at 30 g/L 143 

(UV+/SW). Negative controls, not exposed to UV rays, were installed in a box in the chamber (UV- 144 

and UV-/SW). Artificial seawater was made by mixing milliQ water and commercial salt. Virgin PP 145 

collectors were installed directly under UV lamps at 15 cm (UV+) or in borosilicate crystallizers filled 146 

with 500 mL of 30 g/L of artificial seawater (SW) and closed with a borosilicate lid to limit 147 

evaporation but letting pass UV rays through. This experiment was conducted for five months, at 148 

30°C, under 24h/24 continuous UV irradiation. Temperature was monitored weekly with a mercury 149 

thermometer. Intensity was monitored weekly with a radiometer (RS Pro reference IM-213) placed at 150 

15 cm from the lamps and was approximately equal to 6.9 W/m
2
 in a empty crystallizer and 3 W/m

2
 in 151 

https://www.zotero.org/google-docs/?fPu1QU
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artificial seawater. Salinity was monitored weekly with a multiparameter (WMW reference Multi3430 152 

with Tetracon 925 probe) and was adjusted to 30 g/L by adding milliQ water if necessary. Each 153 

month, one triplicate for each condition was removed and stored in glass petri dishes at 4 °C, in the 154 

dark, to stop weathering.  155 

 156 

2.2 Charaterization 157 

2.2.1 Environmental Scanning Electron Microscopy (ESEM) 158 

The scanning electron microscope used in this work is an Environmental FEI Quanta 200 – 159 

ESEM/FEG (LaSIE, La Rochelle University) working at 9 KV of electron beam accelerating voltage 160 

and 0.1 nA of beam current under 200 Pa of water vapor pressure in the specimen chamber (Conforto 161 

et al., 2015). Secondary electron-type images, providing topographical information from the surfaces, 162 

were obtained in environmental mode using a “Gaseous Large-Field'' detector. The low-energy beam 163 

and environmental conditions used are necessary to observe plastic materials, which are thermally 164 

sensitive and poor electrical and thermal conductors, without any preparation. In fact, if a surface 165 

metallization (which is part of the sample preparation procedure) was performed, it could partially or 166 

totally mask cracks. The latter are an important parameter used to evaluate the weathering of plastic. 167 

Surface topography of different parts of virgin and weathered collectors was observed. We made sure 168 

that the results were coherent, homogenenous, reproducible. Ten fissures lengths were measured on 169 

random fissures and averaged with FIJI software. 170 

 171 

2.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 172 

In order to identify the different types of chemical bonds, FTIR was used. Infrared frequency identical 173 

to the vibrational frequency of a bond results in absorption, creating a spectrum acting as a molecular 174 

“fingerprint” of the sample. The position, shape, and intensity of peaks in the spectrum reveal details 175 

about the molecular structure of the sample. Different parts of virgin and weathered collectors were 176 

analyzed using a thermoscientific Nicolet iS50 FITR spectrophotometer equipped with an attenuated 177 

total reflectance mode (ATR). We made sure that the results were coherent, homogenenous, 178 

https://www.zotero.org/google-docs/?OegyID
https://www.zotero.org/google-docs/?OegyID
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reproducible. Each spectrum was recorded as the average of 32 scans in the spectral range of 500 to 179 

4000 cm
−1

, with a spectral resolution at 4.0 cm
−1

. Ten spectras were done randomly at the surface of 180 

each sample averaged with a corrected baseline, and analyzed with Spectragryph 1.2 software. 181 

 182 

2.2.3 Differential Scanning Calorimetry (DSC) 183 

Specific temperatures of the samples such as melting temperature and crystallization, as well as the 184 

enthalpy values associated with these phenomena were examined on a differential scanning 185 

calorimeter TA Instrument Q100. Samples were cut, weighed, and heated from -60 °C to 210 °C in an 186 

aluminum pan, then cooled to 40 °C. All experiments were performed at a rate of 20 °C/min under 187 

nitrogen flow (50 ml/min) to avoid thermal degradation. For the sake of repeatability, at least two 188 

samples for each type of collector were used for the DSC measurements. The analysis of DSC 189 

thermograms was carried out with TA Universal Analysis software. 190 

 191 

3. RESULTS 192 

3.1 Surface analysis  193 

Surface images were obtained by using environmental scanning electron microscopy (ESEM). Virgin 194 

PP collectors exhibited relatively homogeneous, smooth and compact textures without any fissures 195 

(Fig 1a). In situ weathered PP collectors (Fig 1c and 1d) exhibited heterogeneous surfaces, with large 196 

and deep averaged fissures up to 24 µm. Loss of material was observed at lower magnification (Fig 197 

1d) caused by mechanical stress as tides, currents during submersion, wind and rain during emersion 198 

but also handling. This loss of material suggests a release of MPs in the environment. Crystals of 199 

sodium chloride salts and algae and diatom residues were also observed and confirmed that the 200 

collectors stayed in seawater. Artificially weathered collectors under UV rays (UV+) start fissuring 201 

after five months with the observation of 2 µm length fissures (Fig 1b). No fissures were observed for 202 

the other conditions as negative control (UV-) and immersion in artificial seawater for five months 203 

(UV-/SW and UV+/SW) (Results not presented). Artificial weathering confirmed that fissuring started 204 

after five months exposed to UV rays. 205 
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 216 

Figure 1. ESEM pictures of (a) virgin PP collector x 500; (b) five months artificially weathered PP 217 

collector under UV rays x 500; (c) and (d) 55 months in situ weathered PP collector (x 500 and x 100 218 

respectively). Arrow point to a small fissure of 2 µm. 219 

 220 

3.2 Chemical analysis  221 

The averaged infrared spectra of a virgin PP collector, used as reference, is presented in the Figure 2 222 

(blue). The spectra showed absorption peaks located at wavenumbers of 971, 995, 1167, 1375, 1454, 223 

2838, 2865, 2918, and 2953 cm
-1

 corresponding to specific vibrations of rocking, bending and 224 

stretching and identified as the native hydrocarbon bonds of virgin PP (C3H6)n (Badji et al., 2018b; 225 

Tang et al., 2019b). Photooxidation, by combined effects of UV rays and oxygen, is known to be the 226 

main weathering process for thermoplastics such as PP (Andrady, 2015; Gewert, 2015; Kalogerakis et 227 

al., 2017b; Masry et al., 2021b). UV radiation has sufficient energy to break the C─C and C─H bonds 228 

(Singh & Sharma, 2008). Diminution of C─C and C─H bonds on the in situ weathered collector (Fig 229 

2 – orange) were observed at wavenumbers between 2800 - 3000 cm
-1

 confirming their break. The free 230 

radicals produced during photooxidation reacted freely with atmospheric oxygen to form hydroxyl 231 

groups (O─H) peaking at wavenumbers between 3000 - 3700 cm
-1 

and carbonyl groups (C═O) 232 

https://www.zotero.org/google-docs/?T2tM2A
https://www.zotero.org/google-docs/?T2tM2A
https://www.zotero.org/google-docs/?6CSj7E
https://www.zotero.org/google-docs/?6CSj7E
https://www.zotero.org/google-docs/?FY97pz
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including carboxylic acids and ketones peaking at wavenumber 1711 cm
-1

, esters and aldehydes 233 

peaking at wavenumber 1740 cm
-1

 and lactones peaking at wavenumber 1780 cm
-1

 (Badji et al., 234 

2018a; Lv et al., 2015; Masry et al., 2021b). These new significant peaks at around wavenumbers 235 

3000 - 3700 cm
-1 

and 1500 - 1800 cm
-1

 were identifiable on in situ and artificially weathered collector 236 

infrared spectra (Fig 2) and their areas were a function of weathering conditions
 
(Cai et al., 2018; 237 

Rajakumar, Sarasvathy, Thamarai Chelvan, et al., 2009; Tang et al., 2019b).  238 

 239 

Figure 2. FTIR spectra of a virgin PP collector (blue), in situ weathered PP collector (orange) and a 5 240 

months artificially weathered collector (UV+) (yellow) 241 

 242 

The carbonyl index (CI) has been used to quantify the degree of weathering of various samples 243 

(Almond et al., 2020; Badji et al., 2018a; Julienne et al., 2019; Rajakumar, Sarasvathy, Chelvan, et 244 

al., 2009; Song et al., 2017b; Tang et al., 2019a). This index is defined as the ratio of the integrated 245 

area of the carbonyl group peak at around wavenumbers 1700 cm
−1

 to an internal constant peak. In this 246 

work, boundaries between wavenumbers 1390 and 1340 cm
−1

 were chosen for the constant peak 247 

because it remained unchanged during weathering. Consequently, boundaries between wavenumbers 248 

1820 and 1570 cm
−1

 were chosen for the carbonyl peak. Carbonyl index of in situ and artificially 249 

weathered samples calculated on the average of ten spectra for each sample and after baseline 250 

correction are resumed in Table 1. Carbonyl index values for the virgin collector and negative control 251 

(UV-), as references, were similar and equal to 0.7 and 0.5 respectively. These values were not equal 252 

to zero probably due to thermal degradation of the material during injection. Negative control (UV-) 253 

https://www.zotero.org/google-docs/?QN9W5j
https://www.zotero.org/google-docs/?QN9W5j
https://www.zotero.org/google-docs/?DdsFne
https://www.zotero.org/google-docs/?DdsFne
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also confirmed that no additional degradation occurred during the five months of artificial weathering. 254 

Consequently, only UV ray exposure and immersion in seawater can be considered in this experiment. 255 

After five months of artificial weathering in seawater (UV-/SW), the carbonyl index value reached 256 

1.9. Additionally immerged and exposed to UV rays (UV+/SW), this value increased to 2.1. Finally, 257 

upon exposure to UV rays only during five months (UV+), the carbonyl index reached the value of 3. 258 

In this experiment, the highest value for carbonyl index was therefore found after five months 259 

artificially exposed to UV rays only (UV+). After 55 months of in situ weathering, the carbonyl index 260 

value reached 4.2. 261 

 262 

3.3 Thermal analysis  263 

Semi-crystalline PP has a heterogeneous structure, consisting of crystalline and amorphous phases 264 

(Masry et al., 2021b). The crystallinity rate and the melting temperature are impacted by weathering 265 

(Badji et al., 2018b). Monitoring the evolution of these parameters using Differential Scanning 266 

Calorimetry (DSC) gave a global indication of weathering degree of the samples. On the DSC 267 

thermograms (Fig 3), the heat flow exhibited endothermic peaks related to the melting of PP allowing 268 

the measure of melting temperatures and melting enthalpies (ΔHm) corresponding to the energy needed 269 

to melt the sample. Crystallinity rates can be calculated as this relation: Crystallinity rate (%) = ΔHm / 270 

(ΔH inf) x 100 (equation 1) with ΔH inf  equal to 209 J/g for PP corresponding to the theoretical melting 271 

enthalpy of a fully crystalline PP (Badji et al., 2018; Han et al., 2018) ΔHm can be calculated with TA 272 

analysis software. Melting temperatures and crystallinity rates and of virgin, in situ and artificially 273 

weathered PP collectors are summarized in Table 1. For the virgin collector, as reference, melting 274 

temperature was equal to 169 °C, melting enthalpy was equal to 59 J/g and crystallinity rate was equal 275 

to 29 % (equation 1). These values were equivalent for the negative control after five months of 276 

artificial weathering without UV rays (UV-). After in situ weathering, significant decreases of the 277 

melting temperature from 169 to 164 °C, and crystallinity rates from 29 to 25 % were observed. 278 

Changes in melting temperature and crystallinity rate were observed on samples exposed to UV rays 279 

(UV+). No differences were observed for the other conditions in seawater (UV+/SW, UV-/SW). 280 

https://www.zotero.org/google-docs/?aLHOlc
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 284 

 285 

 286 

 287 

 288 

 289 

Figure 3. DSC thermograms of a virgin PP collector (green line), in situ weathered PP collector (red 290 

line) and artificially weathered PP collector (blue line) with endothermic peak indicating the melting 291 

of the material. 292 

 293 

 294 

Table 1: Carbonyl index values, melting temperatures, crystallinity rates, and fissure lengths for virgin 295 

PP collectors, 55 months in situ weathered PP collectors, and five months artificially weathered PP 296 

collectors. 297 

 298 

4. DISCUSSION 299 

During their use, PP oyster spat collectors undergo various degradations as the result of 300 

photooxidation, thermal degradation, mechanical degradation, and biodegradation, all based on free-301 

 

Virgin PP 

collector 

55 months in 

situ weathered 

PP collector 

5 month artificially weathered PP collectors 

UV- UV+ UV-/SW UV+/SW 

 0.7 4.2 0.5 3.0 1.9 2.1 

 169 164 169 164 169 169 

 29 25 31 26 30 30 

 0 24 0 2 0 0 
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radicals mechanisms. (Avio et al., 2017a; Singh & Sharma, 2008). After in situ weathering, increase 302 

of carbonyl index values, and decrease of crystallinity rates, melting temperatures and apparition of 303 

fissures were observed (Table 1). Artificial weathering was conducted to better understand the 304 

mechanisms involved. Because the temperature in the UV chamber was fixed, homogenous and 305 

relatively low, and because no additional mechanical stress was applied, only UV irradiation was 306 

considerated in this experiment. The highest degradation rate obtained after UV irradiation in air 307 

(UV+) and negative control confirmed that no additional degradation than photooxidation occurred. 308 

Abiotic degradations precede biotic degradations. Photooxydation by combined effect of oxygen and 309 

UV rays is known to be the main weathering mecanisms for PP. Initiated by UV rays absorbed by 310 

structural abnormalities or impurities, photooxidation cause chain scissions and produce shorter and 311 

more mobile chains with free radicals reacting freely with atmospheric oxygen (Gewert et al., 2015). 312 

This mechanism usually starts in the amorphous phase (Andrady, 2015; Julienne et al., 2019a; Masry 313 

et al., 2021, Han et al., 2018) but results of this work obtained after artificial weathering showed a 314 

decrease of crystallinity rate indicating that photooxidation already caused damage in the amorphous 315 

phase and then occurred in the crystalline phase. This mechanism, already described by (Badji et al., 316 

2018; Lv et al., 2015; Tang et al., 2019), finally lead to a decrease of the hydrophobicity and the 317 

molecular weigh of the polymer. However, the molecular weight remaining high, biodegradation of 318 

the long chains stays limited (Gewert et al., 2015; Singh and Sharma, 2008). In fact, PP is often used 319 

as a negative control in biodegradation experiments (Kalogerakis et al., 2017; Lott et al., 2020).  320 

 321 

At the location of the in situ weathering, a mean solar irradiance of 1200 kWh/m
2
/year was monitored 322 

(https://re.jrc.ec.europa.eu/pvg_tools/fr/#DR) which corresponds to an irradiance of 60 kWh/m
2
/year 323 

in the total UV range (295 and 400 nm). During artificial weathering, the intensity of the UV lamps in 324 

this same range was averaged at 6.9 W/m
2 
and was maintained for 3200 hours which correspond to a 325 

total cumulated irradiance of 22 kWh/m
2 

(= 6.9 x 3200). Consequently, artificial weathering 326 

reproduced approximately 134 days (22 / 60 x 365) corresponding to 4.4 months (Gewert et al., 2018). 327 

https://www.zotero.org/google-docs/?A13JrP
https://re.jrc.ec.europa.eu/pvg_tools/fr/#DR
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This calculation of solar simulation equivalent is theoretical because it is dependant of numerous 328 

environnemental factors, which varies throughout the seasons. 329 

 330 

After five months of artificial weathering in seawater, an increase of carbonyl index values was 331 

observed whereas the crystallinity rates and melting temperatures were little impacted (Table 1). 332 

Absorption of seawater in PP can allow the entrance of dissolved oxygen into the matrix favoring 333 

chain oxidation and hydrolysis (Kalogerakis et al., 2017a) but the kinetics of these degradation 334 

mechanisms are slower than those for photooxidation. Moreover, intensity of UV irradiance in 335 

artificial seawater (3 W/m
2
) was lower than for direct exposure to a UV lamp (6.9 W/m

2
), reducing the 336 

photooxidation mechanism in seawater, wich it is expected to occur in the marine environment. No 337 

fissures were observed for these conditions (UV+/SW and UV-/SW). 338 

 339 

Collectors artificially weathered during five months gave approximately the same results than after 55 340 

months weathered in situ except for the fissure lengths due to additional degradations involved in situ. 341 

It is important to consider that in situ, degradation of PP collectors was influenced by alternations of 342 

tides, day and night cycles, weather and seasonal conditions, presence of spats, biofooling and crystal 343 

salts. In conclusion, in situ weathering of these PP collectors was mainly caused by photooxidation 344 

during emersion and outdoor storage and was enhanced with additional effects of mechanical stresses 345 

such as tides, currents, wind and rain but also professional handling. Comparing in situ and artificial 346 

weathering must be done with caution since there is still not an adequate simulation of the combined 347 

effects and synergies of various environnemental factors (Andrade et al., 2019; Rajakumar, 348 

Sarasvathy, Thamarai Chelvan, et al., 2009; Yang & Ding, 2006). 349 

 350 

5. CONCLUSIONS 351 

This is the first study comparing in situ and artificial weathering of PP oyster spat collectors. This 352 

work shows that after only 55 months in situ, alternatively submerged and emerged, the collectors 353 

were notably damaged, with large fissures and loss of material such as MPs. These damages were 354 

https://www.zotero.org/google-docs/?wEGJur
https://www.zotero.org/google-docs/?00rEjZ
https://www.zotero.org/google-docs/?00rEjZ
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mainly due to photooxidation during exposure to UV rays, enhanced by mechanical stress as tides, 355 

current, wind, rain and handling all along their use and storage. Considering only irradiation in the UV 356 

range, five months of artificial weathering reproduced approximately 4.4 months of natural sunlight in 357 

situ and confirmed that photooxidation by combined effect of UV rays and oxygen was the main 358 

weathering mechanism and was higher in air than in seawater. Degradations as the apparition of the 359 

first fissures were observed relatively soon under UV irradiation. This first comparative study gave 360 

preliminary results on this topic and help to better understand the mechanisms involved in the 361 

degradation of these collectors. This work allows to make recommendations to industrials and 362 

professionals including a better storage protected from UV rays and a reduction of the duration of use. 363 

It is important to note that there is still a lack of information on the toxicity and the potential 364 

environmental hazard of these altered plastics in the marine environment, as vectors of MPs, POPs and 365 

microorganisms (Avio et al., 2017b; Gewert et al., 2015b). Consequently, a future work will be 366 

focused on the relationship between weathering, fragmentation and toxicity including promising 367 

alternatives such as biosourced materials. 368 
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