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Abstract

In increasingly important sensor grid networks, multicast routing is widely used
in date aggregation and distributed query processing. It requires multicast trees
for efficient data transmissions. However, sensor nodes in such networks typi-
cally have limited resources and computing power. Efforts have been made to
consider the space, energy and data factors separately to optimize the network
performance. Considering these factors simultaneously, this paper presents a
game balance based multi-factor multicast routing approach for sensor grid net-
works. It integrates the three factors into a unified model through a linear
combination. The model is standardized and then solved theoretically by us-
ing the concept of game balance from game theory. The solution gives Nash
equilibrium, implying a well balanced result for all the three factors. The the-
oretic results are implemented in algorithms for cluster formation, cluster core
selection, cluster tree construction, and multicast routing. Extensive simula-
tion experiments show that the presented approach gives mostly better overall
performance than benchmark methods.
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1. Introduction1

With the rapid development of wireless communication technologies, sensor2

grid networks are becoming more and more popular and increasingly impor-3

tant. They gather, distribute, and act on, the information about the behaviour4

of all participants, e.g., suppliers and consumers [1, 2]. They are widely used in5

various applications. Among those applications are smart power grids, environ-6

mental monitoring, smart transportation, and habitat monitoring [3].7

A sensor grid network consists of hundreds of thousands of wireless sen-8

sor nodes. In general, these sensor nodes have limited resources and computing9

power. Thus, the computational tasks that are resource demanding and/or com-10

putationally intensive have to be partially or mostly offloaded to somewhere else11

from the sensor devices for prompt processing. Also, data gathered or generated12

by the sensor devices need to be transmitted over the sensor grid network [4]. All13

these requirements cause severe issues in wireless communications. Particularly,14

a challenges in sensor grid networks is to support efficient multicast routing for15

data aggregation and distributed query processing [5].16

In sensor grid networks, efficient multicast routing typically use data aggre-17

gation. For data aggregation, the technique of data aggregation tree is gener-18

ally employed. More specifically, a base station or sink node gradually collects19

data from distributed sensor nodes by using a reverse multicast tree [6]. Thus,20

multicast becomes a key concept in data aggregation for traffic routing and21

distributed query optimization.22

While research on multicast has been extensive for data aggregation, existing23

multicast schemes have mainly considered the shortest transmission distance24

from the geographical factor perspective. When a hierarchical multicast tree25

is constructed, the geographical center is often chosen as a core node at which26

the data is aggregated. This reduces the transmission distance of the data [7].27

However, in addition to the geographical space factor, energy consumption and28

data generation volume are also significant factors in sensor grid networks [8].29

For a longer lifetime of the network, sensor nodes with a higher energy residual30

should be assigned more communication tasks. This requires to change the31

core node dynamically in multicast routing. Also, the volume of data that each32

sensor node generates or collects is quite different from each other. This has33

a significant impact on the performance of the data communications through34

data aggregation. While space, energy and data factors have been considered35

separately in existing methods, simultaneous considerations of all these three36

factors have not yet been reported except our preliminary work [9, 10]. This37

motivates our research in this paper on efficient routing in sensor grid networks.38

This paper presents a game-balanced multi-factor multicast routing ap-39

proach for sensor grid networks. It makes three main contributions: 1) A uni-40

fied model is established with simultaneous considerations of the three factors41

of space, energy and data through a linear combination with unknown coeffi-42

cients; 2) After standardization, the unified model is solved theoretically for all43

unknown coefficients by using the concept of game balance, giving Nash equilib-44

rium with well-balanced result among the three factors; and 3) the theoretical45
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results are implemented in five algorithms. The presented approach is evaluated46

through simulation experiments against benchmark methods.47

The remainder of this paper is organized as follows. Section 2 reviews the48

related work and motivates our research. Section 3 describes the multi-factor49

problem. The problem is solved theoretically in Section 4 through game balance50

theory. The theoretical results are implemented in algorithms in Section 5. Sec-51

tion 6 demonstrates the performance of the presented approach in comparison52

with benchmark methods. Finally, Section 7 concludes the paper.53

2. Background, Related Work and Motivations54

Multicast routing in sensor grid networks relies on data aggregation and dis-55

tributed query processing. This section reviews the related work of data aggre-56

gation, distributed query processing, and multicast routing. Then, it discusses57

the motivations of our research in this paper.58

2.1. Data Aggregation59

In sensor grid networks, data acquisition typically utilizes data aggregation60

through a structure called “data aggregation tree”. More specifically, a base61

station or sink node collects data from distributed sensor nodes by using a62

reverse multicast tree. The collected data are aggregated and then sent out [6].63

In the network layer, there are two categories of routing strategies through64

data aggregation: address-centric (AC) and data-centric (DC). For AC routing,65

each source node sends data along the shortest path in the intermediate nodes66

to the sink node. In comparison, DC routing considers the content of the data67

to be transmitted. During the data forwarding process, the intermediate sensor68

nodes aggregate data from multiple data sources according to the content of the69

data. They do not necessarily follow the shortest path for traffic routing.70

Energy is one of the major issues in wireless and mobile sensor grid networks.71

It has been considered in data aggregation design. Two popularly used methods72

for data aggregation and traffic routing with consideration of energy are and73

TEEN (Threshold sensitive Energy Efficient sensor Network protocol) [11] and74

TDMA-based LEACH (Low-Energy Adaptive Clustering Hierarchy) [12]. While75

LEACH is a good approximation of a proactive network protocol, with some76

minor differences, TEEN is targeted at reactive networks.77

Both LEACH and TEEN use periodic clustering. They experience two oper-78

ational phases in each round: cluster establishment and data communications.79

In clustering, adjacent nodes form a dynamic cluster and generate its core. To80

achieve a balanced network energy consumption, each node in the cluster needs81

to rotate the cluster core. Nodes that have been cluster cores cannot become82

cluster cores again for a certain number of rounds. In data communications,83

cluster nodes send data to the cluster core. Then, the cluster core aggregates84

the data and sends the aggregated data to the sink nodes.85
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2.2. Distributed Query Processing86

Distributed query processing in sensor grid networks can use data aggrega-87

tion for efficient data collection from multiple data sources. It also disseminates88

queries from sink nodes to other sensor nodes over the network. Then, the89

sensor data converge toward the sink nodes in a reverse multicast manner.90

Existing studies on sensor databases, e.g., TinyDB, have limitations in dis-91

tributed query processing. Firstly, they consider query processing as a basic92

operation. However, queries from sensor nodes should be processed collabo-93

ratively with other sensors nodes rather than exclusively by a central site for94

sensor gird networks [13]. Secondly, in most existing methods, queries are usu-95

ally processed in a static environment. But mobile sensor nodes and the network96

environment are highly dynamic. While there exist considerations of dynamic97

networks, a usual implicit assumption is instant query processing during which98

the network topology and connections do not change.99

Depending on how query answers are delivered, a sensor gird query system is100

designed and implemented differently. One type of sensor grid systems delivers101

query answers to a sink node that generates the queries. In another type of102

sensor grid systems, queries originate from arbitrary peers, to which the answers103

must be delivered back.104

Query processing in sensor grid networks is usually a broadcast or multicast105

process from one peer, e.g., the sink, to multiple peers. Periodically, query106

processing sends out a query list via broadcast or multicast. Then, it keeps107

communicating with multiple peers for query questions and answers. In this108

way, it gradually attains global query distribution knowledge, which can be109

utilized to predict queries using former query information [13].110

Generally, sensor nodes in sensor grid networks have limited resources, e.g.,111

bandwidth, energy, memory, storage, and computing power. This will affect how112

to build a multicast tree to propagate query messages. The factors of space,113

energy and data have been considered separately in existing methods. However,114

how to consider all these factors in an integrated model is still an open problem.115

This will be addressed in this paper.116

2.3. Existing Multicast Protocols117

Efforts have been made to develop multicast protocols. NICE is an ex-118

tendible multicast protocol. It is a hierarchical multicast tree technique. An-119

other multicast protocol is Double-Channel XY Multicast Wormhole Routing120

(DCXY). It uses an extension of the XY routing algorithm to set up the routing121

scheme [14]. Dual-Path Multicast Routing (DPM) is a multicast protocol de-122

veloped for 2-D MESH networks. For content-addressable networks (CANs) [7],123

CAN-based Multicast Routing (CANM) is developed for communications [1].124

Despite the progress mentioned above, existing multicast technologies con-125

sidered only one factor or two that affect data transmission efficiency [15]. For126

example, DCXY, DPM and AC routing considered the location (space) factor127

only. LEACH and TEEN focused on the energy factor only. DC routing only128

considered the data factor. Emphasizing a single factor only without considera-129

tion of other factors largely limits the applications of existing multicast protocols130
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in sensor grid networks. In large-scale sensor grid networks, a balanced consider-131

ation of all these important factors is essential for improved overall performance132

in dynamic environments.133

2.4. Motivations and our Preliminary Work134

Existing techniques for multicast routing, data aggregation and distributed135

query processing have mainly addressed constraint factors separately. Tradi-136

tionally, the geographical location is considered, leading to the shortest path137

technique with fewest links. When a hierarchical multicast tree is constructed,138

the geographical central node is chosen as the cluster core [16]. Later, the energy139

factor is considered for energy-efficient multicast communications [17, 18]. But140

the energy factor has not incorporated with the space factor. Furthermore, the141

amounts of data from different sensor nodes differ significantly in sensor grid142

networks. In general, more data require more data collection, processing, shar-143

ing, and querying [19, 20]. This has been addressed in data-focused methods.144

The requirement of improving the overall performance of a sensor grid net-145

work in dynamic environment demands a unified approach that considers all146

these factors simultaneously. However, such an approach has not been found in147

the literature except our preliminary work [9, 10]. Among multiple factors, three148

factors show particular significance: space, energy and data. To develop such149

an approach with consideration of the three factors, one needs to integrate the150

three factors into a unified model. Then, solve the model for cluster formation,151

cluster core selection, determination of model parameters, and multicast rout-152

ing. Furthermore, the model and its theoretical solution need to be extended153

for the application scenarios [21]. All these requirements motivate our research154

in the present paper. Particularly, the concept of game balance is adopted in155

this paper for a balanced solution from multiple factors.156

Our preliminary studies on this topic have addressed more than one factor [9,157

10]. Our work in [9] considered two factors, space and data, in a unified model.158

Our work in [10] moved one step further to consider the energy factor in addition159

to the space and data factors. However, algorithm design was not given, and160

limited experiments were conducted to demonstrate the approach.161

The present paper extends our preliminary studies substantially in both162

breadth and depth. Firstly, we have extended the two-factor model [9] to a163

three-factor model. This extension is not straightforward, but requires new164

mathematical treatment and also gives a new insight into the multicast routing165

with consideration of multiple factors. The new insight directly leads to finite166

M -factor scenarios. Secondly, we have refined the mathematical treatment of167

the three-factor problem in our previous study [10]. Particularly, the math-168

ematical treatment is clearly separated into several steps: linear combination169

modelling, model standardization, factor weights at Nash equilibrium, and so-170

lution at Nash equilibrium. Thus, the theoretic results become neat and more171

compact. Moreover, we have designed detailed algorithms to implement the172

theoretical results, and have conducted comprehensive experiments. Algorithm173

design and comprehensive experiments are missing in our previous work [10].174
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3. Description of the Multi-factor Problem175

This section describes the problem of multicast routing for data aggregation176

and distributed query processing. Three factors are considered for each cluster of177

sensor nodes. Then, for each factor, a weight vector is defined for the cluster. It178

is used for selecting the cluster core and building the multicast tree. After that,179

a linear combination of the three weight vectors is designed to derive a general180

weigh vector. All notations used in this paper are summarized in Table 1.181

3.1. Multiple factors in the Multicast Problem182

Consider a cluster of sensor nodes in a sensor grid network as shown in183

Figure 1. A multicast group with l members is denoted as: G = {U0, · · · , Ui, · · · ,184

Ul−1}, i = 0, · · · , l − 1. Each multicast member is identified by m coordinates:185

Ui = (ui,0, · · · , ui,j , · · · , ui,m−1), when 0 ≤ j ≤ m−1. For example, for member186

U0, its two-dimensional coordinates (u0,0, u0,1) are (0, 0).187

Figure 1: A cluster of sensor nodes within a 2−D sensor grids network. Thick square boxes
are cluster members. The spatial center node of the cluster should be in the area [1, 1]× [6, 6].

We define neighbour nodes as follows. Consider two sensor nodes Ui =188

(ui,0, · · · , ui,j , · · · , ui,m−1), where i ∈ [0, l − 1], and Ui
′ = (ui

′
,0, · · · , ui

′
,j , · · · ,189

ui
′
,m−1), where i

′

∈ [0, l − 1] and i
′

6= i. Ui and Ui
′ are neighbours if and only190

if ui,j = ui
′
,j for all j, except that ui,j

′ = ui
′
,j

′ ± 1 along the 1-D j
′

. In an m-D191

sensor grid network, a node may have m to 2m neighbors [14].192

We further define Manhattan distance between two nodes. In a 2-D sen-193

sor grid network, the static delay distance between (X0, Y0) and (X1, Y1) is194

|X1 −X0|+|Y1 − Y0|. The sum of the static delay distances from all other nodes,195

(Xi, Yi) to (X0, Y0), i = 1, · · · , n−1, is f(X0, Y0) =
∑n−1

i=1 (|Xi −X0|+|Yi − Y0|).196
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Table 1: Nomenclature.

Notation Description
AD Average multicast delay
C The strategies of Collaboration
C∗ Cluster core, C∗ = (c∗0, · · · , c

∗

i , · · · , c
∗

m−1)
Ci The cost for bringing object i into the cache
ci New general core
ci,a, ci,b, ci,c Space, energy and data cores, respectively
d(s, ui) Packet delay from source s to member ui

Fi Frequency usage of the object I
G The set of the system
I The object of a semantic cache item
Ki Priority key in the GDSF semantic cache algorithm
(k, 3k − 1) The range of a random constant, k = 3 is used in NICE
L A running age factor
l The number of members of the system
M The strategies of monopolization
m The number of coordinates
MN Management node
n The number of nodes in the cluster
n<j , n>j , n=j The number of cluster members with the Jth coordinates >

(right nodes of Jth row), < (left nodes of Jth row), and = uj

(the nodes just on the Jth row), respectively
S, Si The cluster size, and the size of the object I , respectively
SPAN The Shortest-Path Area Nodes
TET Time Energy Threshold
U0, · · · , Ul−1 l members of system G

Ui ith node identified by m coordinates, Ui = (ui,0, · · · , ui,m−1)
U

i
′ Node also identified by m coordinates, Ui′ = (u

i
′
,0, · · · , ui

′
,m−1)

uj Finite strategy set, j = 1, · · · ,m
W General weight vector

W
′

,W
′′

,W
′′′

Space, energy and data weight vectors, respectively

W
′

j ,W
′′

j ,W
′′′

j Jth cluster: space, energy & data weight vectors, respectively

w
′

j,i, w
′′

j,i, w
′′′

j,i Jth cluster: space, energy & data weights of node i, respectively
Wi,j General weights of the nodes
Wj General weight vector of the Jth cluster
wj,i The general weight of the node i within the J − th cluster

W
(1)
i,j ,W

(l)
i,j ,W

(m)
i,j The first, l-th and m-th weight vectors, respectively

(X0, Y0), (X1, Y1) Two coordinates of two nodes
|X1 −X0|+ |Y1 − Y0| Delay distance of two nodes (X0, Y0) and (X1, Y1)
[x0, y0]× [x1, y1] Area of the shortest paths between (x0, y0) and (x1, y1)
αi, βi, γi Linear parameters

α
(1)
i , · · · , α

(m)
i Linear modulus, α

(1)
i , · · · , α

(m)
i ≥ 0, α

(1)
i + · · ·+ α

(m)
i 6= 0

θ1, θ2, θ3 Angles between W
′

,W
′′

and W
′′

, respectively, and W
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For every cluster of sensor nodes, three weight vectors are used to character-197

ize the three factors of space, energy and data, respectively. For the i-th cluster198

with n nodes, they are defined as follows:199

• Space weight vector W
′

i = (w
′

i,0, · · · , w
′

i,j , · · · , w
′

i,n−1), i = 0, · · · , n − 1,200

where w
′

i,j indicates the space weight of node i within the ith cluster.201

• Energy weight vector W
′′

i = (w
′′

i,0, · · · , w
′′

i,j , · · · , w
′′

i,n−1), i = 0, · · · , n− 1,202

where w
′′

i,j indicates the data weight of node j within the i− th cluster;203

• Data weight vector W
′′′

i = (w
′′′

i,0, · · · , w
′′′

i,j , · · · , w
′′′

i,n−1), i = 0, · · · , n − 1,204

where w
′′′

i,j indicates the data weight of the node j within the ith cluster.205

These three weight vectors need to be determined. Then, a general weight vector206

is designed from these three vectors for the hole cluster.207

3.2. The Space Weight Vector W
′

208

The space weight of a node relates to its location at a specific time instant.209

It characterizes the node’s degree of closeness to a location, typically a core210

node. To determine the space weight of the node, we need to find the central211

node of the cluster first. Then, derive the space weight from the shortest path212

principle. The greater the space weight, the closer to the cluster core the node.213

The node with the maximum weight is the space cluster core of the cluster [22].214

As an example, the upper part of Table 2 shows space weight values for a215

sensor grid network. In this cluster, the node at cell (2, 2) has the maximum216

weight w
′

(2,2) = 10.Thus, it is the cluster space core. Building a multicast tree217

by considering the space weight only gives the result in Fig. 2(a). Using this218

multicast tree, the system achieves the shortest communication distance.219

(a) (b) (c)

Figure 2: Multicast trees built from the weights shown in Table 3: (a) from space weights
only; (b) from energy weights only; and (c) from data weights only.
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Table 2: Weights of a sensor grid network. The upper, middle and lower parts are space,
energy and data weights, respectively. The boxed cells belong to the same cluster.

X=0 X=1 X=2 X=3 X=4 X=5 X=6

S
p
a
ce

w
ei
g
h
ts

Y=6 0 0 2* 1* 0 0 0

Y=5 0 0 3 2 1 1* 0

Y=4 0 0 4* 2 1 1 0

Y=3 1* 1 5 2 1 1 0

Y=2 1 2* 10* 4 2 2 0

Y=1 0 0 2* 1 0 0 1*

Y=0 0 0 1 1* 0 0 0

E
n
er
g
y
w
ei
g
h
ts

Y=6 0 0 3* 1* 3 0 0

Y=5 0 1 1 4 1 0* 0

Y=4 0 0 10* 6 5 1 0

Y=3 6* 1 3 4 3 3 0

Y=2 2 4* 2* 3 5 7 3

Y=1 1 3 6* 3 0 0 7*

Y=0 0 1 4 5* 0 0 0

D
a
ta

w
ei
g
h
ts

Y=6 0 0 2* 3* 3 0 0

Y=5 0 1 3 4 1 0* 0

Y=4 0 0 6* 6 5 1 0

Y=3 1* 1 3 4 3 3 0

Y=2 2 4* 2* 3 5 7 1

Y=1 1 3 10* 3 0 0 4*

Y=0 0 1 4 4* 0 0 0

3.3. The Energy Weight Vector W
′′

220

In a cluster of sensor nodes, some nodes consume more energy and some221

others consume less.The nodes with a higher power residual may be able to222

transmit data at a higher transmission rate. To achieve a balanced energy223

consumption among the cluster members, each node needs to rotate the cluster224

core based on its energy status. A randomized rotation of cluster heads is225

used in LEACH. Similar to LEACH, TEEN is also a routing protocol based226

on clustering. However, in comparison with LEACH, it is more adaptive to a227

reactive sensor network.228

In our modelling of the energy weight vector, the traditional energy algo-229

rithms LEACH and TEEN are adopted. The energy weight of a node is defined230

according to the remaining lifetime of the node. The node with the maximum231

value of energy weight is selected as the cluster core. As an example, the middle232

part of Table 2 lists the energy weights for the same cluster of sensor nodes233
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discussed previously. The cluster core is the node at cell (2, 4) with energy234

weight w
′′

(2,4) = 10. After the cluster core is selected, a multicast tree can be235

established from the energy weights only. It is shown in Fig. 2(b). With this236

multicast tree, the system achieves the highest energy efficiency.237

3.4. The Data Weight Vector W
′′′

238

A sensor gird network generally transmits a huge amount of data. There-239

fore, the cost of having, using or transmitting the data becomes an important240

factor [23, 24]. A data weight can be defined to characterize the consumption of241

network resources. For example, the average delay and the number of links used242

for transmissions of the data are indicators of the cost of the data. To simplify243

the problem, the data weight of a node is described according to the amount244

of data on the node [25, 26]. This is based on the observation that more data245

generally means more data processing and queries [5, 27].246

In real network scenarios, the cost of data is a complicated variable. It may247

be a function of multiple and dynamic parameters [28]. For instance, the query248

hot degree, which means query frequency, is a good indicator of the data weight.249

In a sensor grid database, different tables or data items have very different query250

frequencies, sometimes at the ratio of 1:10:100, even for the same data quantity.251

When a node with a highest query hot degree is chosen as the cluster core, the252

query message propagation can be reduced and consequently the query efficiency253

can be improved. This will naturally reduce fading and shadowing [29].254

Furthermore, the semantic cache technique has been employed in smart sen-255

sor databases [30]. It stores query results and query semantics in order to re-256

spond to future queries. When a new query result must be stored in a saturated257

cache, the most irrelevant queries must be evicted. When deciding which cached258

queries are replaced, the cost and frequency of access to the cached objects need259

to be considered in addition to the size constraint.260

The Greedy Dual-Size Frequency (GDSF) semantic cache algorithm replaces
the object with the smallest key for a semantic cache value function [24]:

Ki = Fi ∗ Ci/Si + L, (1)

where Ki is the priority key, Fi is the frequency of using the object I, Ci is the261

cost associated with bringing the object i into the cache, Si is the size of the262

object I, and L is a running age factor. The semantic cache value of a node is263

the sum of the values for different semantic cache items. The larger the semantic264

cache value is, the greater the data communications, query and propagation are.265

Once the data weights are calculated for all nodes in a cluster, the cluster266

core is selected with the highest data weight among all cluster members. For267

the example shown in the lower part of Table 2, the cluster core is the cell at268

(2, 1) which has the highest data weight w
′′′

(2,1) = 10. Then, a multicast tree can269

be established based on the data weights only, as shown in Fig. 2(c).270

3.5. Integration of the Three Weight Vectors271

Understandably, focusing on space, energy and data separately results in dif-272

ferent multicast topology for data aggregation and traffic routing in a sensor grid273
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network, as clearly demonstrated in the examples in Table 2 and Fig. 2. Each274

of the three sets of results only shows the best interest in its own factor. Using275

any of them will ignore the requirements and constraints from the other two.276

This raises a question: how to consider all these three factors simultaneously in277

a unified framework to construct a multicast tree?278

To answer this question, a general weight vector is derived from the three
weight vectors. For the i-th cluster, the general weight vector is denoted by
Wij = (wi,0,· · · , wi,j , · · · , wi,n−1), i = 0, · · · , n − 1. This paper defines the

general weight vector as a weighted sum of the space weight vector W
′

ij , energy

weight vector W
′′

ij and data weight vector W
′′′

ij :

Wij = α∗
iW

′

ij + β∗
i W

′′

ij + γ∗
i W

′′′

ij , α∗
i , β

∗
i , γ

∗
i ≥ 0, α∗

i + β∗
i + γ∗

i 6= 0, (2)

where α∗
i , β

∗
i and γ∗

i are coefficients to be determined.279

Then, the problem of our research is how to derive the coefficients α∗
i , β

∗
i280

and γ∗
i to maximize the benefits for all three factors. This will be solved in the281

next section from game balance theory.282

4. Theoretic Results for Solving the Multi-factor Problem283

In this paper, each of the three factors is considered as a game player. Three284

factors as game players enter a game. Each player tries to achieve its best285

interest. The concept of collaborative games has been shown to be useful for286

constructing multicast trees for data communications [31, 32]. In the following,287

the multi-factor problem is also investigated from game theory. The concept of288

Nash equilibrium is introduced first. Then, the linear combination of the three289

weight vectors shown in Eq. (2) is standardized. After that, the coefficients290

of the standardized linear combination model are derived theoretically at Nash291

equilibrium. Furthermore, some extensions are made for different scenarios.292

Multicast trees will be established from the general weight vector.293

4.1. Game Balance Analysis294

Let us start with discussions of a complete information game of two players295

(factors): space and energy weight vectors W
′

and W
′′

. In this game, each296

player has two strategies: Monopolization (M) or Collaboration (C). If both297

choose M strategy, both will get the minimal benefits. If one player choose298

M while the other choose C, the player who has chosen M will maximize the299

benefits while the other will get minimal benefits. This means when one player300

knows the other one has already chosen M, it does not make sense for the player301

to choose C. The only win-win strategy is C for both players.302

In geometry, the gain for players 1 and 2 are cos θ1 and cos θ2, respectively,303

where θ1 is the angles of the weight vector W ′ and the general weight vector304

W , and θ2 is the angle of W
′′

and W . The best result for both game players is305

cos θ1 = cos θ2, implying that θ1 = θ2, which is Nash equilibrium.306
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In this paper, three weight vectors are considered simultaneously, i.e., W
′

for space, W
′′

for energy and W
′′′

for data. This three-player game achieves
the best results for all three players at Nash equilibrium

cosθ1 = cosθ2 = cosθ3, (3)

where θ1, θ2 and θ3 are the angles between W
′

and W , W
′′

and W , and W
′′′

307

and W , respectively.308

4.2. Standardization of the System Model309

The system model in Eq. (2) for the general weight vector is a linear com-310

bination of the three weight vectors. However, depending on the values of the311

three coefficients αi, βi and γi, there would be infinite number of such linear312

combinations. This complicates the problem solving. To simplify the problem313

solving, the following Theorem gives a standard form for the system model.314

Theorem 1. A linear combination of three vectors W
′

i , W
′′

i and W
′′′

i through
three non-negative coefficients that are not all zero can be standardized as

Wij = αiW
′

ij + βiW
′′

ij + γiW
′′′

ij , αi, βi, γi ∈ [0, 1], αi + βi + γi = 1. (4)

315

Proof. Consider a linear combination of three weight vectors through any values
of three non-negative coefficients α∗

i , β
∗
i and γ∗

i that are not all zero. This gives
the system model in Eq. (2). It follows from Eq. (2) that

W∗

i,j

α∗

i
+β∗

i
+γ∗

i

=
α∗

i

α∗

i
+β∗

i
+γ∗

i

W
′

i,j +
β∗

i

α∗

i
+β∗

i
+γ∗

i

W
′′

i,j +
γ∗i

α∗

i
+β∗

i
+γ∗

i

W
′′′

i,j . (5)

Define

Wi,j =
W∗

i,j

α∗

i
+β∗

i
+γ∗

i

, αi =
α∗

i

α∗

i
+β∗

i
+γ∗

i

, βi =
β∗

i

α∗

i
+β∗

i
+γ∗

i

, γi =
γ∗

i

α∗

i
+β∗

i
+γ∗

i

(6)

Substituting Eq. (6) into Eq. (5) gives the results in Eq. (4).316

4.3. Nash Equilibrium of the Three Weight Vectors317

After the system model is standardized, the game balance can be discussed318

based on the standarized system model. We have the following theorem on Nash319

equilibrium for the standardized system model.320

Theorem 2. For the standardized model in Eq. (4), its Nash equilibrium is

W
′

i ·Wi
∥

∥W
′

i

∥

∥

=
W

′′

i ·Wi
∥

∥W
′′

i

∥

∥

=
W

′′′

i ·Wi
∥

∥W
′′′

i

∥

∥

. (7)

321

Proof. The angles between the general weight vector Wi and the three weight
vectors W

′

i , W
′′

i and W
′′′

i are respectively given by

cosθ1 =
Wi ·W

′

i

‖Wi‖ ·
∥

∥W
′

i

∥

∥

, cosθ2 =
Wi ·W

′′

i

‖Wi‖ ·
∥

∥W
′′

i

∥

∥

, cosθ3 =
Wi ·W

′′′

i

‖Wi‖ ·
∥

∥W
′′′

i

∥

∥

. (8)

The Nash equilibrium is the point that satisfies Eq. (3), i.e., cosθ1 = cosθ2 =322

cosθ3. From Eqs. (8) and (3), we have the results in Eq. (7).323
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4.4. Coefficients of the Linear Combination at Nash Equilibrium324

With Theorem 2, we are now ready to derive the coefficients for the stan-325

dardized linear combination given in Theorem 1 to achieve Nash equilibrium.326

Theorem 3. Consider the general weight vector Wi = (wi,0, · · · , wi,j, · · · ,
wi,m−1) and the three weight vectors W ′

i = (w′
i,0, · · · , w

′
i,j, · · · , w′

i,m−1),
W ′′

i = (w′′
i,0, · · · , w

′′
i,j, · · · , w

′′
i,m−1), W

′′′
i = (w′′′

i,0, · · · , w
′′′

i,j, · · · , w
′′′

i,m−1).

When Wi is derived from the linear combination of W
′

i , W
′′

i and W
′′′

i through
Eq. (4), then Nash equilibrium is achieved for the three weight vectors when the
three coefficients αi, βi and γi are set as follows

αi =
1

2
·

√

∑m−1
j=0 w

′′

i,j

2
+
√

∑m−1
j=0 w

′′′

i,j
√

∑m−1
j=0 w

′

i,j

2
+
√

∑m−1
j=0 w

′′

i,j

2
+
√

∑m−1
j=0 w

′′′

i,j

2
,

βi =
1

2
·

√

∑m−1
j=0 w

′

i,j

2
+
√

∑m−1
j=0 w

′′′

i,j
√

∑m−1
j=0 w

′

i,j

2
+
√

∑m−1
j=0 w

′′

i,j

2
+
√

∑m−1
j=0 w

′′′

i,j

2
,

γi =
1

2
·

√

∑m−1
j=0 w

′

i,j

2
+
√

∑m−1
j=0 w

′′

i,j
√

∑m−1
j=0 w

′

i,j

2
+
√

∑m−1
j=0 w

′′

i,j

2
+
√

∑m−1
j=0 w

′′′

i,j

2
.

(9)

327

Proof. From Eq. (7) in Theorem 2, we have
(αiW

′
i + βiW

′′
i + γiW

′′′
i ) ·W ′

i

‖W ′
i‖

=

(αiW
′
i + βiW

′′
i + γiW

′′′
i ) ·W ′′

i

‖W ′′
i ‖

=
(αiW

′
i + βiW

′′
i + γiW

′′′
i ) ·W ′′′

i

‖W ′′′
i ‖

. This gives

(αiW
′
i + βiW

′′
i + γiW

′′′
i ) ·W ′

i · ‖W
′′
i ‖ · ‖W

′′′
i ‖

= (αiW
′
i + βiW

′′
i + γiW

′′′
i ) ·W ′′

i · ‖W
′
i ‖ · ‖W

′′′
i ‖

= (αiW
′
i + βiW

′′
i + γiW

′′′
i ) ·W ′′′

i · ‖W
′
i ‖ · ‖W

′′
i ‖ .

It follows that αi =

∥

∥W
′′

i

∥

∥+
∥

∥W
′′′

i

∥

∥

‖W ′

i ‖+‖W
′′

i ‖+‖W
′′′

i ‖
, βi =

∥

∥W
′

i

∥

∥+
∥

∥W
′′′

i

∥

∥

‖W ′

i ‖+‖W
′′

i ‖+‖W
′′′

i ‖
, and γi =328

∥

∥W
′

i

∥

∥+
∥

∥W
′′

i

∥

∥

‖W ′

i ‖+‖W
′′

i ‖+‖W
′′′

i ‖
. From these relationships, we obtain Eq. (9).329

4.5. An Example of Using the Three Theorems330

Consider the example shown in Table 2. The linear combination given in331

Theorem 1 is employed to derive the general weight vector from the space,332

energy and data weight vectors. Using the results in Theorem 3, we achieve333

Nash equilibrium when setting αi = 0.385, βi = 0.249, and γi = 0.369. From334

these settings, we further obtained general weights in Table 3, where the boxed335

cells with asterisk (*) belong to the same cluster.336

From Table 3, the node at (2,1) has the maximum general weight 5.89 and337

thus is chosen as the cluster core. Then, a multicast tree with a balanced338

consideration of all the three factors can be built for data aggregation and339

traffic routing in the sensor grid network.340
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Table 3: The general weight vector W derived from the three weight vectors at Nash equilib-
rium. The boxed cells with asterisk (*) belong to the same cluster.

X=0 X=1 X=2 X=3 X=4 X=5 X=6

Y=6 0 0 2.27* 1.71* 3 0 0

Y=5 0 1 3 4 1 0.39* 0

Y=4 0 0 6.29* 6 5 1 0

Y=3 2.31* 1 3 4 3 3 0

Y=2 2 3.238* 5.10* 3 5 7 1

Y=1 1 3 5.89* 3 0 0 3.64*

Y=0 0 1 4 3.11* 0 0 0

4.6. Extension for Arbitrary Linear Combination Coefficients341

So far, the multi-factor multicast problem has been investigated through
a standardized system model given in Eq. (4) in Theorem 1. For a specific
application, one may expect to weigh a factor more heavily. Additional weights
α+
i , β

+
i and γ+

i can be introduced to the space, energy and data factors, where
α+
i , γ

+
i , γ+

i ≥ 0, α+
i + γ+

i + γ+
i 6= 0. Thus, we have an extended model as

W+
i,j = α∗

i · α
+
i ·W

′

i,j + β∗
i · β

+
i ·W

′′

i,j + γ∗
i · γ

+
i ·W

′′′

i,j ,

α∗
i , β

∗
i , γ

∗
i ∈ [0, 1], α∗

i + β∗
i + γ∗

i = 1,
α+
i , γ

+
i , γ

+
i ≥ 0, α+

i + γ+
i + γ+

i 6= 0.

(10)

Denote

Wi,j =
W+

i,j

α∗
i · α

+
i + β∗

i · β
+
i + γ∗

i · γ
+
i

, αi =
α∗
i · α

+
i

α∗
i · α

+
i + β∗

i · β
+
i + γ∗

i · γ
+
i

,

βi =
β∗
i · β

+
i

α∗
i · α

+
i + β∗

i · β
+
i + γ∗

i · γ
+
i

, γi =
γ∗
i · γ

+
i

α∗
i · α

+
i + β∗

i · β
+
i + γ∗

i · γ
+
i

.

(11)

Then, the extended system model in Eq. (10) is reduced to the standard model342

given in Eq. (4) in Theorem 1. Therefore, the theoretical results derived in343

Theorems 1 to 3 can be applied to the extended system scenario.344

4.7. Extension to More Than Three Dimensions345

FoeM -dimensional factors, whereM > 3, considerM weight vectorsW 1
i,j , · · · ,W

m
i,j .

An extended linear combination of these M weight vectors is defined as

W ∗
i,j = α

(1∗)
i W

(1)
i,j + · · ·+ α

(l∗)
i W

(l)
i,j + · · ·+ α

(m∗)
i W

(m)
i,j ,

α
(1∗)
i , · · · , α

(l∗)
i , · · · , α

(m∗)
i ≥ 0,

∑m

k=1 α
k∗
i 6= 0,

(12)

where α
(1∗)
i , · · · , α

(l∗)
i , · · · , α

(m∗)
i are coefficients.346
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Similar to the results in Theorem 1, the following standardized system model
can be derived for the extended M -dimensional model in Eq. (12):

Wi,j = α
(1)
i W

(1)
i,j + · · ·+ α

(l)
i W

(l)
i,j + · · ·+ α

(m)
i W

(m)
i,j ,

α
(1)
i , · · · , α

(l)
i , · · · , α

(m)
i ∈ [0, 1],

∑m
k=1 α

k
i = 1,

(13)

where α
(1)
i , · · · , α

(m)
i are standardized coefficients. Its Nash equilibrium is

Wi ·W
(1)
i

∥

∥

∥
W

(1)
i

∥

∥

∥

. . . =
Wi ·W

(l)
i

∥

∥

∥
W

(l)
i

∥

∥

∥

. . . =
Wi ·W

(m)
i

∥

∥

∥
W

(m)
i

∥

∥

∥

. (14)

The corresponding weigh vector coefficients at Nash equilibrium are given by















































































α
(1)
i =

√

∑

m−1

j=0
w

(2)
i,j

2
+...+

√

∑

m−1

j=0
w

(m)
i,j

2

(√

∑

m−1

j=0
w

(1)
i,j

2
+...+

√

∑

m−1

j=0
w

(l)
i,j

2
+...+

√

∑

m−1

j=0
w

(m)
i,j

2
) ,

· · ·

α
(l)
i =

√

∑

m−1

j=0
w

(1)

i,j

2
...

√

∑

m−1

j=0
w

(l−1)

i,j

2
+

√

∑

m−1

j=0
w

(l+1)

i,j

2
...

√

∑

m−1

j=0
w

(m)

i,j

2

(
√

∑

m−1

j=0
w

(1)

i,j

2
+...+

√

∑

m−1

j=0
w

(l)

i,j

2
+...+

√

∑

m−1

j=0
w

(m)

i,j

2
) ,

· · ·

α
(m)
i =

√

∑

m−1

j=0
w

(1)

i,j

2
+...+

√

∑

m−1

j=0
w

(m−1)

i,j

2

(
√

∑

m−1

j=0
w

(1)

i,j

2
+...+

√

∑

m−1

j=0
w

(l)

i,j

2
+...+

√

∑

m−1

j=0
w

(m)

i,j

2
) .

(15)

5. Algorithm Design347

To implement the theoretical results derived above, five algorithms are de-348

signed in this section: 1) cluster formation algorithm, 2) related weight vectors349

generation algorithm, 3) least weighted path tree algorithm, 4) multicast routing350

algorithm, and 5) general finite M-dimensional vectors algorithm.351

5.1. Cluster Formation Algorithm352

The cluster formation algorithm clusters the sensor nodes in terms of static353

delay distance. It is shown in Algorithm 1.354

Initially, the sensor nodes are split into several clusters through management355

nodes (MN). The cluster size is usually configured as an integer S = (k, 3k− 1).356

The expression (k, 3k− 1) represents a random constant between k and 3k− 1,357

and a typical value of k is k = 3 as in the NICE protocol [14]. After this358

initial clustering process, the nodes that have not been assigned are marked as359

unassigned. All unassigned nodes form the node set G, which is the input of360

the Cluster Formation Algorithm.361

In the cluster formation algorithm, as long as there are unassigned nodes362

(Line 1), the algorithm keeps executing the cluster formation process. Each363
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Algorithm 1: Cluster formation

Input: The RP and unassigned group member set: G = {U0, · · · , Ul−1}
Output: Cluster set: C;

1 while G is not empty do
2 while ClusterSize ≤ 3k − 1 do

// circle for cluster to generate CS-Cluster-No:

Ci = (ci,0, ci,1, · · · , ci,−1).
3 RP selects the left lowest end host U in G;
4 Add this host U to CS-Cluster-No and remove it from G;
5 for j = 0 to m− 1 do

// m is the # of dimensions

6 RP selects the unassigned closest member in the j-th
dimension;

7 Add this member to CS-Cluster-No and remove it from G;
8 for i = 0 to j − 1 do
9 MN selects the closest unassigned member in sub-grid

ki × kj ;
10 Adds this member to CS-Cluster-No and remove it from G;

11 MN selects the closest unassigned member in grid ki × kj ;
12 Adds this member to CS-Cluster-No and remove it from G;

13 Increment CS-Cluster-No by 1;

cluster is filled with 3k − 1 sensor nodes (Line 2). In the clustering, the MN364

initially selects the left lowest end node (say U) among all unassigned nodes365

(Line 3). The left lowest node U is the node with the minimum coordinates366

along m dimensions among all nodes in the unassigned node set G. It is added367

to the cluster, and removed from the unassigned node set G (Line 4). Then,368

the same operation is conducted in m dimensions (Lines 5-7). For each of the369

dimension, also search a sub-grid, add the node to the cluster and marked it as370

signed (Lines 9 and 10). After that, check the sub-grid including the boundary,371

add the node to the cluster and remove it from set G (Lines 11 and 12)372

After the sensor nodes are scattered into different clusters, a tree can be373

built to connect cluster members with one another. Then, other factors are also374

considered for optimization of the cluster tree. Different clusters are connected375

by hooking the tree roots. For example, in Energy factor algorithms LEACH and376

TEEN, each node needs to rotate the cluster core based on its energy situation.377

This achieves a balance energy consumption for all nodes in the cluster. LEACH378

and TEEN deploys a randomized rotation of cluster heads to evenly distribute379

the energy load among all sensor nodes.380

5.2. Related Weight Vectors Generation Algorithm381

This algorithm generates the space, energy and data weight vectors W
′

, W
′′

382

and W
′′′

, respectively. It also generates the space, energy and data cores ci,a,383
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ci,b and ci,c, respectively. The algorithm is illustrated in Algorithms 2 and 3. It384

consists of six main steps, as described below in detail.385

Step 1). Find the spatial center core Ci,a in every cluster C
′

i . This386

step is shown in Algorithm 2. Each cluster will have a spatial center node as387

the space core. If only the space factor is considered, the space core can be the388

root of the multicast tree in the cluster. Consider selecting a spatial core in389

each cluster such that the sum of the static delay distances to all other cluster390

members is minimized. The following theorem gives a sufficient and necessary391

condition for an optimal selection.392

Algorithm 2: Relative Weighted Vectors Generation - Step 1)

Input: Cluster Member C;
Output: The space, energy & data weight vectors W ′,W ′′,W ′′′;

The space, energy & data cores: C∗
a , C

∗
b , C

∗
c ;

1 Step 1). Find the spatial center node (core) ci,a in every cluster Ci

2 begin
3 Initialize {a{cj}min, · · · , a{cj}t, · · · , a{cj}max} ={0, · · · , 0, · · · , 0};

// a{cj}t records the # of cluster members whose j-th coordinate

equals to (Cj)t, (Cj)min ≤ (Cj)t ≤ (Cj)max and 0 ≤ j ≤ m− 1.

4 for k = 0 to n
′

− 1 do
5 if the j-th coordinate of Ck is equal to (Cj)td then
6 a(cj)t ← a(cj)t + 1;

7 for i = 0 to n
′

− 1 do
8 for j = 0 to m− 1 do

9 if
(∣

∣

∣

∑Ci,j

l=(Ci)min
at −

∑(Cj)max

i=Ci,j
at

∣

∣

∣
≤ a(Ci,j)

)

then

10 C∗
j ← C∗

i,j ; j ← j + 1;

11 else
12 j ← m− 1; i← i + 1;

13 C∗
a = {c∗0,a, · · · , c

∗
m−1,a};

Theorem 4. Let U be the cluster member that occupies the node (u0, · · · , uj,
· · · , um−1) in an m-D grid. Also let n>j, n<j and n=j be the numbers of cluster
members with the J-th coordinates greater than (right nodes of J-th row), less
than (left nodes of J-th row), and equal to uj (nodes just on the J-th row),
respectively. Then, U is the spatial center node if and only if the following
inequalities hold simultaneously:

|n<j − n>j| ≤ n=j , j = 0, 1, · · · ,m− 1. (16)

393

Proof. Assume U = (u0, · · · , uj, · · · , um−1) is a spatial center node. Then, for394

any member U
′

in the sensor grid network, there exists static delay distance395
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f(U) ≤ f(U
′

). To achieve inequalities in (16), we firstly consider a node U
′

=396

(u0, · · · , uj+1, · · · , um−1) and its multicast static delay distance f(U
′

). Given397

any member Ui = (ui,0, · · · , ui,j , · · · , ui,m−1) and uj ≤ ui,j , the distance from398

Ui to the end host U is one unit longer than that from Ui to the node U
′

.399

Similarly, it is seen that to any member Ui = (ui,0, · · · , ui,j , · · · , ui,m−1)400

and ui,j ≤ uj , the distance from Ui to the end host U is one unit shorter than401

the distance from Ui to U
′

. There exist (n>uj
+ n=uj

) members whose J-th402

coordinates are larger than or equal to uj, and n<uj
cluster members whose403

J-th coordinates are less than Uj .404

Then, it is concluded that 0 ≤ f(u
′

) − f(u) =
∑n

′

j=0(d(u
′, uj) − d(u, uj))405

= n>Uj
+ n=Uj

− n<Uj
. This gives n<Uj

− n>Uj
≤ n=Uj

. By comparing406

f(u0, · · · , uj−1, · · · , um−1) with f(U) in the same way as above, the inequalities407

in (16) can be achieved. The condition in Theorem 4 is a sufficient condition.408

It is easy to demonstrate that if inequalities in (16) are violated, then U409

cannot be the spatial center nodes. Assume n>uj
−n<uj

> n=uj
. Then, n>uj

>410

n<uj
+ n=uj

. Let us firstly consider node U
′

= (u0, · · · , uj+1, · · · , um−1) and411

its multicast static delay distance f(U
′

). Given any member Ui = (ui,0, · · · ,412

ui,j, · · · , ui,m−1) and uj ≤ ui,j , the distance from Ui to the end host U is one413

unit longer than the distance from Ui to U
′

. Similarly, it is also seen that to414

any member Ui = (ui,0, · · · , ui,j, · · · , ui,m−1) and ui,j ≤ uj, the distance from415

Ui to the node U is one unit shorter than the distance from Ui to U
′

. Thus,416

f(u) − f(u
′

) =
∑n

′

i=0(d(u, ui) − d(u
′

, ui)) = n<uj
+ n=uj

− n>uj
> 0. This417

means f(u) > f(u
′

). Therefore, the distance from U to those end nodes is418

longer than to some other end nodes. However, this is a desired contradiction.419

The condition in Theorem 4 is a necessary condition.420

The physical meaning of the theorem is shown in Fig. 3. For the sensor grid421

in the figure, we process the nodes on X axis first. For example, N=2 = 4,422

indicating there are 4 nodes on the second column: (2, 6), (2, 4), (2, 2), (2, 1).423

N<2 = 2, implying that there are 2 nodes to the left of the second row: (0, 3),424

(1, 2). N>2 = 4, meaning that there are 4 nodes to the right of second row425

(3, 6), (3, 0), (5, 5), (6, 1). It follows that |n<2 − n>2| ≤ n=2. The condition in426

Theorem 4 is satisfied. Thus, N=2 is an optimal choice for the core on the X427

axis. Similarly, the same process is applied to Y axis. Considering the results428

from both the X and Y axes, we find that node (2, 2) is the best central core.429

It is worth mentioning that in Step 1) of Algorithm 2, Lines 4-6 can be430

executed in time complexity O(n). Lines 7-12 can be improved by using a431

binary search algorithm that yields O(ln(n)) complexity. In our example, linear432

search has been demonstrated for simplicity.433

Step 2). Calculate the space weight vector W
′

i,j for every node434

(Lines 1-10 in Algorithm 3). Initially, when considering the space factor only,435

the system establishes a multicast tree to transmit data packets. The tree is436

established according to the space weights of the sensor nodes. The root of the437

tree is the space root. The tree should maximize the sharing of the utilization438
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Figure 3: Shortest Path Area Nodes (SPAN) in a 2 −D sensor grid networks. For example:
the node (2; 4) is 4 node’s SPAN: (2; 6), (3; 6), (5; 5), (2; 4). The rectangle means shortest
path area, and the space core is (2; 2), so that the node (2; 4) is in the rectangles of 4 nodes
of the space core.

of the link within the clusters. Our algorithm uses the following concepts:439

1) Shortest Path Area Nodes (SPANs): For any two nodes (x0, y0) and (x1, y1),440

let Xmin = min{x0, x1}, Xmax = max{x0, x1}, Ymin = min{y0, y1} and441

Ymax = max{y0, y1}. They uniquely define a rectangle area [x0, y0] ×442

[x1, y1]. Each node (x, y) is in [x0, y0] × [x1, y1]. If the node is on one of443

the shortest paths between (x0, y0) and (x1, y1), it is referred to as the444

shortest path area node (SPAN) between (x0, y0) and (x1, y1).445

2) SPANs of a cluster: When a tree is built in the cluster of size n, all nodes446

ci(xi, yi), (i ∈ [0, n−1]) in the SPAN area [x0, y0]×[xi, yi] covering the core447

(i.e., the root of the tree) c∗(x∗, y∗) are SPAN nodes of ci. For example, in448

Fig. 3, if the core is the node (2, 2), all nodes in the area [2, 2]× [5, 5] are449

the SPAN nodes of this cluster member (core). A node may be a SPAN450

node of multiple cluster members.451

3) The space weight of a node: If a node is a SPAN node of k cluster members,452

it is assigned a weight k. The upper part of Table 3 lists the space weights453

of all nodes in Fig. 2(a). As an example, in Fig. 3, the node (2, 4) is in the454

SPAN area of four nodes (2, 6), (3, 6), (5, 5), (2, 4). Thus, it is a SPAN455

of those four nodes. The weight of this node (2, 4) is 4, indicating that 4456

cluster members may pass through node (2, 4) to the cluster core (2, 2) by457

the shortest paths. For node (2, 2), its weight is 10.458

In general, the greater the space weight is, the nearer the node is to the459

core. If the space weight of a node is k, then there are k nodes that must pass460
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Algorithm 3: Relative Weighted Vectors Generation - Steps 2) to 6)

1 Step 2). Calculate the space weight vector W
′

j for every node

2 begin
3 Initialize T ← {}; For any node Ci = (ci,0, ci,1, · · · , ci,m−1) with

(Cj)min ≤ (Cj)t ≤ (Cj)max, initialize its weight W ′
c,j ← 0;

4 for j = 0 to n
′

− 1 do

5 for i = 0 to n
′

− 1 do
6 if Ci is a SPAN node of Cj = (Cj,0, Cj,1, · · · , Cj,m−1) then

7 W
′

c,j ←W
′

c,j + 1;

8 W ′ = {W ′
0 = (w′

0,0, w
′
0,1, · · · , w

′
0,m−1), · · · ,

9 W ′
i = (w′

i,0, w
′
i,1, · · · , w

′
i,m−1), · · · ,

10 W ′
n
′−1 = (wn

′−1,0, w
′
n
′−1,1, · · · , w

′
n
′−1,m−1)}, i = 0, · · · , n

′

− 1;

11 Step 3). Find the energy weight W
′′

i,j for every node in cluster cj
12 begin
13 In all members C = {C0 = (C0,0, C0,1, · · · , C0,m−1), · · · ,

Ci = (Ci,0, Ci,1, · · · , Ci,m−1), · · · , Cn
′−1=(Cn

′−1,0, Cn
′−1,1,

· · · , Cn
′−1,m−1)}, i = 0, · · · , n

′

− 1, search the energy weight vector

W
′

j foe every node;

14 W ′′ = {W ′′
0 = (w′′

0,0, w
′′
0,1, · · · , w

′′
0,m−1), · · · ,

W ′′
i = (w′′

i,0, w
′′
i,1, · · · , w

′′
i,m−1), · · · ,

W ′′
n
′−1 = (w′′

n
′−1,0, w

′′
n
′−1,1, · · · , w

′′
n
′−1,m−1)}, i = 0, · · · , n

′

− 1;

15 Step 4). Find the max energy node in W
′′

i,j in each core Ci,b of every
cluster

16 Find the maximal energy node in W
′′

i,j , C
∗
b = (c∗0,b, · · · , c

∗
m−1,b);

17 Step 5). Find the data weight W
′′′

i,j for every node in cluster Cj

18 begin
19 In all members C = {C0 = (C0,0, C0,1, · · · , C0,m−1), · · · ,

Ci = (Ci,0, Ci,1, · · · , Ci,m−1), · · · ,

Cn
′−1 = (Cn

′−1,0, Cn
′−1,1, · · · , Cn

′−1,m−1)}, i = 0, · · · , n
′

− 1],

search the data weight vector of every node W
′

j ;

20 W ′′′ = {W ′′′
0 = (w′′′

0,0, w
′′′

0,1, · · · , w
′′′

0,m−1), · · · ,
W ′′′

i = (w′′′
i,0, w

′′′
i,1, · · · , w

′′′
i,m−1), · · · ,

21 W ′′′
n
′−1 = (w′′′

n
′−1,0, w

′′′
n
′−1,1, · · · , w

′′
n
′−1,m−1)}, i =

0, · · · , n
′

− 1;

22 Step 6). Find the node with the maximal data weight W
′′′

i,j as the data
core Ci,c in every cluster

23 Find the maximal data node in W
′′′

i,j , C
∗
c = (c∗0,c, · · · , c

∗
m−1,c);
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through this node to the space core for data transmissions. Thus, the weight of461

the node represents the degree of the closeness of the node to the core.462

Step 3). Find the energy weight W
′′

for every node in cluster Ci463

(Lines 11-14 in Algorithm 3). After the space weight vector W
′

i,j is determined,464

the system periodically checks the energy status of every node. Then, it gener-465

ates the energy weight accordingly. An example of energy weights is shown in466

the middle part of Table 3.467

Step 4). Find the node with the maximal energy weight in W
′′

i,j468

as the energy core ci,b in every cluster (Lines 15 and 16 in Algorithm 3).469

From the energy weights in the middle part of Table 3, node B(2, 4) has the470

maximal energy weight 10. It is chosen as the energy core.471

Step 5). Find the data weight W
′′′

for every node in cluster Ci472

(Lines 17 to 21 in Algorithm 3). The system generates data weights in a similar473

way to that for energy weight generation in Step 3). The resulting data weights474

are shown in the lower part of Table 3.475

Step 6). Find the node with the maximal data weight in W
′′′

i,j as the476

data core ci,c in every cluster (Lines 22 and 23 in Algorithm 3). According477

to the data weights in the lower part of Table 3, node B(2, 1) has the maximal478

value data weight 10. Therefore, it is selected as the data core.479

5.3. Least weighted path tree generation algorithm480

From Algorithms 2 and 3, the related weighted vectors W
′

, W
′′

and W
′′′

481

have been generated. The space, energy, and data cores ci,a, ci,b and ci,c have482

also been found. Then, the least weighted path tree generation algorithm inte-483

grates W ′, W ′′ and W ′′′ to form a single weight vector W = f(W
′

,W
′′

,W
′′′

).484

As discussed in Section 4, a linear combination of the three weight vectors is485

used in our work, i.e., W = αW
′

+βW
′′

+γW
′′′

, as described in the standardized486

system model in Eq. (4) in Theorem 1. Three linear combination coefficients487

α, β, and γ are determined at Nash equilibrium according to Theorems 2 and488

3. Finally, the algorithm presents the least weighted path tree as a hierarchical489

multicast tree. The whole process of the least weighted path tree generation490

algorithm is described in Algorithm 4, which is self-explained.491

5.4. Multicast Routing algorithm492

Following the determination of the general weight vector and its coefficients493

in Algorithm 4, the multicast routing algorithm is activated. Shown in Algo-494

rithm 5, the multicast routing algorithm builds a multicast tree for each cluster495

to connect the cluster members. After that, the algorithm connects different496

clusters by hooking the roots of the trees.497

5.5. General Finite M -dimensional Vector Algorithm498

Extending the three-factor scenario to finite M -dimensional factors, the the-499

oretical results developed in Section 4.7 are also implemented. The implemen-500

tation is described in a General Finite M -dimensional Vector Algorithm, as501

shown in Algorithm 6, which is self-explained. For every cluster, the algorithm502
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Algorithm 4: Least Weighted Path Tree Generation

Input: The space, energy and data weight vectors W
′

,W
′′

,W
′′′

;
The space, energy and data cores: C∗

a , C
∗
b , C

∗
c ;

Output: Tree T {}
1 begin
2 Tree T ← {}, node weight W ← 0; /* Initialization */
3 for i = 0 to n− 1 do
4 Calculate αi, βi and γi from Eq. (9);

5 Calculate Wi = αiW
′

i + βiW
′′

i + γiW
′′′

i ;

6 Choose the node with the maximal weight in Wi in every cluster;
7 Set this node as cluster core C∗ = (c∗0, · · · , c

∗
m−1);

8 for i = 0 to n− 1 do
9 Select the shortest path P =< (C∗

0 , · · · , C
∗
(m−1)), · · · , (C

∗
i,0, · · · ,

C∗
i,(m−1)) > with the maximum weight; add this path to tree T ;

Algorithm 5: Multicast Routing

1 Source node s sends its multicast messages to its cluster core c0;
2 The cluster core c0 sends the messages to all other cores ci;
3 c0 routes the messages to its own cluster members along the cluster tree;
4 Upon receiving the multicast messages, all cluster cores ci transmit them

along the cluster trees to all cluster members mi within the clusters.

Algorithm 6: General Finite M-Dimensional Vectors

1 Divide the group members into clusters in terms of static delay distance;

2 Calculate the finite M-dimensional weight vector W
(1)
i,j , · · · ,W

(m)
i,j ;

3 Build a game balance relationship equation, resolve linear parameters,
make out a new weight vector according to the algebraic sum of the
M-dimensional known vectors, and generate the least weighted path

tree: α
(1)
i , · · · , α

(m)
i ;

4 Dispatch the multicast packets in the group on the basis of the tree.

calculates the finite M-dimensional weight vectors. Then, for each cluster, it503

generates the least weighted path tree. The trees for all clusters are connected504

to form a complete tree for dispatching multicast packets.505

6. Performance Evaluation506

This section evaluates the performance of our game balance based approach.507

It starts with descriptions of evaluation criteria and benchmark methods [33].508
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Then, experimental configurations, settings and scenarios are discussed. After509

that, experimental results are presented under various scenarios.510

6.1. Evaluation Criteria and Benchmark Methods511

Three performance metrics are used to quantify the performance of data512

aggregation and multicast routing. They are average multicast delay, average513

number of used links, and average packet arrival rate. The delay performance514

characterizes the timeliness of the communications. The number of used links515

for message multicast to all group members marks the amount of used resources.516

The packet arrival rate implies the reliability of data transmissions.517

Our game balance based approach will be compared with some benchmark518

methods. The popularly used DCXYP, which considers the space factor only,519

is chosen as the SPACE-based benchmark method. The well adopted LEACH520

and TEEN methods, which consider the energy factor only, are selected as521

ENERGY-based benchmark methods. The DATA-based benchmark method is522

designed to consider the data factor only with involvement of data quantity,523

query hot degree and semantic cache value.524

6.2. Experimental Configurations, Setting and Scenarios525

Our experiments consider a 2D sensor grid network in an office building526

environment. There are 360 mobile phones in the network. Each cluster includes527

eight mobile phones. The network system will build a multicast tree to link all528

these mobile phones for query message transmission.529

Other network configurations and settings are given below. The system runs530

on a group of 40 IBM four-core PCs. The dataset is transferred to a 2D grid531

configuration of 1 km by 1 km. The number of mobile devices varies from 0 to532

200, and the locations of those mobile devices are randomly generated. The data533

(weight) for each of the nodes is also randomly generated in the range from 1 to534

10 units by following the Poisson distribution model. Similarly, energy weight535

for each node is randomly generated as well, and it decays over time based536

on the operation of the node. The underlying routing protocol is AODV. The537

bandwidth of the wireless communications is 10 Mbps for each link. During the538

simulation, 100 and 10, 000 multicast packets are randomly generated for light539

and heavy traffic load, respectively. The average size of the packets is 2,400540

bytes. From the packet generation, the average delay for transmitting a packet541

on a defined link is about 1 sec. As the system is highly dynamic, a periodic542

calculation of the multicast tree is necessary with the period being defined as 60543

sec. Furthermore, the Time energy unite, which means the operating duration544

rate that an energy unit can support, is set to be 10.545

To investigate the energy factor, we use a variable, Energy degree, to quan-546

tify the level of energy in each node. In the experiments, Energy degree is de-547

signed to have 10 levels from 1 to 10. The system sets a model Time Energy Threshold548

TET = Energy degreeWeight energy∗T ime energy unite, whereWeight energy549

is the value of energy the node attaining. Once t ≻ TET is reached, the node550

is withdrawn from the system.551
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Another variable, Proportion degree, is also introduced to represent the de-552

gree of difference of the proportions of multiple factors. It is characterized by 10553

levels from 1 to 10. In this paper, only the following three levels are presented:554

1) Proportion level 1: 45% of space, 10% of energy, 45% of data;555

2) Proportion level 3: 33% of space, 33% of energy, 33% of data; and556

3) Proportion level 5: 25% of space, 50% of energy, 25% of data.557

Proportion level 3 gives an equal weight for all three factors.558

6.3. Experimental Results under Different Proportion degree Values559

The first set of experiments is carried out under a fixed Energy degree of560

3. The Proportion degree takes the values of 1, 3 and 5, as specified above.561

Light and heavy traffic scenarios are considered in evaluating the five types of562

methods: SPACE, ENERGY , DATA, our Previous work [9], and Our work563

in this paper. The results are shown in Figs. 4 through to 9.564

Figs. 4 and 5 show Average Multicast Delay for the five types of methods.565

It is seen from these figures that our approach in this paper displays mostly566

smaller multicast delays on average in both light and heavy traffic scenarios.567

The results of Average Number of Used Links and Average Packet Arrival568

Rate are depicted in Figs. 6 and 7, and Figs. 8 and 9, respectively, in light and569

heavy traffic conditions. These figures show that our approach in this paper570

clearly outperforms the others types of methods in the sense that it uses fewer571

links and also achieves high packet arrival rate performance.572

6.4. Experimental Results under Different Energy degree Levels573

The second set of experiments is conducted under a fixed Proportion degree=574

3 (an equal weight for all three factors). The Energy degree takes values of 3,575

5 and 7. Five different types of methods are compared: SPACE, ENERGY ,576

DATA, Previous work [9] and Our work in this paper. The results are shown in577

Figs. 10 through to 12 for heavy traffic conditions. Simulation results for light578

traffic conditions are omitted here because the the conclusions drawn from the579

results are mostly similar to those drawn from heavy traffic scenarios.580

Among these five methods, the DATA approach is much poorer than the581

other four methods. DATA usually suits the scenarios in which data quantity582

is much more concentrated in a few important nodes. For better observation of583

the experiment results, we have omitted DATA in the figures.584

Fig. 10 presenta the results of average multicast delay under light and heavy585

traffic load scenarios, respectively. It is seen from these two figures that our586

approach mostly outperforms the other types of methods in terms of the Average587

Multicast Delay performance.588

The results of Average Number of Used Links are depicted in Fig. 11. They589

shows that in both light and heavy traffic load conditions, our approach mostly590

uses fewer links on average than the other methods do.591

Fig. 12 demonstrate the results of Average Packet Arrival Rate. It is ob-592

served from the figures that in both light and heavy traffic load environments,593

our approach is mostly superior to the other methods in the sense that it achieves594

higher average packet arrival rates over the time.595
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Figure 4: Average Multicast Delay performance in light traffic condition for five types of
methods: SPACE, ENERGY , DATA, our Previous work [9] and our work in this paper
(from top to bottom: Proportion degree=1, 3 and 5, respectively).

7. Conclusion596

An effective and efficient multicast routing approach has been presented in597

this paper. A significant feature of the approach is the simultaneous consid-598

eration of three factors of space, energy and data. This makes the approach599

multi-factor aware. Integrating all the three factors into a unified model, the600

approach has also derived a theoretical solution to the multicast problem from601
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Figure 5: Average Multicast Delay performance in heavy traffic condition for four types of
methods: SPACE, ENERGY , our Previous work [9] and our work in this paper (from top
to bottom: Proportion degree=1, 3 and 5, respectively).

the game balance perspective, particularly at Nash Equilibrium. This ensures602

a fair treatment of all the three factors without a bias to a specific factor.603

Moreover, the approach can be easily extended to simpler or more complicated604

scenarios, such as two factors, more than three factors, and a heavier weight to605

a specific factor. All these features make the presented approach distinct from606

existing methods.607

The theoretic results and algorithms of the resented approach have been608
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Figure 6: Average Number of Used Links in light traffic load for five types of methods:
SPACE, ENERGY , DATA, our Previous work [9] and our work in this paper (from top to
bottom: Proportion degree=1, 3 and 5, respectively).

evaluated comprehensively. Three criteria have been used to characterize the609

performance of our approach and benchmark methods. In some extreme con-610

ditions, existing methods designed exclusively for such conditions show advan-611

tages. However, in practical applications, network environments, energy level612

and traffic load change over time. Considering all these dynamic changes, the613

approach presented in this paper has demonstrated mostly better performance614
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Figure 7: Average Number of Used Links in heavy traffic load for four types of methods:
SPACE, ENERGY , our Previous work [9] and our work in this paper (from top to bottom:
Proportion degree=1, 3 and 5, respectively).

than existing methods under various conditions. It is a promising tool for data615

communications in wireless and mobile sensor grid networks.616
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Figure 8: Average Packet Arrival Rate in light traffic load for five types of methods: SPACE,
ENERGY , DATA, our Previous work [9] and our work in this paper (from top to bottom:
Proportion degree=1, 3 and 5, respectively).
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Figure 9: Average Packet Arrival Rate in heavy traffic load for four types of methods: SPACE,
ENERGY , our Previous work [9] and our work in this paper (from top to bottom: Propor-
tion degree=1, 3 and 5, respectively).
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