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Abstract—Learning from Multivariate Time Series (MTS) has
attracted widespread attention in recent years. In particular,
label shortage is a real challenge for the classification task on
MTS, considering its complex dimensional and sequential data
structure. Unlike self-training and positive unlabeled learning
that rely on distance-based classifiers, in this paper, we propose
SMATE, a novel semi-supervised model for learning the inter-
pretable Spatio-Temporal representation from weakly labeled
MTS. We validate empirically the learned representation on 30
public datasets from the UEA MTS archive. We compare it with
13 state-of-the-art baseline methods for fully supervised tasks
and four baselines for semi-supervised tasks. The results show
the reliability and efficiency of our proposed method.

Index Terms—Neural Networks, Multivariate Time Series,
Semi-supervised Learning, Representation Learning

I. INTRODUCTION

Most Multivariate Time Series (MTS) data, such as sensor
readings, are labeled during the data collection process. The
post-labeling of MTS is much more costly than classic data
(e.g., images, text, etc.) due to the low interpretability over the
real-valued sequence, leading to a considerable constraint for
MTS classification in real-life scenarios.

Weakly supervised learning becomes an alternative option
to fully supervised algorithms. The previous studies on weak-
label Time Series (TS) learning are usually based on self-
training [1] or Positive Unlabeled Learning [2] with a carefully
designed distance measure [3] or stopping criterion [4] to
learn the pseudo-labels. Besides, they mostly focus on the
Univariate Time Series (UTS) with the One-Nearest-Neighbor
(1NN) classifier on raw data space, which is widely outpaced
by today’s advanced approaches [5], such as Deep Neural
Networks (DNNs) [6] or ensemble methods [5].

From Univariate Time Series (UTS) to Multivariate Time
Series (MTS), traditional methods usually combine the com-
pact and effective features from different variables, such as
Shapelet Ensemble [7], [8], global discriminative patterns [9],
or bag-of-patterns [10], [11]. However, the predefined features
usually fail to capture MTS essentials: the temporal depen-
dency and the interactions of multiple variables (i.e., spatial
interactions1). Recently, some deep learning-based methods
were proposed to capture the MTS features with various
network structures [12], [13], showing promising performance
on MTS classification tasks. However, the above-mentioned
methods are mostly fully supervised, and rarely consider the
label shortage issue when building the MTS classifier.

1We use the term spatial in this paper to represent the variable axis.

The recent research turns to Representation Learning [14]
when handling weakly labeled MTS, which allows learning
low dimensional embeddings in an unsupervised manner, such
as using triplet loss [15] to form the embedding space, then
even an SVM classifier is powerful enough on the learned
representation [15]. However, existing techniques suffer from
three major issues. First, the interactions between the MTS
variables are generally computed on the entire 1-D series,
ignoring the fact that the local spatial interactions at the sub-
sequence level may evolve in the dynamic sequence, that is
spatial dynamics. Second, the representation learned in a
pure unsupervised manner depends mostly on the loss function
selection. As no label information is utilized to learn the
representation [15], there is a risk that it deviates from the
true features, thus affecting the classifier performance. Third,
they rather employ deep learning as a blind box and do not
focus on the interpretability of the learned representation.

Therefore, to handle both the MTS complex structure
and the label shortage problem, we propose SMATE,
Semi-supervised Spatio-temporal representation learning on
MultivAriate Time SEries. An auto-encoder based structure
allows mapping the MTS samples from raw features space X
to low dimensional embedding space H. A Spatial Modeling
Block combined with a multi-layer convolutional network
captures the spatial dynamics, whereas a GRU-based structure
extracts the temporal dynamic features. Thereby, SMATE is
capable of compressing the essential Spatio-temporal charac-
teristics of MTS samples into low-dimensional embeddings.
On top of this embedding space H, we propose a semi-
supervised three-step regularization process to bring the model
to learn class-separable representations, where both the labeled
and unlabeled samples contribute to the model’s optimization.
This regularization process comes with the capability of visu-
alization at each step, making SMATE interpretable.

We summarize the paper’s main contributions as follows:
• Spatio-temporal dynamic features in MTS: We claim

and demonstrate that the temporal dependency and the
evolution of the spatial interactions (spatial dynamics)
are important for building a reliable MTS embedding.

• Weak supervision of representation learning: With
limited labeled data, SMATE can learn reliable class-
separable MTS representations for downstream tasks,
such as MTS classification (MTSC).

• Interpretable MTS embedding learning: SMATE al-
lows for visual interpretability, not only from the class-
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separable representations but also in each step of the
semi-supervised regularization process.

• Extensive experiments on the MTS datasets: The
experiments are carried out on 30 MTS datasets from
different application domains. The detailed evaluation
with 13 supervised baselines and four semi-supervised
work is provided, which shows the effectiveness and the
efficiency of SMATE over the state of the art.

The rest of this paper starts with a review of the most related
work. Then, we formulate the problems of the paper. Later,
we present in detail our proposal SMATE, which is followed
by the experiments on real-life datasets and the conclusion.

II. RELATED WORK

A. Multivariate Time Series Representation Learning

Definition 1 (multivariate time series): A multivariate time
series (MTS) x ∈ RT×M is a sequence of real-valued vectors:
x=(x1, x2, ..., xi, ..., xT ), where xi ∈ RM , M is the variable
number. When M = 1, we call it univariate time series (UTS).

A natural way to learn MTS representation is to extend the
approaches developed earlier on UTS [16]–[18]. For instance,
[7] combines Shapelet representation from different variables
to build an ensemble-like learner. Similarly, SMTS [10] and
WEASEL+MUSE [11] adopt the symbolic features with the
Bag-of-Patterns concept to model the variable’s relationship.

Different from the interpretable feature-based representa-
tions, various deep learning models are proposed to capture the
spatial interactions in MTS. MC-DCNN [13] extracts firstly
1D-CNN features from each variable, then combines them
with a Fully Connected (FC) Layer. Whereas the authors in
[19] abandon the combination strategy but apply directly 1D-
CNN to all variables. The 2D-CNN features with the cross-
attention mechanism in CA-SFCN [6] enhanced the depen-
dencies captured by 1D-CNN on both temporal and spatial
axes. Last but not least, the hybrid LSTM-CNN structure
is capable of extracting both local and long-term features.
Various work, such as the Squeeze-and-Excitation block in
MLSTM-FCN [12] or the multi-view learning-like module in
TapNet [20], enhanced the hybrid structure via modeling the
spatial interactions. However, the interactions are generally
computed at the sequence level, ignoring the fact that the
local spatial interactions at the sub-sequence level may evolve
in the dynamic sequence, i.e., spatial dynamics. Moreover,
they are all fully supervised, requiring huge labels during the
training process. Also, the learned representations are result-
oriented (e.g., pursuing higher accuracy), with less focus on
the interpretability, considered by the data mining community.

B. Semi-supervised Learning on Time Series

The pioneering work [1], [3] on Semi-supervised TS Learn-
ing are based on self-training or Positive Unlabeled Learning
[2] with the Nearest-Neighbor (1NN) classifier and a carefully
designed distance, such as DTW [1] or DTW-D [3], and
optimized stopping criterion [4] for importing the pseudo-
labels. Those work are followed by [21] for wider contexts.

Though not mentioned in their papers, the self-training frame-
work is extensible from the UTS to the MTS setting by
using an adapted distance [22], such as DTWD or DTWA.
However, under more complex scenarios nowadays, such as
30 UEA MTS datasets [23] collected from different domains,
the distance-based classifiers show limited performance [5].

Learning MTS representations [14] in a weakly supervised
setting draws much attention recently. Unsupervised Scalable
Representation Learning (USRL) described in [15] combines
causal dilated convolutions with triplet loss for contrastive
learning. Similarly, authors in [21] adopt Multi-Task Learning
(MTL) to learn the self-supervised UTS features from an
auxiliary forecasting task. The recent work Semi-TapNet [20]
proposes an Attentional Prototype Network to learn from the
unlabeled samples. However, the above-mentioned approaches
do not explore thoroughly both the labeled samples and the
Spatio-temporal dynamics in MTS. We show in Table I the
comparison of the methods for learning MTS representation.

TABLE I: Existing methods for learning MTS Representation
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III. PROBLEM FORMULATION

In this section, we formulate the Spatio-temporal dynamics
learning and semi-supervised classification problems for MTS.
Table II summarizes the notations used in the paper.

TABLE II: Notation

Notation Description
D,Dl,Du dataset, labeled portion, unlabeled portion
T , M , N MTS length, variable numbers, dataset size
L,D embedding length, embedding dimension size
m,P temporal window size, embedding pool size
x, h MTS instance, latent embedding
s variable/spatial interaction
θ general parameters to be optimized

A. Spatio-temporal Representation for MTS

The Spatio-temporal modeling of MTS requires considering
both the temporal dependency p(xt′ |xt) (t′ > t) and the spatial
interactions between the variables. Previous studies [12], [20]
usually consider the spatial interactions at the sequence level:
s = {xi on xj} ∈ RM , where xi, xj ∈ RT×1, on indicates the
interactions between the variables. However, the local spatial
interactions at the subsequence level st = {xit−m/2,t+m/2 on
xjt−m/2,t+m/2} ∈ R

M may evolve in the dynamic sequence,
where m is the window size. To illustrate, given the system
status at time t in MTS, it is not only decided by the local value
xt ∈ RM given a temporal status, but also by its neighbor
values

[
xt−m/2 : xt+m/2

]
∈ RM×m, which brings a spatial

correlation matrix on temporal neighbors and spatial variables
given a spatial status st ∈ RM .

Therefore, given a sample x ∈ RT×M in raw space X , the
Spatio-temporal representation learning for MTS is to learn
a low-dimensional representation h ∈ RL×D on embedding



spaceH, integrating both temporal dynamic p(xt′ |xt) and spa-
tial dynamic p(st′ |st). The item dynamic refers to the unstable
system status within the evolving multivariate sequential data.

B. Semi-Supervised Learning on MTS

Definition 2 (weak-label MTS dataset): A weakly labeled
MTS dataset D = {Dl,Du} contains both labeled and unla-
beled MTS samples:

Dl = {xi, yi}N∗ri=1 , Du = {x̂i}N∗(1−r)
i=1

r (0 ≤ r ≤ 1) indicates the ratio of the labeled samples in D
of size N, yi is the annotation of the labeled instance xi.

The semi-supervised MTS learning aims at training a
classifier to predict successfully the label of a testing MTS
sample, adopting the supervised training from Dl and further
unsupervised adjustment/optimization from Du.

IV. PROPOSAL: SMATE
In this section, we introduce SMATE, which captures the

essential characteristics of MTS and allows learning an inter-
pretable representation space in a semi-supervised manner.

A. Global Structure of SMATE

SMATE is based on an asymmetric auto-encoder structure,
integrating three key components: Spatio-temporal dynamic
encoder, sequential decoder, and semi-supervised three-step
regularization of the embedding space.

As shown in Figure 1, a two-channel encoder explores both
spatial and temporal dynamics and embeds the input MTS
into a low-dimensional representation space, where the embed-
ded samples are sparsely distributed with the reconstruction-
based optimization. On the unsupervised embedding space,
a three-step regularization is applied to learn class-separable
embeddings. The class centroids are regularized by labeled
and unlabeled samples, showing interpretability over the rep-
resentation space. Finally, the model is jointly optimized by
the reconstruction objective and the regularization objective.

B. Spatial Modeling Block (SMB)

Firstly, we introduce a novel module, Spatial Modeling
Block (SMB), to capture the spatial interactions at subse-
quence levels. As shown in Figure 2, SMB takes as input
an MTS representation h = {hi}Ti=1 ∈ RT×d (d = M for
the first block in spatial encoding channel), followed by a
one-dimensional average pooling layer on each variable hj ∈
RT×1, encoding the temporal neighbors into the horizontal
system status sH(i)=avg(

[
hi−m/2 : hi+m/2

]
), where i is the

time tick, m is the window size. Then the Fully Connected
(FC) layers allow firstly the interaction of the horizontal sys-
tem status sH in the vertical direction via a low-dimensional
compression sV ∈ RT×d

′
, then remapping it to the initial

data space to decide the spatial interaction weights at each
one-dimensional segment. We define the spatial interactions
s = {si}Ti=1, where si ∈ Rd, representing the interaction
weights for the vector hi ∈ Rd. The output of SMB is
described by h′=h � s, with the calibrated weights for each
1-D TS segment, where � is the element-wise multiplication.

C. Spatio-Temporal Encoding on MTS

Given x ∈ RT×M , the low-dimensional representation h ∈
RL×D embeds the Spatio-temporal features of x by a neural
network-based function fθ(x). The low-dimensional embed-
ding brings dramatic improvement on both the efficiency and
accuracy for classification tasks [20], as the classifier is not
impaired by the redundant information in raw data.

As shown in Figure 1, for the temporal channel, among
different variants of the recurrent neural networks (RNN),
we specifically consider Gated Recurrent Units (GRUs) that
mitigate the vanishing gradient problem. An update gate zt
and a reset gate rt control the hidden state ht ∈ Rdg with
the observation xt ∈ RM and the previous hidden state
ht−1 ∈ Rdg , where dg is the output dimension of GRUs.
The update functions are as follows:

rt = σ(Wrxt + Urht−1 + br) (1)
zt = σ(Wzxt + Uzht−1 + bz) (2)

ht = (1−zt)�ht−1+zt�tanh(Whxt+Uh(ht−1�rt)+bh) (3)

where Wx, Ux, bx (x ∈ [r, z, h]) are model parameters, σ is
the sigmoid function, � is the element-wise multiplication.
Three GRUs are cascaded with a 1-D pooling layer to output
h(T) ∈ RL×dg , where L=T/P , P is the pool/sampling size.

For the spatial channel, we define the convolutional module:

h′(l) = SMB(h(l)) (4)
h(l + 1) = ReLU(BN(W ⊗ h′(l) + b) (5)

where l (0 ≤ l < 3) is the module number, h(0)=x ∈ RT×M ,
h(l) ∈ RT×dc , dc is the filter number, W is the 1-D
convolutional kernel of size m, ⊗ is the convolution operator.
Within each of the three modules, the SMB firstly calibrates
the interaction weights for each 1-D segment and outputs
h′ ∈ RT×d. Then a 1-D convolutional layer concatenated with
Batch Normalization and Rectified Linear Units (ReLU) is
deployed. Similar to the temporal channel, a 1-D pooling layer
is applied after the last convolutional block to output h(S) ∈
RL×dc . Finally, we output the combined spatial and temporal
features hconcat = concat(h(T), h(S)) ∈ RL×(dg+dc) and
apply two FC layers to get the Spatio-temporal embedding
h ∈ RL×D. The matrix representation captures the Spatio-
temporal features and facilitates the MTS restoration.

D. Joint Model Optimization

As shown in Figure 1, since the representation learned
via an autoencoder-based structure generally has a sparse
distribution of class-specific samples [14], the unsupervised
training derived from the reconstruction objective does not
consider thoroughly the inner relation between class-specific
samples but focus on the restoration performance from the
embeddings. To address the issue, we propose a joint model
optimization that integrates the temporal reconstruction and
the three-step regularization objectives. Specifically, the joint
optimization combines both the labeled and unlabeled samples
to learn the class-specific clusters on the embedding space.

Firstly, we define the temporal reconstruction loss as:

LR =
∑

t
‖xt − x̃t‖2 (6)
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where xt, x̃t ∈ RM , corresponding to the observations in
the raw and reconstructed MTS instances x and x̃.

Then, the three-step regularization approaches the embed-
dings within the class-specific clusters to the virtual class
centroids, which are trained progressively.
Step 1 Supervised Centroids Initialization: The class cen-
troids are initialized by the class-specific embeddings. Given
the labeled training set Dl = {Xk}Kk=1 where K is the class
number, Xk ∈ RNk×T×M is a sample collection of class k,
Nk is the sample number of class k. Then the embedding set
Hk=fθ(Xk) ∈ RNk×L×D initializes the class centroid ck by:

ck = mean(Hk), ck ∈ RL×D (7)

Step 2 Supervised Centroids Adjustment: Once the cen-
troids are initialized, we can make the supervised adjustment
since the distance-based class probability allows to assess the
contribution of individual samples on the centroid’s decision.
In other words, the centroid ck is affected by larger contri-
bution weights brought by nearby samples of class k. Let
xki ∈ RT×M be a time series of class k, we define the weight
of xki to ck as the inverse Euclidean Distance (ED) between
the embedding hki = fθ(x

k
i ) ∈ RL×D and the centroid ck:

Wk,i = 1− ED(hki , ck)∑K
j=1ED(hki , cj)

(8)

Then the class centroid ck can be adjusted accordingly by the
labeled samples within the class-specific cluster:

ck =
∑Nk

i=1
Wk,i · hki , hki ∈ Hk (9)

Step 3 Unsupervised Centroids Adjustment: Apart from the
reconstruction-based optimisation, the unlabeled sample x̂i in
Du = {x̂i}N∗(1−r)i=1 is capable of adjusting the centroid ck via
the propagated label from the distance-based class probability:

p̂θ(y = k|x̂i) = 1− ED(fθ(x̂i), ck)∑K
j=1ED(fθ(x̂i), cj)

(10)

The unlabeled sample x̂i will be then integrated into the class-
specific cluster with the highest probability. We can further
adjust the class centroid ck considering the unlabeled samples:

ck =
Nk

Nk + N̂k

Nk∑
i=1

Wk,i · hki +
N̂k

Nk + N̂k

N̂k∑
i=1

p̂k,i · ĥki (11)

where ĥki = fθ(x̂
k
i ), N̂k is the number of samples of class k

in Du with the propagated label.
The class centroids are initialized and adjusted by both

labeled and unlabeled samples, from which we formalize the
regularization loss derived from the labeled samples:

LReg(θ) = −
∑

k
logWθ(y = k|x) (12)

As both the reconstruction and regularization losses are
normalized, we define the global optimization objective as:

minθ(LR + λLReg) (13)

where λ ≥ 0 is a hyperparameter that balances the two losses.
Importantly, LReg is included such that the embedding process
not only serves to reduce the dimensions – it is actively
conditioned to facilitate the encoder in learning class-separable
embeddings. In practice, SMATE is not sensitive to λ; then
for all the experiments, we set λ to 1.

V. EXPERIMENTS

A. Experimental setup
The model2 was trained using the Adam optimizer on a

single Tesla V100 GPU of 32 Go memory with CUDA 10.2.
We train an SVM classifier with radial basis function kernel
on the learned embedding space, which is evaluated on the
newly released UEA archive [23]3 for supervised analysis,
where the datasets {ArticularyWordR., Epilepsy, Heartbeat,
SelfRegulationSCP1} from four different domains are adopted
for semi-supervised study.
B. Classification Performance Evaluation

We use the accuracy as the default metric [5] for the
supervised tasks. We also report the number of Win/Ties and
the average rank [20] of different methods.

1) Comparison Methods:
• Distance-based Nearest Neighbor (1NN) on non-

normalized (non-norm) or normalized (norm) MTS [22]:
1NN-ED; 1NN-DTWI ; 1NN-DTWD; 1NN-DTWA.

• Bag-of-patterns classifier. WEASEL+MUSE [11].
• Deep Learning-based classifier. USRL [15]; TapNet

[20]; MLSTM-FCN [12]; CA-SFCN [6]; SMATENR:
SMATE without supervised Regularization, instead, a
Softmax layer is applied on the embedding.

2The source code: https://github.com/JingweiZuo/SMATE
3The datasets can be found in www.timeseriesclassification.com



2) Results Analysis: Table III shows the results compar-
ison with the baselines. “N/A” indicates the model is not
applicable due to memory overflow. Overall, SMATE defends
its reliability with 11 Wins/Ties and the highest average
rank of 3.85 among all the baselines. The current state-of-
the-art deep learning methods (TapNet, CA-SFCN) and the
powerful data mining method (WEASEL+MUSE) have close
ranks (4.73/5.45/4.66). Besides, USRL and SMATENR perform
much worse than SMATE with the same SVM classifier, con-
firming the reliability of our supervised regularization on the
embedding space. Moreover, SMATE achieves the best perfor-
mance among the baselines on all the datasets of EEG/MEG
applications [23] (FaceDetection, FingerMovements, Hand-
MovementDirection, MotorImagery, SelfRegulationSCP1, Sel-
fRegulationSCP2), where the signals (i.e., variables) generally
have strong and dynamic dependencies with each other. The
spatial dynamic interactions could be essential characteristics
that SMATE has successfully captured.

C. Semi-supervised Classification Performance

For semi-supervised tasks, we evaluate the classifier’s ac-
curacy at different supervision levels. For comparison, we
applied one classic model 1NN-DTW-D [3] and three recently
proposed semi-supervised deep learning models: USRL [15],
Semi-TapNet [20] and MTL [21]. Since 1NN-DTW-D and
MTL are initially designed for UTS, we adapt them by:
• Adopting DTWD [22] as distance in 1NN-DTW-D.
• Updating the MTS network optimization metrics in MTL.
The results in Figure 3 shows the superiority of SMATE

over the baselines. In a Motion Recognition task (Articulary-
WorkR.), from 10% labeled training set to fully labeled one,
the accuracy of SMATE varies only by 0.046, compared to
INN-DTW-D (0.264), USRL (0.286), Semi-TapNet (0.151)
and MTL(0.225), showing that SMATE is capable of learning
a class-separable representation under weak supervision. This
conclusion is also demonstrated in EEG/MEG applications
(SelfRegulationSCP1), with 10% labeled samples, SMATE
obtained a higher accuracy (0.781) than fully supervised 1NN-
DTW-D (0.775), USRL (0.771), Semi-TapNet (0.739) and
MTL (0.730). In an Audio Spectra task (Heartbeat), though
the fully supervised accuracy of SMATE (0.741) is not as good
as Semi-TapNet (0.751), the weakly supervised SMATE with
10% labeled samples performs the best among all the models,
indicating the reliability of the semi-supervised model.

D. Visualization & Interpretation of the Representation Space

Apart from the thorough exploration of the weakly labeled
samples, the representation space learned via SMATE shows
good interpretability compared to the traditional Deep Learn-
ing models [6], [12], [13], [19].

We show in Figure 4 that t-SNE visualization of the repre-
sentation space for the Epilepsy dataset, which contains four
human activities: Walking while gesturing, Walking slowly,
Walking fast, Walking normally. The 137 samples in the
training set are projected to the representation space with
10% labels adopted for training. We show respectively the

space visualization at each regularization step. The results
suggest that the representation space is interpretable for not
only the effect of the weak supervision at each step but also the
classification results. For instance, in Figure 4d, three samples
of Walking while gesturing stay close to the class centroid
of Walking fast, which may lead to the misclassification of
certain samples in the two classes. To improve the classifier,
more labels of the two classes in the training set can be added.

E. Performance of Spatial Modeling Block (SMB)

To validate the Spatial Modeling Block (SMB), firstly, we
compare the classification accuracy of SMATE with or without
integrating SMB on the 27 datasets that SMATE has success-
fully executed. Then we rebuild SMATE by replacing SMB
with the following modules in the state-of-the-art work which
learn the variable relationships of MTS: Random Dimen-
sion Permutation (RDP) in TapNet [20] and Squeez-and-
Excitation (SE) in MLSTM-FCN [12]. Briefly, SMATE-SMB
achieves [17 Wins|8 Ties|2 Losses] to SMATE-NonSMB,
indicating that SMB contributes to a better MTS represen-
tation. Besides, SMB performs better than other modules: [14
Wins|8 Ties|5 Losses] to SE, [12 Wins|9 Ties|6 Losses] to
RDP. RDP performs relatively better than SE, as a set of
grouped variables produced by RDP provides various MTS
views, allowing exploring the interactions between the subsets
of all variables more thoroughly. However, extra parameters
for variable groups are introduced. SE is a parameter-free
module but considers each variable has a unique and stable
state when interacting with others, which ignores the dynamic
features in time series. SMB answers both the questions of
the parameter-free settings and the dynamic interactions. The
results show that capturing the spatial dynamic interactions
at the sub-sequence level performs better than modeling the
variable interactions at the sequence level [12], [20].

VI. CONCLUSION
In this paper, we proposed SMATE, to learn the Spatial-

temporal representation on weakly-labeled multivariate time
series. The weak supervision on the embedding space allows
building a reliable classifier, which is extremely valuable in
real-life scenarios with label shortage issues. The results show
that the evolving variable interactions (i.e., spatial dynamics)
play an essential role in modeling multivariate time series.
Moreover, SMATE allows for visual interpretability in both the
learned representation and the semi-supervised representation
learning process. Our future work will be oriented towards
extending SMATE to support multivariate time series with
missing values and unequal length in more realistic scenarios.
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TABLE III: Performance Comparison for MTS classification over UEA MTS archive

Dataset SMATE SMATENR USRL TapNet MLSTM
-FCN CA-SFCN WEASEL

+MUSE 1NN-ED 1NN-
DTWI

1NN-
DTWD

1NN-ED
(norm)

1NN-DTWI

(norm)
1NN-DTWD

(norm)
1NN-DTWA

(norm)
ArticularyWordR. 0.993 0.987 0.987 0.987 0.973 0.97 0.99 0.97 0.98 0.987 0.97 0.98 0.987 0.987
AtrialFibrillation 0.133 0.133 0.133 0.333 0.267 0.333 0.333 0.267 0.267 0.2 0.267 0.267 0.22 0.267

BasicMotions 1 1 1 1 0.95 1 1 0.675 1 0.975 0.676 1 0.975 1
CharacterTrajectories 0.984 0.997 0.994 0.997 0.985 0.988 0.99 0.964 0.969 0.99 0.964 0.969 0.989 0.989

Cricket 0.986 0.968 0.986 0.958 0.917 0.972 1 0.944 0.986 1 0.944 0.986 1 1
DuckDuckGeese N/A N/A 0.675 0.575 0.675 N/A 0.575 0.275 0.55 0.6 0.275 0.55 0.6 0.567

EigenWorms N/A N/A 0.878 0.489 0.504 N/A 0.89 0.55 0.603 0.618 0.549 N/A 0.619 N/A
Epilepsy 0.964 0.946 0.957 0.971 0.761 0.986 1 0.667 0.978 0.964 0.666 0.978 0.964 0.979
ERing 0.981 0.904 0.88 0.904 0.941 0.856 0.964 0.93 0.93 0.93 0.93 0.93 0.93 0.93

EthanolConcentration 0.399 0.373 0.236 0.323 0.373 0.323 0.43 0.293 0.304 0.323 0.293 N/A 0.323 0.316
FaceDetection 0.647 0.556 0.528 0.556 0.545 N/A 0.545 0.519 0.513 0.529 0.519 0.5 0.529 0.529

FingerMovements 0.62 0.55 0.54 0.53 0.58 0.59 0.49 0.55 0.52 0.53 0.55 0.52 0.53 0.509
HandMovementD. 0.554 0.365 0.27 0.378 0.365 0.324 0.365 0.279 0.306 0.231 0.278 0.306 0.231 0.224

Handwriting 0.421 0.335 0.533 0.357 0.286 0.322 0.605 0.371 0.509 0.607 0.2 0.316 0.286 0.601
Heartbeat 0.741 0.615 0.737 0.751 0.663 0.756 0.727 0.62 0.659 0.717 0.619 0.658 0.717 0.571

InsectWingbeat N/A N/A 0.16 0.208 0.167 N/A N/A 0.128 N/A 0.115 0.128 N/A N/A N/A
JapaneseVowels 0.965 0.924 0.989 0.965 0.976 0.973 0.973 0.924 0.959 0.949 0.924 0.959 0.949 0.959

Libras 0.849 0.834 0.867 0.85 0.856 0.89 0.878 0.833 0.894 0.872 0.833 0.894 0.87 0.879
LSST 0.582 0.568 0.558 0.568 0.373 0.674 0.59 0.456 0.575 0.551 0.456 0.575 0.551 0.551

MotorImagery 0.59 0.59 0.54 0.59 0.51 N/A 0.51 0.39 N/A 0.5 0.51 N/A 0.5 0.5
N/ATOPS 0.922 0.87 0.944 0.939 0.889 0.956 0.87 0.86 0.85 0.883 0.85 0.85 0.883 0.883
PEMS-SF 0.803 0.744 0.688 0.751 0.699 N/A N/A 0.705 0.734 0.711 0.705 0.734 0.711 0.73
PenDigits 0.98 0.98 0.983 0.98 0.978 0.975 0.948 0.973 0.939 0.977 0.973 0.939 0.977 0.977
Phoneme 0.177 0.19 0.246 0.175 0.11 0.19 0.19 0.104 0.151 0.151 0.104 0.151 0.151 0.151

RacketSports 0.849 0.816 0.862 0.868 0.803 0.875 0.934 0.868 0.842 0.803 0.868 0.842 0.803 0.858
SelfRegulationSCP1 0.887 0.874 0.771 0.739 0.874 0.734 0.71 0.771 0.765 0.775 0.771 0.765 0.775 0.786
SelfRegulationSCP2 0.567 0.539 0.556 0.55 0.472 N/A 0.46 0.483 0.533 0.539 0.483 0.533 0.539 0.539
SpokenArabicDigits 0.979 0.967 0.956 0.983 0.99 0.982 0.982 0.967 0.96 0.963 0.967 0.959 0.963 0.963

StandWalkJump 0.533 0.4 0.4 0.4 0.067 0.2 0.333 0.2 0.333 0.2 0.2 0.333 0.2 0.333
UWaveGestureLibrary 0.897 0.869 0.884 0.894 0.891 0.8 0.916 0.881 0.868 0.903 0.81 0.868 0.903 0.9

Avg. Rank 3.85 6.19 5.9 4.73 7.33 5.45 4.66 9.3 7.43 6.37 9.37 7.88 6.83 6.21
Wins (Ties) 11 3 6 5 2 5 8 0 2 2 0 2 1 2
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(b) Epilepsy (Human Activity)
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(c) Heartbeat (Audio Spectra)
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(d) SelfRegulationSCP1 (EEG/MEG)
Fig. 3: Semi-supervised performance comparison on datasets from different domains
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Fig. 4: The t-SNE visualization of the representation space for the Epilepsy dataset. We set the supervised ratio to 0.1. The colors of the
embeddings represent their inherent labels, which are not fully adopted for training. The class centroids are marked by ?.
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