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Abstract. In this article, we investigate the rotations on Z2 (a.k.a discrete rota-
tions). In particular, we focus on the finite rotations that act on finite subsets of
Z2, especially Euclidean balls. We shed light on the hierarchical structure of these
rotations, induced by their discontinuity (characterized by hinge angles) and the
size of the considered ball. We propose efficient algorithmic schemes leading to
the construction of combinatorial models (trees) of the bijective finite rotations.
These algorithms and structures open the way to a better understanding of the
notion of bijectivity with respect to finite vs. infinite discrete rotations.

Keywords: Finite rotations · Cartesian grid · Bijectivity · Hinge angles · Hierar-
chical models

1 Introduction

Rotation is a fundamental operation in geometry. In the Euclidean spacesRd (d ⩾ 2), ro-
tations preserve distances and angles; they are also bijective. By contrast, their discrete
analogues in Zd, the so-called discrete rotations, exhibit challenges. Not only they do
no longer preserve distances and angles, but they are also non-bijective in most cases.

Early in the study of discrete rotations, efforts were geared towards understand-
ing under which hypotheses discrete rotations could be bijective. In [11], a sufficent
condition was proposed for bijectivity of discrete rotations on Z2. In [13, 17], a char-
acterization of bijective discrete rotations on Z2 was further proposed (whereas it was
proved in [10] that there is no bijective discrete rotation on Z2 under the specific case
where the floor digitization paradigm is considered, see Section 2.3). Extensions of
these results were investigated in the hexagonal grid [16] and in Z3 [6, 15]. In [3] a
family of rotations on Z2 based on quasi-shears was proposed, also fulfilling bijectivity
properties. This paradigm was extended to hexagonal grids in [5]. In [4], bijective rota-
tions were handled via the composition of bijective reflections. A similar paradigm was
investigated via the framework of geometric algebra on Z2 [7] and Z3 [6].

In this article, we focus on the discrete rotations applied on finite sets (Euclidean
balls) of Z2, and we study their bijectivity. Indeed, in practical cases, rotations act on
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images with a finite support, and in this context, the notion of bijectivity may be con-
sidered with regards to this support instead of the whole space Z2. We propose an al-
gorithmic framework that allows to build a combinatorial, hierarchical structure which
models the space of all the (bijective) discrete rotations on finite Euclidean balls of Z2.

This article is organized as follows. Section 2 provides basic notions on continuous
and discrete rotations required to make this article self-contained. In Section 3, we
describe the hierarchical structure of the finite discrete rotations, and we provide an
efficient algorithm for building it. In Section 4, we describe the hierarchical structures
of two families of bijective finite discrete rotations and we provide efficient algorithms
for building them. Section 5 illustrates results obtained by applying these algorithms.
Section 6 concludes this article.

2 Basics on rotations

A point of R2 is noted in bold, e.g. p ∈ R2. Its coordinates are noted in italic and
subscripted by x and y, respectively, e.g. p = t(px, py) (or (px, py) by abuse of notation).
If it is defined by its coordinates, it is noted as the associated couple, e.g. (a, b) ∈ R2.

2.1 Continuous rotations

We note U = [0, 2π) and we consider U as cyclic, i.e. we identify 0 and 2π. Let θ ∈ U.
The rotation (with center 0 = (0, 0)) of angle θ is the function Rθ : R2 → R2 defined,
for all p ∈ R2, by

Rθ (p) =
(

cos θ − sin θ
sin θ cos θ

)
·

(
px

py

)
=

(
px cos θ − py sin θ
px sin θ + py cos θ

)
(1)

Such rotation is called a continuous rotation. We note RR2 the set of all the continuous
rotations.

2.2 Hinge angles

Let θ ∈ U and Rθ the induced continuous rotation. Let p ∈ Z2. Let us suppose that there
exists k ∈ Z such that one of the following two equations is satisfied

px cos θ − py sin θ = k + 1/2 (2)
px sin θ + py cos θ = k + 1/2 (3)

Then we say that θ is a hinge angle [14] (induced by p). We note H ⊂ U the set of all
the hinge angles (H is dense in U [12]). We note Ů = U \H the set of non-hinge angles.

A hinge angle θ ∈ H is determined by a triplet (px, py, k) ∈ Z3. However any triplet
in Z3 does not necessarily define a hinge angle. In particular, (px, py, k) ∈ Z3 defines
a hinge angle iff |k + 1/2| ⩽ ∥(px, py)∥2. We note T ⊂ Z3 the set of all the triplets that
define hinge angles.

We define the function η : T → H such that for all t = (px, py, k) ∈ T, η(t) is the
hinge angle induced by t. The function η is non-injective: many triplets of T define the
same hinge angle of H. The following proposition clarifies this many-to-one relation.

Proposition 1 ([12]) Let h ∈ H. There exists a prime generator triplet (px, py, k) ∈ T
such that η−1({h}) = {((2n + 1)px, (2n + 1)py, (2n + 1)k + n) | n ∈ Z}.
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2.3 Discrete rotations

We now consider rotations (with center 0) from Z2 to Z2. Let θ ∈ U. Let Rθ ∈ RR2 be
a continuous rotation (see Eq. (1)). Except in very few cases (i.e. when θ is a multiple
of π/2), we have Rθ(Z2) ⊈ Z2. To tackle this issue, i.e. to ensure that the result of a
rotation applied on Z2 lies in Z2, it is common to compose the result of the continuous
rotation with a discretization operator, which is generally set as∣∣∣∣∣∣ D : R2 −→ Z2

(px, py) 7−→ ([px], [py]) (4)

where [·] is the rounding function on R. (As observed in [10], the floor function, and
by symmetry, the ceil one are less interesting from the bijectivity point of view that we
adopt in this study.)

Then, we can define a rotation of angle θ from Z2 to Z2 as a function Rθ : Z2 → Z2

such that, for all p ∈ Z2, we have

Rθ(p) = (D ◦ Rθ)(p) =
(

[px cos θ − py sin θ]
[px sin θ + py cos θ]

)
(5)

This rotation is called a discrete rotation. Such discrete rotation Rθ is well-defined iff
θ ∈ Ů = U \ H (due to the ambiguous definition of [·] on Z + 1/2). We note RZ2 = {Rθ |
θ ∈ Ů} the set of all the discrete rotations. We set R : Ů→ RZ2 the (surjective) function
defined for each θ ∈ Ů by R(θ) = Rθ.

By contrast with a continuous rotation Rθ : R2 → R2 which is bijective, a discrete
rotation Rθ : Z2 → Z2 may be bijective or not, depending on the value of θ. This fact is
clarified by the following proposition.

Proposition 2 ([13]) Let θ ∈ Ů. The discrete rotation Rθ : Z2 → Z2 is bijective if and
only if there exists p ∈ N and ε ∈ {−1, 1} such that

sin θ ∈
{
ε ·

2p(p + 1)
2p2 + 2p + 1

, ε ·
2p + 1

2p2 + 2p + 1

}
(6)

The set B of the angles characterized by Eq. (6) is composed of specific Pythagorean an-
gles (i.e. angles with rational sine and cosine determined by twin Pythagorean triplets).
Pythagorean angles do not intersect H [14], and we then have B ∩ H = ∅.

2.4 Discrete finite rotations

Let θ ∈ Ů. Let Rθ ∈ RZ2 . Let ρ ∈ R+. Let Bρ = {q ∈ Z2 | ∥q∥2 ⩽ ρ}. We note
Rρθ : Bρ → Z2 the restriction of the discrete rotation Rθ to the discrete Euclidean ball
Bρ. Such rotation Rρθ is called a discrete ρ-rotation (or simply a ρ-rotation). We note
R
ρ

Z2 = {R
ρ
θ | Rθ ∈ RZ2 } the set of all the ρ-rotations. We set Rρ : Ů→ Rρ

Z2 the (surjective)
function defined for each θ ∈ Ů by Rρ(θ) = Rρθ .

We define the subset
Tρ =

{
(px, py, k) ∈ Z3 | |k + 1/2| ⩽ ∥p∥2 ⩽ ρ

}
⊂ T (7)

which gathers the triplets of T induced by the points inside Bρ. We have |Tρ| = O(ρ3).
We define the subset Hρ = η(Tρ) ⊂ H of the hinge angles induced the triplets of Tρ. We
have |Hρ| = O(ρ3) [2]. Note that we have ρ < 1 iff Tρ = Hρ = ∅.
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We consider on U (seen here as non-cyclic) the restriction ⩽U (simply noted ⩽) of
the total order ⩽ on R. By assuming that Hρ is ordered by ⩽, we note Hρ = {hρj }

σρ−1
j=0

with σρ ∈ N.
We consider on T the preorder ⩽T (simply noted ⩽) defined, for any t1, t2 ∈ T by

t1 ⩽T t2 ⇐⇒ η(t1) ⩽U η(t2) (8)
By assuming that Tρ is sorted with respect to ⩽, we set Tρ = {(px,i, py,i, ki)}s

ρ−1
i=0 with

sρ ∈ N. Note that we have σρ ⩽ sρ and σρ ⩾ 1 iff ρ ⩾ 1.
If ρ < 1, we set Hρ• = ∅ and Hρ� = H

ρ
� = {U}. If ρ ⩾ 1, we set

H
ρ
• =

{{
hρj

}}σρ−1

j=0
(9)

H
ρ
� =

{(
hρj , h

ρ
j+1[σρ]

)}σρ−1

j=0
(10)

H
ρ
� =

{[
hρj , h

ρ
j+1[σρ]

)}σρ−1

j=0
(11)

where n[k] is n modulo k. These three sets can be seen as faces in a complex model
of U, namely 0-dimensional elements (Hρ•), 1-dimensional open elements (Hρ�) and
1-dimensional semi-open elements (Hρ�).

Property 3 There is a trivial bijection between Hρ and Hρ•, and another between Hρ�
and Hρ�. When ρ ⩾ 1, there are trivial bijections between Hρ, Hρ•, H

ρ
� and Hρ�.

We set Ůρ = U \ Hρ. The set Hρ� is a partition of Ůρ. The set Hρ� is a partition of
U. The union of sets Hρ• ∪ H

ρ
� is also a partition of U (that refines the partition Hρ�).

Let H ∈ Hρ�. Let θ1, θ2 ∈ Ů be two distinct angles such that θ1 ∈ H. Let Rθ1 ,Rθ2 ∈
RZ2 be the two (distinct) discrete rotations associated to θ1, θ2, respectively. Let Rρθ1 ,R

ρ
θ2
∈

R
ρ

Z2 be the two ρ-rotations associated to θ1, θ2, respectively. We have θ2 ∈ H if and only
if Rρθ1 = Rρθ2 . This justifies the following property.

Property 4 There exists a bijection between Hρ� and Rρ
Z2 .

It follows that we can symbolically model Rρ
Z2 byHρ� (or any other set in bijection with

H
ρ
�, see Property 3).

Remark 5 Although the function Rρ is initially defined on Ů (i.e. only for non-hinge
angles), it is possible to extend it, without loss of correctness, so that it is defined on
U (i.e. for all angles). Let H ∈ Hρ�. Let h ∈ H ∩ H. Since h is a hinge angle, the
discrete rotation Rh is undefined, and so is the ρ-rotation Rρh. Nonetheless, the hinge
angle h ∈ H does not belong to Hρ. We can extend Rρh by continuity, by setting Rρh = Rρθ
with θ ∈ H ∩ Ů. Now, let h = hρj ∈ H

ρ (0 ⩽ j ⩽ σρ − 1). The ρ-rotation Rρh is undefined.
However, Rρθ is defined (and constant) for all θ ∈ (hρj , h

ρ
j+1[σρ]). We can then extend Rρh

by continuity, by setting Rρh = Rρθ . Doing so, we can extend the function Rρ : Ů → Rρ
Z2

as Rρ : U→ Rρ
Z2 .

3 Hierarchical structure of finite discrete rotations

In this section, we describe a combinatorial (tree) structure for modeling the ρ-rotations
(Section 3.1) and we provide an algorithmic scheme for building it (Section 3.2).



Bijectivity analysis of finite rotations on Z2 5

3.1 Description

For any ρ ∈ R+, we set Iρ = Hρ• ∪ H
ρ
�. We set I = {Iρ}ρ∈R+ . Let ρ1, ρ2 ∈ R+ and r ∈ N.

If
√

r ⩽ ρ1, ρ2 <
√

r + 1 then we have Iρ1 = Iρ2 . It follows that I = {I
√

r}r∈N = {I
ρ}ρ∈

√
N.

Let ρ1, ρ2 ∈
√
N. If ρ1 ⩽ ρ2, then the partition Iρ2 refines the partition Iρ1 . We

note ⊑I (or simply ⊑) this refinement relation on I. In particular, for all ρ1, ρ2 ∈
√
N

we have ρ1 ⩽ ρ2 ⇒ I
ρ1 ⊑ Iρ2 . It is plain that (I,⊑) is a totally ordered set which

admits an infimum and a supremum. The infimum (actually, the minimum) is the trivial
partition I0 = {U}. The (unique) discrete 0-rotation associated to I0 is the trivial rotation
R0

0 : {0} → {0} that maps 0 onto itself. The supremum is the partition of U noted
I∞ = {{θ} | θ ∈ U}. For each θ ∈ Ů, the associated discrete rotation is Rθ. (The other
values θ ∈ H, i.e. the hinge angles, are not associated to discrete rotations, by definition.)

For any ρ ∈
√
N, each set Iρ models both the ρ-rotations (via Hρ�) and the hinge

angles between these ρ-rotations (via Hρ•). Except for ρ = 0, there is a trivial bijection
between Hρ•, H

ρ
� and Hρ� (Property 3). There is then a trivial two-to-one function from

Iρ to Hρ� for ρ > 0 (plus a one-to-one function from Iρ to Hρ�, for ρ = 0). One can then
equivalently model the structure of the ρ-rotations either by Iρ or Hρ�. From now on,
we consider Hρ� (noted Sρ) instead of Iρ, without loss of generality.

We set K =
⋃
ρ∈
√
N S
ρ. Each element K ∈ K is a semi-open interval of U that defines

a specific discrete ρ-rotation. By definition, there exists r ∈ N such that K ∈ S
√

r.
This value r may be non-unique. More precisely, there exists α(K), ω(K) ∈ N, with
α(K) ⩽ ω(K), such that for all r ∈ [[α(K), ω(K)]], we have K ∈ S

√
r.

We endow K with the inclusion order relation ⊆, and we note T = (K,◁) the Hasse
diagram of the ordered set (K,⊆). The maximum of (K,⊆) is U.

Property 6 Let K ∈ K \ {U}. There is a unique K′ ∈ K such that K ◁ K′.

It follows from this property that T = (K,◁) has a tree structure with U as root.
The set K is discrete but infinite, and so is the tree T. Its whole construction is then

impossible. However, one may build a finite part of it from its root U until a finite, but
arbitrary large depth µ.

Let µ =
√

m ∈
√
N. We set Kµ =

⋃m
r=0 S

√
r ⊂ K. We endow Kµ with the inclusion

order relation ⊆, and we note Tµ = (Kµ,◁) the Hasse diagram of (Kµ,⊆). The order set
(Kµ,⊆) still has U as maximum. By contrast with (K,⊆) it also has minimal elements
gathered in Sµ. It is plain that Tµ is still a tree. By contrast with T, the tree Tµ is finite,
with U as root and the elements of Sµ as set of leaves. More precisely, we have the
following property.

Property 7 The tree Tµ is a partition tree (a.k.a. a dendrogram).

This property means that each total cut of this tree (i.e. each maximal set of non-
overlapping elements) is a partition of U. A popular example of partition tree is the
binary partition tree [18] usually considered in mathematical morphology. Here, the
tree Tµ is not a binary tree but a general partition tree. Indeed, for each non-leaf ele-
ment K ∈ K, there are k ⩾ 2 elements K′ ∈ K such that K′ ◁ K (by contrast with k = 2
for the binary partition tree).
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Algorithm 1: Construction of the structure of the ρ-rotations (0 ⩽ ρ ⩽ µ).

Input : µ =
√

m ∈
√
N

Output: Tµ
1 begin
2 Build Bµ (of size O(µ2))
3 Build Tµ (of size O(µ3)) from Bµ

4 Sort Tµ

5 Build Hµ (sorted, of size O(µ3)) from Tµ

6 Build G (of size O(µ3)) from Hµ

7 Build ∆ (of size O(µ3)) from Hµ

8 Build a binary partition tree T̂µ (of size O(µ3)) from (G, ∆)
9 Build Tµ (of size O(µ3)) from T̂µ

The number of vertices of a partition tree is lower than 2λ−1 where λ is the number
of leaves (this bound is reached if the partition tree is binary). The size of a general
partition tree is thenO(λ). In the case of the tree Tµ, the set of leaves is Sµ, of sizeO(µ3).
This is also the size of the tree Tµ, that represents all the ρ-rotations for 0 ⩽ ρ ⩽ µ.

3.2 Construction

Let µ =
√

m ∈
√
N, with µ , 0. Let us focus on the partition Sµ that gathers the leaves

of the tree Tµ. Any element of Sµ = Hµ� is a semi-open interval S µj = [hµj , h
µ
j+1[σµ])

(0 ⩽ j ⩽ σµ − 1). This semi-open interval is adjacent to exactly two other elements of
Sµ, namely S µj+1[σµ] and S µj−1[σµ] (this adjacency is defined by the fact that the closures
of the sets overlap). In other words, the topological structure of Sµ is defined by a graph
Gµ = (Vµ,Eµ) which is isomorphic to (Hµ�,H

µ
•). In particular, it is a σµ-cycle graph.

The edges of Gµ can be endowed with a valuation ∆ : Hµ → N that associates each
hinge angle h ∈ Hµ, to the value ∆(h) at which it appears in the combinatorial structure
of the discrete rotations, i.e.

∆(h) = min
{
r ∈ N | {h} ∈ H

√
r
•

}
(12)

Note that for any K = [h, h′) ∈ Kµ, we have α(K) = max{∆(h), ∆(h′)}. We also have the
following property, that derives from Proposition 1.

Property 8 Let h ∈ Hµ. Let (px, py, k) ∈ T be the prime generator of h, associated to
the point p = (px, py) ∈ Z2. We have ∆(h) = ∥p∥22.

The edge-valued graph (Gµ, ∆) can be seen as a saliency map [9], where the saliency
measure is defined by ∆ on the ordered set (N,⩾) (i.e. higher saliencies correspond to
lower values). We then have the following property.

Property 9 The tree Tµ is the watershed tree [8] of (Gµ, ∆).

It follows that the tree Tµ can be built from (Gµ, ∆) as a watershed tree. This can be done
by using the standard binary partition tree construction proposed in [18] (by defining
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the priority of vertex merging from the saliency measure) followed by a straightforward
collapsing procedure dedicated to turn the obtained binary tree into a general tree.

Based on these considerations, a procedure for building Tµ, namely the combinato-
rial structure of all the ρ-rotations (0 ⩽ ρ ⩽ µ) is given in Algorithm 1.

The construction of the Euclidean ball Bµ (line 2) has a time cost O(µ2). The con-
struction of the set Tµ of hinge angle triplets from Bµ (line 3) has a time cost O(µ3).
Two hinge angles of H can be compared in (R,⩽) with a time cost O(1) [19], based
on their generating triplets in T. It follows that sorting Tµ (line 4) with respect to ⩽
(see Equation (8)) has a time cost O(µ3 log µ). The construction of Hµ (line 5) is done
by choosing in Tµ the triplets which are prime generators of hinge angles. Since Tµ is
sorted with respect to ⩽, this procedure has a time cost O(µ3). Due to the bijective links
between Hµ, Hµ• , H

µ
� and Hµ�, the construction of G from Hµ (line 6) has a time cost

O(µ3). Based on Property 8, the construction of ∆ (line 7) from Hµ (modeled by the
prime generators of Tµ) has a time cost O(µ3). The construction of a binary partition
tree T̂µ (line 8) from the edge-valued graph (G, ∆) presents a time cost O(µ3 log µ) [18].
The final conversion of this binary partition tree T̂µ into the general partition tree Tµ

(line 9) is done by collapsing the redundant vertices within T̂µ. (These vertices are char-
acterized by the fact that both their creation and their merging are carried out for a same
saliency value of ∆.) This conversion has a time cost O(µ3). This justifies the following
property.

Property 10 The construction of Tµ (of size O(µ3)) has a time cost O(µ3 log µ).

Based on Algorithm 1, the hierarchical structure of all the ρ-rotations (with 0 ⩽ ρ ⩽ µ ∈√
N) can then be built with a quasi-linear time cost with respect to its size.

4 Hierarchical structure of bijective discrete rotations

Based on the tree Tµ, we now investigate the structure of the discrete rotations with
regard to the bijectivity property. In particular, we adopt two points of view. First, we
focus on the ρ-rotations which are the restrictions of bijective discrete rotations (Section
4.1). Second, we focus on the injective ρ-rotations, which are then bijective from their
support to their finite image set (Section 4.2).

4.1 Structure of the restrictions of bijective discrete rotations

In a first time, we consider the ρ-rotations which are restrictions of bijective discrete
rotations. We note B ⊂ RZ2 the set of the bijective discrete rotations, characterized by
Proposition 2.

Let µ =
√

m ∈
√
N. Our purpose is to define, for all 0 ⩽ ρ ⩽ µ, the subset Bρ =

{Rρθ ∈ R
ρ

Z2 | Rθ ∈ B}, i.e. the subset of the ρ-rotations which are restrictions of bijective
discrete rotations. (We bijectively associate the set Bρ ⊆ Rρ

Z2 to the subset Sρ ⊆ Sρ.)
In a first time, we investigate the specific subset Bµ ⊂ Rµ

Z2 . This subset Bµ can be
defined by determining which rotations in Rµ

Z2 (corresponding to leaves of the tree Tµ,
i.e. to intervals of Hµ�) are bijective.
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From the definition of Bµ, a rotation corresponding to the interval [hµj , h
µ
j+1[σµ]) is

bijective iff there exists an angle θ ∈ B (see Section 2.3) such that hµj < θ < hµj+1[σµ].
It is then sufficient to sort the set Hµ ∪ B to determine the bijective µ-rotations, i.e. to
build Sµ. (We recall that Hµ ∩ B = ∅.) Since B is infinite, such sorting is not tractable.
Nonetheless, we can consider only a finite subset of B, as shown by the following
discussion.

From Proposition 2, we know that the sine of angles that define bijective discrete
rotations are characterized by specific rational values, namely twin Pythagorean triplets.
Due to symmetry considerations we restrict, without loss of generality, our discussion
to the subset of angles (0, π/4], where the angles θ leading to bijective discrete rotations
are characterized by

sin θ ∈
{

sp =
2p + 1

2p2 + 2p + 1

}
p∈N⋆

(13)

Let θ ∈ (0, π/4] such that sin θ = sp for a given p ∈ N⋆. Let us suppose that p2 > 4m.
Then, we have sin θ < 1/p < 1/2µ. In such conditions, for any point p ∈ Bµ, we have
∥p − Rθ(p)∥2 < 1/2, and thus Rµθ (p) = p. In other words, we have Rµθ = Rµ0. It follows
that for all p ∈ N⋆ such that p > 2µ, the angles θp generating bijective discrete rotations
belong to exactly one interval of Sµ, namely [hµσµ−1, h

µ
0) (which trivially corresponds to

the bijective discrete rotation of angle 0).
As a consequence, we can restrict the bijectivity analysis to a finite subset noted Bµ

generated by the values of p ⩽ 2
√

m = 2µ. This set Bµ has a size O(µ), and it is thus
sufficient to sort the (finite) set Hµ ∪ Bµ to define Bµ. We recall that from Algorithm 1,
Hµ is already sorted. Sorting (by dichotomy) Hµ ∪ Bµ then has a time cost O(µ log µ).

Let r ∈ [[0,m − 1]]. Let S ∈ S
√

r. From the definition of B
√

r, we have
S ∈ S

√
r ⇐⇒ ∃S ′ ∈ S

√
r+1, S ′ ◁ S (14)

where ◁ is the Hasse relation of the tree Tµ. Once the bottom structure Sµ (that defines
the bijective leaves of the tree Tµ) is obtained, we can define the successive sets S

√
r

for r from m − 1 to 0 by a propagation from the leaves of the tree Tµ to all the other
vertices in a bottom-up fashion, with a time cost O(µ). We then derive the whole set
Sµ =

⋃m
r=0S

√
r (and equivalently Bµ =

⋃m
r=0B

√
r), the structure of which is given by

the restriction of the relation ◁ toSµ. In particular, (Sµ,◁Sµ ) is a partial tree of Tµ. This
analysis justifies the following property.

Property 11 The tree (Sµ,◁Sµ ) that models the structure of all the ρ-rotations (0 ⩽
ρ ⩽ µ), which are restrictions of bijective discrete rotations, has a size O(µ) and can be
built with a time cost O(µ log µ).

4.2 Structure of the injective / bijective ρ-rotations

In a second time, we consider the ρ-rotations which are injective, and thus bijective
from their support set to their image set. For any ρ ∈

√
N, we note Iρ ⊆ Rρ

Z2 the set of
these injective ρ-rotations.

Let ρ ∈
√
N. Let θ ∈ Ů. Let Rρθ ∈ R

ρ

Z2 be the ρ-rotation induced by θ. We have
Rρθ ∈ B

ρ =⇒ Rρθ ∈ I
ρ (15)

However, the reciprocal is not always true. We have Iρ ⊇ Bρ but we may have Iρ ⊈ Bρ.
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Let µ =
√

m ∈
√
N. We set Iµ =

⋃m
r=0 I

√
r. By contrast with Bµ which was built in

a bottom-up fashion from Bµ to B0 (i.e. from the leaves of Tµ to its root), here Iµ will
be built in a top-down fashion from I0 to Iµ (i.e. from the root of Tµ to its leaves).

Let βµ : Kµ → {⊥,⊤} be the Boolean function that characterizes the (non-)injectivity
of any K ∈ Kµ. Building Iµ is then equivalent to building βµ. In the sequel, we then
build βρ for ρ from 0 to µ. The definition of β0 is trivial, since K0 = {U} contains a
unique element that models the rotation R0

0. Since R0
0 ∈ B

0 ⊆ I0, we have β0(U) = ⊤.
Now, let ρ =

√
r ∈
√
N with r ⩾ 1, and let us suppose that β

√
r−1 is already known.

The current iteration of the algorithm consists of building β
√

r from β
√

r−1. Given a
Euclidean ball Bρ with radius ρ, a ρ-rotation is defined as a function Rρθ : Bρ → Z2.
In particular, its support B

√
r is larger than the support B

√
r−1 of the discrete

√
r − 1-

rotations. We note Cρ = B
√

r \ B
√

r−1 = {p ∈ Z2 | ∥p∥2 = ρ}.
Let q ∈ Cρ. This point q generates triplets (qx, qy, kq) ∈ Tρ that induce hinge angles.

We note Hq = {hq
i }
σq

i=1 (σq ⩾ 0) the set of all these (sorted) hinge angles associated
with q. The set Hq allows to define a partition Hq

� = {Hq
j = [hq

j , h
q
j+1[σq])}

σq−1
j=0 the

same way as in Equation (11). The set Hq
� can be endowed with a valuation function

νq : Hq
� → Z

2 defined, for all j ∈ [[0, σq − 1]], by νq(Hq
j ) = Rθ(q) for θ ∈ Hq

j .

Let b ∈ Z2 be a point such that ∥q − b∥2 = 1 and b ∈ B
√

r−1. There exists one or
two such points. Hereafter, the procedure is described by assuming that b is unique;
it is simply repeated if there exist two points b. The point b is (one of) the only (two)
point(s) for which we may have q,b ∈ B

√
r and Rθ(q) = Rθ(b), leading to a non-injective

configuration with respect to q. We define Tb, Hb, Hb
� and νb the same way as for p.

From the union set Hb∪Hq, we can build the partition H
q
� that refines Hq

� and Hb
� (as

their supremum for ⊑). We extend the valuation functions νq and νb from their initial
support toH

q
� so that for all j ∈ [[0, σq

−1]], we have νq(H
q
j ) = ν

q(Hq
j′ ) with H

q
j ⊆ Hq

j′ ∈

H
q
� and νb(H

q
j ) = ν

b(Hq
j′′ ) with H

q
j ⊆ Hb

j′′ ∈ H
b
�. We can endow the new partition H

q
�

with the local injectivity characterization function ιq : H
q
� → {⊥,⊤}, derived from νq

and νb and defined, for all j ∈ [[0, σq
− 1]], by ιq(H

q
j ) = (νq(H

q
j ) , (νb(H

q
j )).

For all the points q ∈ Cρ, we then have access to a partition H
q
� of U and a local

injectivity characterization function ιq : H
q
� → {⊥,⊤}. Following the same approach

as described above, one can define the partition S
√

r = H
√

r
� as the supremum of the

partition S
√

r−1 = H
√

r−1
� and all the partitions H

q
� induced by all the points q ∈ Cρ.

The function β
√

r−1 and all the functions ιq can be extended from their initial support to
H
√

r
�. The function β

√
r : H

√
r
� → {⊥,⊤} is finally defined, for all j ∈ [[0, σ

√
r − 1]] by

β
√

r(H
√

r
j ) = β

√
r−1(H

√
r−1

j ) ∧
∧

q∈C
√

r

ιq(H
√

r−1
j ) (16)

For each r ∈ [[0,m]], the set Iρ is given by (β
√

r)−1({⊤}).
The overall procedure is summarized in Algorithm 2. For the sake of efficiency,

it is relevant to design partial partitions H
√

r
� that only contain the intervals for which

β
√

r has the ⊤ value, instead of total partitions of U (storing the intervals for which
β
√

r has the ⊥ value is useless, since a function is non-injective whenever one of its
restricted functions is non-injective). We assume that we handle partial partitions in the
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Algorithm 2: Constrution of the injective / bijective ρ-rotations.

Input : µ =
√

m ∈
√
N

Output: Iµ (given by βρ for 0 ⩽ ρ ⩽ µ)
1 begin
2 Build H0, H0

� and β0

3 for r ∈ [[1,m]] do
4 Build C

√
r

5 foreach q ∈ C
√

r do
6 Build Hq, Hq

� and νq

7 foreach b ∈ Z2 s.t. ∥b∥2 <
√

r and ∥p − b∥2 = 1 do
8 Build Hb, Hb

� and νb

9 Build / update H
q
, H

q
� and ιq

10 Build / update H
√

r, H
√

r
� and β

√
r

above complexity analysis. Under this hypothesis, the space cost of the partial partitions
associated toH

√
r,H

√
r
� is assumed to be O(

√
r). (At this stage, this assumption relies on

our experimental analysis of the evolution of the population of injective rotations; this
remains to be theoretically confirmed.) The construction of H0, K0 and β0 (line 2) has a
time cost O(1). The external loop (line 3) iterates O(m) times. The construction of C

√
r

(of size O(1)) (line 4) has a time cost O(1). The medial loop (line 5) iterates O(1) times.
At iteration r, the construction of Hq, Hq

� and νq, of size O(
√

r), (line 6) has a time
cost O(

√
r). The internal loop (line 7) iterates O(1) times. At iteration r of the medial

loop, the construction of Hb, Hb
� and νb (of size O(

√
r)) (line 8) while the updating of

H
q
, H

q
� and ιq (line 9), that consists of merging pairs of partitions of size O(

√
r) also

has a time cost O(
√

r). At iteration r of the medial loop, the update of H
√

r, H
√

r
� and

β
√

r that consists of merging pairs partitions of size O(
√

r − 1) and O(
√

r), has a time
cost O(

√
r). This analysis motivates the following conjecture.

Conjecture 12 The tree (Iµ,◁Iµ ) that models the structure of all the injective ρ-rotations
(0 ⩽ ρ ⩽ µ) has a size O(µ) and can be built with a time cost O(µ

3
2 ).

5 Experimental results

We now illustrate some results obtained by application of the proposed algorithms.
In Figure 1, we show the first stages of the hierarchical structure of the bijective and

injective ρ-rotations. The non-bijective ρ-rotations were also computed, but they are not
visualized for the sake of readability.

Figure 2 provides the growth of the size of the various families of ρ-rotations with
respect to the radius ρ of the Euclidean balls. Theoretically, the numbers of the ρ-
rotations and the non-bijective ρ-rotations grow in O(ρ3), while the number of the bijec-
tive ρ-rotations (i.e. the restrictions of bijective discrete rotations) grows in O(ρ). These
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Fig. 1. Hierarchical structure of the bijective ρ-rotations. Here, the values of ρ =
√

r are given
for 0 ⩽ r ⩽ 90 (y axis). The visualized angles of U are restricted to [0, π/2] (x axis), due to sym-
metry considerations. For the sake of visualisation, only the bijective (Section 4.1) and injective
(Section 4.2) ρ-rotations are visualized. On the left side (angles in [0, π/4]), the intervals of Sρ

corresponding to the ρ-rotations are depicted. On the (symmetric) right side (angles in [π/4, π/2]),
the hierarchical structure between these intervals / ρ-rotations is depicted. The pink elements cor-
respond to ρ-rotations which are the restrictions of discrete rotations (in particular, the bijective
angles associated to these rotations are depicted by black × in the upper part of the right side).
The blue elements correspond to ρ-rotations which are injective on Bρ and thus bijective from
their finite support to their image.
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behaviours are experimentally confirmed. The number of the injective ρ-rotations is ex-
perimentally assessed as growing in O(ρ). This result, although intuitive, remains to be
proved. This is why the results stated at the end of Section 4 are given as a conjecture.

6 Conclusion

In this article, we investigated the notion of bijectivity for the discrete rotations on
finite subsets of Z2. We emphasized their hierarchical structure, which allowed us to
design efficient solutions for building them, by taking advantage of algorithmics on
trees developed in particular in mathematical morphology.

In further works, we will aim to improve these algorithmic developments. We will
also more deeply study the notion of injective rotations, and their behaviour for large
values of ρ. In particular, we will aim to formally prove how the population of these
rotations evolves when considering Euclidean balls of increasing radii. To complete
this framework, we will also investigate alternative definitions of bijectivity. Finally,
we will build upon this framework to deal with the problem of approximation of non-
bijective rotations [7]. We may also further investigate other properties of finite discrete
rotations, that were also pioneered e.g. in [1] from the point of view of dynamic systems.

Appendix

Proof of Property 3

– The bijection from Hρ to Hρ• is given by h 7→ {h}. The inverse bijection is given by
{h} 7→ h. In the case where ρ < 1, both bijections are equal to ∅.

– The bijection from Hρ� to Hρ� is given by (h1, h2) 7→ [h1, h2). The inverse bijection
is given by [h1, h2) 7→ (h1, h2). In the case where ρ < 1, there is no hinge angle h and
then Hρ� and Hρ� can be modeled as singleton sets that contain a unique element
U (from which we remove an arbitrary point for Hρ�), and the bijection still holds.

– Let us suppose that ρ ⩾ 1. In that case, there is at least one hinge angle, and
we can define a bijection e.g. from Hρ• to Hρ�. This bijection is given by {hρj } 7→(
hρj , h

ρ
j+1[σρ]

)
. The inverse bijection is given by

(
hρj , h

ρ
j+1[σρ]

)
7→ {hρj }. The other bi-

jections follow by transitivity. ■

Proof of Property 4

Let H ∈ Hρ�. Let θ1, θ2 ∈ H. Let Rθ1 ,Rθ2 ∈ RZ2 be the two discrete rotations associated
to θ1, θ2, respectively. Let Rρθ1 ,R

ρ
θ2
∈ R

ρ

Z2 be the two ρ-rotations associated to θ1, θ2,
respectively. There is no hinge angle of Hρ in the interval defined by θ1, θ2. It follows
that Rρθ1 and Rρθ2 are equal (and also equal to all the Rρθ for θ in this interval). This allows
us to define a function from Hρ� to Rρ

Z2 . The surjectivity of this function derives from
the surjectivity of Rρ. Now, let H1,H2 ∈ H

ρ
� be to distinct intervals of Hρ�, and let

θ1 ∈ H1 and θ2 ∈ H2. There exists (at least) one hinge angle of Hρ that separates H1 and
H2. It follows that there exists (at least) one point of Bρ for which Rρθ1 and Rρθ2 differ. It
follows that the function defined above from Hρ� to Rρ

Z2 is injective, and thus bijective.
■
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Proof of Property 6

Let K ∈ K \ {U}. Then we have K ∈ Hα(K)
� with α(K) =

√
r for a given r ∈ N distinct

from 0 (since K , U). The set H
√

r
� is a partition of U and it refines any partition H

√
r′
�

for r′ ∈ N, r′ ⩽ r. In particular, H
√

r−1
� is the finest partition refined by H

√
r
�. Since H

√
r−1
�

is refined by H
√

r
�, then there exists K′ ∈ H

√
r−1
� such that K ⊆ K′. But since

√
r = α(K),

we have K , K′ and then K ⊂ K′. Moreover, since H
√

r−1
� is the finest partition refined

by H
√

r
�, there is no K′′ ∈ K such that K ⊂ K′′ ⊂ K′, and it follows that K ◁ K′. The

fact that K′ is unique derives from the fact that each H
√

r
� (r ∈ N) is a partition of U,

which implies that there exists, for each r′ < r a unique K′′′ such that K ⊂ K′′′. ■

Proof of Property 7

The proof is by induction on µ ∈
√
N. If µ = 0, then Tµ is composed of only one

element, namely U, and the only total cut of the tree is {U} which is a partition of U.
Now, let us suppose that µ > 0 and that we already have that Tµ is a partition tree. We
set µ =

√
m, with m ∈ N. Let us consider the “next” tree, namely Tµ

′

with µ′ =
√

m + 1.
This tree Tµ

′

is obtained by adding to the nodes of Tµ the elements of S
√

m+1 = H
√

m+1
� ,

and by enriching the relation ◁ by linking each element K of H
√

m+1
� that was not yet in

H
√

m
� with a unique element K′ of H

√
m
� (see Property 6). Let us consider a total cut of

this new tree. If this cut does not contain any element from H
√

m+1
� , then it is a partition

of U by the induction hypothesis. Now, let us consider that this total cut contains an
element K of H

√
m+1
� . Since this is a cut, it does not contain the unique element K′ such

that K ◁ K′, but since it is a total cut, it must then contain all the elements K′′ that also
satisfy K′′ ◁ K′. All these elements form a partition of K′. By substituting K′ to these
elements in the cut, and by doing the same for all the other elements K of H

√
m+1
� , we

build a new cut of the tree Tµ, which is a partition of U, by induction hypothesis. By
construction, this partition is refined by the initial cut and the initial cut of Tµ

′

is then
also a partition of U. It follows that (Kµ,⊆) is a partition tree. ■

Proof of Property 8

Let {h} ∈ Hµ• . Let t = (px, py, k) ∈ T be the prime generator of h, associated to the point
p = (px, py) ∈ Z2. From Proposition 1, for any triplet t′ = (qx, qy, k′) ∈ T such that
η(t) = η(t′), there exists n ∈ Z such that qx = (2n + 1)px and qy = (2n + 1)py. It follows
that ∥p∥2 ⩽ ∥q∥2. Since η(t) = h, we have {h} ∈ H∥p∥2• . But since p is the point of lowest

norm that satisfies this property, we have ∥p∥22 = min
{
r ∈ N | {h} ∈ H

√
r
•

}
and the result

follows. ■

Proof of Property 9

From Property 7, Tµ is a partition tree. With the above definitions and analogies, each
thresholding of the graph Gµ with respect to ∆ at value ρ builds a partition of nodes of
Gµ which models the partition Sρ. As a consequence, Tµ is the watershed tree of (Gµ, ∆).
■
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