Bijectivity analysis of finite rotations on \mathbb{Z}^{2} : A hierarchical approach Nicolas Passat ${ }^{1}$, Phuc Ngo^{2}, Yukiko Kenmochi ${ }^{3}$
${ }^{1}$ Université de Reims Champagne Ardenne, CRESTIC, Reims, France
${ }^{2}$ Université de Lorraine, CNRS, LORIA, 54000, Nancy, France
${ }^{3}$ Normandie Univ., UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France

Motivation

In Euclidean spaces ($\mathbb{R}^{\mathrm{d}}, \mathrm{d} \geqslant 2$), rotations are bijective. This is no longer guaranteed when rotations are considered in \mathbb{Z}^{d}. We focus on the finite rotations that act on finite subsets of \mathbb{Z}^{2}, especially Euclidean
balls.
We shed light on the hierarchical structure of these rotations.
We propose two algorithmic schemes for the construction of combinatorial models (trees) of the
bijective finite rotations.

Rotations on \mathbb{Z}^{2} and hinge angles
Let $\theta \in \mathbb{U}=[0,2 \pi)$. Let $\mathrm{p}={ }^{\mathrm{t}}\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}\right) \in \mathbb{R}^{2}$. A (continuous) rotation is defined by

$$
\mathcal{R}_{\theta}(\mathrm{p})=\mathcal{R}_{\theta}\left(\binom{p_{\mathrm{x}}}{\mathrm{p}_{\mathrm{y}}}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \cdot\binom{\mathrm{p}_{\mathrm{x}}}{\mathrm{p}_{\mathrm{y}}}=\binom{\mathrm{p}_{\mathrm{x}} \cos \theta-\mathrm{p}_{\mathrm{y}} \sin \theta}{\mathrm{p}_{\mathrm{x}} \sin \theta+\mathrm{p}_{\mathrm{y}} \cos \theta}
$$

Let $p={ }^{t}\left(p_{x}, p_{y}\right) \in \mathbb{Z}^{2}$. A (discrete) rotation is defined by

$$
\mathrm{R}_{\theta}(\mathrm{p})=\left(\mathrm{D} \circ \mathcal{R}_{\theta}\right)(\mathrm{p})=\binom{\left[\mathrm{p}_{\mathrm{x}} \cos \theta-\mathrm{p}_{\mathrm{y}} \sin \theta\right]}{\left[\mathrm{p}_{\mathrm{x}} \sin \theta+\mathrm{p}_{\mathrm{y}} \cos \theta\right]}
$$

Let $\theta \in \mathbb{U}$. Let \mathcal{R}_{θ} be the (continuous) rotation of angle θ. Let $\mathrm{p} \in \mathbb{Z}^{2}$. Let us suppose that there exists $\in \mathbb{Z}$ such that
$\mathrm{p}_{\mathrm{x}} \cos \theta-\mathrm{p}_{\mathrm{y}} \sin \theta=\mathrm{k}+1 / 2$
holds. Then we say that θ is a hinge angle. We note $\mathbb{H} \subset \mathbb{U}$ the set of all the hinge angles. We not $\stackrel{U}{U}=\mathbb{U} \backslash \mathbb{H}$ the set of all the non-hinge angles

(a) $\pi / 6$ is a hinge angle. (b) The image $\mathrm{Y} \subset \mathbb{R}^{2}$ (blue dots) of a finite subset $\mathrm{X} \subset \mathbb{Z}^{2}$ transformed by a (bijective) rotation $\mathcal{R}_{\boldsymbol{\theta}}$. The image P (gre

Finite rotations on \mathbb{Z}^{2} (and their hierarchical structure)
ball of radius a non-hinge

$$
B^{\rho}=\left\{q \in \mathbb{Z}^{2}\| \| q \|_{2} \leqslant \rho\right\}
$$

We note $\mathrm{R}_{\theta}^{\rho}: \mathrm{B}^{\rho} \rightarrow \mathbb{Z}^{2}$ the ortation defined as $\mathrm{R}_{\theta}^{\rho}=\left(\mathrm{R}_{\theta}\right)_{\mathbb{B}^{\rho},}$, i.e. as the restriction of the discrete Fotation R_{θ} to the Eucidean ball B^{ρ}. Such rotation $\mathrm{R}_{\theta}^{\rho}$ is called $a \rho$-rotation.
We note $\mathbb{H}^{\rho} \subset \mathbb{H}$ He the (finite) subset of hinge angles which relate to the ρ-rotations, i.e. the hinge angles induced at a radius lower than ρ. We set

 Each segment $\left(h_{j}^{\rho}, h_{(j+1)}^{\rho}[\sigma \rho]\right)\left(\right.$ resp. $\left.\left[h_{j}^{\rho} ; h_{(j+1)}^{\rho}\right)\left[\sigma \sigma^{\rho}\right)\right)$ models a specific ρ-rotation R_{θ}^{ρ}.

$$
\mathbb{S}_{\infty-\infty}=\{|\theta| \mid \theta \in \mathbb{U}\} \quad \mathbb{S}_{\infty-\infty}^{\star}=\mathbb{S}_{\infty-\infty} \cup \bigcup_{\rho \in \mathbb{N} \frac{1}{2}} \mathbb{S}_{\infty-\infty}^{p}
$$

$\mathbb{S}_{\infty \sim}$ is in bijection with \mathbf{U} and is a partition of Ư. The Hasse diagram ($\mathbb{S}_{\propto \sim}^{\star}$, , $)$ of the ordered set ($S_{0,0} \subseteq$) is a partition tree

The combinatorial space of finite rotations is a watershed tree

Let $\mu \in \mathbb{N}^{2}$. We now restrict ourselves to the finite subspace of
In other words, we consider a inite upper part of $\left(\mathbb{S}_{-\infty}^{\star}, \triangleleft\right)$. Each element of $\mathbb{S}_{o-\mathrm{o}}^{\mu}$ models a μ-rotation. Each element of $\mathbb{S}_{\bullet}^{\mu}$ models a hinge angle between two μ otations. Then $\left(\mathbb{S}_{\substack{0}}^{\rho}, \mathbb{S}_{\bullet}^{\rho}\right)$ can be seen as a cycle graph $\mathscr{F}^{\mu}=\left(\mathcal{V}^{\mu}, \mathcal{Z}^{\mu}\right)$. Each hinge angle $\mathrm{h} \in \mathbb{H}$ is associated to a value $\Delta(\mathrm{h})$ that corresponds to the lowest radius ρ where h appears. The valued graph $\left(\mathfrak{F}^{\mu}, \Delta\right)$ then defines a saliency map.

Bijective finite rotations on Z^{2}

$$
\mathbb{B}=\left\{\theta \in \mathbb{U} \left\lvert\, \sin \theta \in\left\{\frac{2 \mathrm{p}(\mathrm{p}+1)}{2 \mathrm{p}^{2}+2 \mathrm{p}+1}, \left. \pm \frac{2 \mathrm{p}+1}{2 \mathrm{p}^{2}+2 \mathrm{p}+1} \right\rvert\, \mathrm{p} \in \mathbb{N}\right\}\right.\right\}
$$

We can define a bijective ρ-rotations $\mathrm{R}_{\theta}^{\rho}$ by two ways:
$\left(\mathrm{B}_{1}\right) \mathrm{R}_{\theta}^{\rho}$ is the restriction to B^{ρ} of a bijective discrete rotation R_{θ}
$\left(\mathrm{B}_{2}\right) \mathrm{R}_{\theta}^{\rho}$ is an injective mapping from B^{ρ} to $\mathrm{R}_{\theta}\left(\mathrm{B}^{\rho}\right)$.

Building the (bjijective) finite rotations on Z^{2} (bottom-up)

first way of building the combinatorial space of the (bijective) discrete rotations is
Build the watershed tree of $\left(\mathbb{S}_{o-}^{\rho}, \mathbb{S}_{\bullet}^{\rho}\right), \rho \in \llbracket 0, \mu \rrbracket$ with a time cost $O\left(\mu^{3} \log \mu\right)$
Determine the bijective rotations in the tree from the leaves up to the root:

- With definition $\left(B_{1}\right)$, this can be done with a time cost $O\left(\mu^{3}\right)$.
. With definition $\left(B_{2}\right)$, this can be done with a reasonable time cost.

With definition $\left(B_{2}\right)$, this can be done with a reasonable time cost.

रे० री को रे

Building the (bijective) finite rotations on \mathbb{Z}^{2} (top-down)
A second way of building the combinatorial space of the (bijective) discrete rotations is to build only the
bijective ρ-rotations, from $\rho=0$ down to $\rho=\mu$ by following an iterative "refine and select" paradigm.

The time cost for building the combinatorial space depends on the family of considered ρ-rotations: - $O\left(\mu^{3} \log \mu\right)$ for all the ρ-rotations;

- $O\left(\mu^{3}\right)$ for all the bijective ρ-rotations with definition $\left(\mathrm{B}_{1}\right)$
- $O\left(\mu^{k+2} \log \mu\right)$ for all the bijective ρ-rotations with definition $\left(\mathrm{B}_{2}\right)$ with $1 \leqslant \mathrm{k} \leqslant 3$ (not yet known!);

\square

Funding

This work was supported by the French Agence Nationale de la Recherche (Grants ANR-22-CE45-0034 and ANR-23-CE45-001
anr ${ }^{\circ}$

