# Bijectivity analysis of finite rotations on $\mathbb{Z}^2$ : A hierarchical approach

Nicolas Passat<sup>1</sup>, Phuc Ngo<sup>2</sup>, Yukiko Kenmochi<sup>3</sup>

<sup>1</sup> Université de Reims Champagne Ardenne, CRESTIC, Reims, France
 <sup>2</sup> Université de Lorraine, CNRS, LORIA, 54000, Nancy, France
 <sup>3</sup> Normandie Univ., UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France

#### Motivation

In Euclidean spaces ( $\mathbb{R}^d$ ,  $d \ge 2$ ), rotations are bijective. This is no longer guaranteed when rotations are considered in  $\mathbb{Z}^d$ . We focus on the finite rotations that act on finite subsets of  $\mathbb{Z}^2$ , especially Euclidean balls.

- We shed light on the hierarchical structure of these rotations.
- We propose two algorithmic schemes for the construction of combinatorial models (trees) of the bijective finite rotations.

#### Rotations on $\mathbb{Z}^2$ and hinge angles

Let  $\theta \in \mathbb{U} = [0, 2\pi)$ . Let  $p = {}^{t}(p_{x}, p_{y}) \in \mathbb{R}^{2}$ . A (continuous) rotation is defined by  $\mathcal{R}_{\theta}(p) = \mathcal{R}_{\theta}(p_{x}) = (\cos \theta - \sin \theta) \cdot (p_{x}) = (p_{x} \cos \theta - p_{y} \sin \theta)$ 

$$\theta(\mathbf{p}) = \mathcal{R}_{\theta}\left(\begin{pmatrix}\mathbf{r} & \mathbf{r} \\ \mathbf{p}_{\mathbf{y}}\end{pmatrix}\right) = \left(\sin\theta & \cos\theta\right) \cdot \begin{pmatrix}\mathbf{r} & \mathbf{r} \\ \mathbf{p}_{\mathbf{y}}\end{pmatrix} = \begin{pmatrix}\mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{p}_{\mathbf{x}}\sin\theta + \mathbf{p}_{\mathbf{y}}\cos\theta\right)$$

Let  $p = {}^{t}(p_{x}, p_{y}) \in \mathbb{Z}^{2}$ . A (discrete) rotation is defined by

$$R_{\theta}(p) = (D \circ \mathcal{R}_{\theta})(p) = \begin{pmatrix} [p_{x} \cos \theta - p_{y} \sin \theta] \\ [p_{x} \sin \theta + p_{y} \cos \theta] \end{pmatrix}$$

# Bijective finite rotations on $\mathbb{Z}^2$

A discrete rotation  $R_{\theta}$  is bijective [2] iff  $\theta \in \mathbb{B}$  with

$$\mathbb{B} = \left\{ \theta \in \mathbb{U} \mid \sin \theta \in \left\{ \pm \frac{2p(p+1)}{2p^2 + 2p + 1}, \pm \frac{2p + 1}{2p^2 + 2p + 1} \mid p \in \mathbb{N} \right\} \right\}$$

We can define a bijective  $\rho$ -rotations  $R^{\rho}_{\theta}$  by two ways:

(B<sub>1</sub>) R<sup>ρ</sup><sub>θ</sub> is the restriction to B<sup>ρ</sup> of a bijective discrete rotation R<sub>θ</sub>;
(B<sub>2</sub>) R<sup>ρ</sup><sub>θ</sub> is an injective mapping from B<sup>ρ</sup> to R<sub>θ</sub>(B<sup>ρ</sup>).

#### Building the (bijective) finite rotations on $\mathbb{Z}^2$ (bottom-up)

- A first way of building the combinatorial space of the (bijective) discrete rotations is to:
- Build the watershed tree of  $(\mathbb{S}^{\rho}_{\bullet,\bullet}, \mathbb{S}^{\rho}_{\bullet}), \rho \in \llbracket 0, \mu \rrbracket$  with a time cost  $O(\mu^3 \log \mu)$
- Determine the bijective rotations in the tree from the leaves up to the root:
- With definition (B<sub>1</sub>), this can be done with a time cost  $O(\mu^3)$ .
- With definition  $(B_2)$ , this can be done with a reasonable time cost.

Let  $\theta \in \mathbb{U}$ . Let  $\mathcal{R}_{\theta}$  be the (continuous) rotation of angle  $\theta$ . Let  $p \in \mathbb{Z}^2$ . Let us suppose that there exists  $k \in \mathbb{Z}$  such that

 $p_x \cos \theta - p_y \sin \theta = k + 1/2$ 

holds. Then we say that  $\theta$  is a hinge angle. We note  $\mathbb{H} \subset \mathbb{U}$  the set of all the hinge angles. We note  $\mathbb{U} = \mathbb{U} \setminus \mathbb{H}$  the set of all the non-hinge angles.



(a)  $\pi/6$  is a hinge angle. (b) The image  $Y \subset \mathbb{R}^2$  (blue dots) of a finite subset  $X \subset \mathbb{Z}^2$  transformed by a (bijective) rotation  $\mathcal{R}_{\theta}$ . The image P (green and yellow dots) of X by the (non-bijective) discrete rotation  $R_{\theta}$ , i.e.  $P = R_{\theta}(X)$ . (c) The first bijective angles depicted on the unit square.

# Finite rotations on $\mathbb{Z}^2$ (and their hierarchical structure)

Let  $\theta \in \mathring{U}$  be a non-hinge angle. Let  $\mathbb{R}_{\theta}$  be a discrete rotation. Let  $\rho \in \mathbb{R}_+$ . Let  $\mathbb{B}^{\rho}$  be the Euclidean ball of radius  $\rho$  in  $\mathbb{Z}^2$ , i.e.

 $\mathbf{B}^{\rho} = \left\{ \mathbf{q} \in \mathbb{Z}^2 \mid \|\mathbf{q}\|_2 \leq \rho \right\}$ 

We note  $\mathbb{R}^{\rho}_{\theta} : \mathbb{B}^{\rho} \to \mathbb{Z}^2$  the rotation defined as  $\mathbb{R}^{\rho}_{\theta} = (\mathbb{R}_{\theta})_{|\mathbb{B}^{\rho}}$ , i.e. as the restriction of the discrete rotation  $\mathbb{R}_{\theta}$  to the Euclidean ball  $\mathbb{B}^{\rho}$ . Such rotation  $\mathbb{R}^{\rho}_{\theta}$  is called a  $\rho$ -rotation. We note  $\mathbb{H}^{\rho} \subset \mathbb{H}$  the (finite) subset of hinge angles which relate to the  $\rho$ -rotations, i.e. the hinge angles induced at a radius lower than  $\rho$ . We set

$$\mathbb{H}^{\rho} = \left\{ h_{j}^{\rho} \right\}_{j=0}^{\sigma^{\rho}-1} \quad \mathbb{S}_{\bullet}^{\rho} = \left\{ \left\{ h_{j}^{\rho} \right\} \right\}_{j=0}^{\sigma^{\rho}-1} \quad \mathbb{S}_{\bullet\bullet\bullet}^{\rho} = \left\{ \left[ h_{j}^{\rho}, h_{(j+1)[\sigma^{\rho}]}^{\rho} \right] \right\}_{j=0}^{\sigma^{\rho}-1} \quad \mathbb{S}_{\bullet\bullet\bullet}^{\rho} = \left\{ \left[ h_{j}^{\rho}, h_{(j+1)[\sigma^{\rho}]}^{\rho} \right] \right\}_{j=0}^{\sigma^{\rho}-1}$$



# Building the (bijective) finite rotations on $\mathbb{Z}^2$ (top-down)

A second way of building the combinatorial space of the (bijective) discrete rotations is to build only the bijective  $\rho$ -rotations, from  $\rho = 0$  down to  $\rho = \mu$  by following an iterative "refine and select" paradigm.



The time cost for building the combinatorial space depends on the family of considered  $\rho$ -rotations:

- $O(\mu^3 \log \mu)$  for all the  $\rho$ -rotations;
- $O(\mu^3)$  for all the bijective  $\rho$ -rotations with definition (B<sub>1</sub>);
- $O(\mu^{k+2} \log \mu)$  for all the bijective  $\rho$ -rotations with definition (B<sub>2</sub>) with  $1 \le k \le 3$  (not yet known!);



$$(d) \overset{\rho}{\mathfrak{S}}^{\rho} \qquad (e) \overset{\rho}{\mathfrak{S}}^{\rho} \qquad (f) \overset{\rho$$

 $\mathbb{S}_{\sim}$  is in bijection with  $\mathring{U}$  and is a partition of  $\mathring{U}$ . The Hasse diagram  $(\mathbb{S}_{\sim}^{\star}, \triangleleft)$  of the ordered set  $(\mathbb{S}_{\sim}^{\star}, \subseteq)$  is a partition tree.



 $\mathbb{S}_{\infty}^{\star}$  decomposed by increasing values of  $\rho \in \mathbb{N}^{\frac{1}{2}}$ . A black segment depicts an interval of  $\mathbb{S}_{\infty}^{\rho}$ . The last line corresponds to  $\mathbb{S}_{\infty}$ .

### The combinatorial space of finite rotations is a watershed tree

Let  $\mu \in \mathbb{N}^{\frac{1}{2}}$ . We now restrict ourselves to the finite subspace of the  $\rho$ -rotations for all the values  $\rho \in [0, \mu]$ . In other words, we consider a finite upper part of  $(\mathbb{S}^{\star}_{\circ \circ}, \triangleleft)$ .

Each element of  $\mathbb{S}^{\mu}_{\bullet \to \bullet}$  models a  $\mu$ -rotation. Each element of  $\mathbb{S}^{\mu}_{\bullet}$  models a hinge angle between two  $\mu$ rotations. Then  $(\mathbb{S}^{\rho}_{\bullet \to \bullet}, \mathbb{S}^{\rho}_{\bullet})$  can be seen as a cycle graph  $\mathfrak{G}^{\mu} = (\mathcal{V}^{\mu}, \mathcal{E}^{\mu})$ . Each hinge angle  $h \in \mathbb{H}$  is
associated to a value  $\Delta(h)$  that corresponds to the lowest radius  $\rho$  where h appears. The valued graph  $(\mathfrak{G}^{\mu}, \Delta)$  then defines a saliency map.



#### The hierarchical structure of the bijective rotations on $\mathbb{Z}^2$



## Complexity of the (bijective) rotations on $\mathbb{Z}^2$





(g)  $(\mathbb{S}^{\rho}_{\infty}, \mathbb{S}^{\rho}_{\bullet}), \rho \in [\![0, 5]\!]$  (h) Watershed tree (i)  $\mathfrak{S}^{\mu} = (\mathcal{V}^{\mu}, \mathcal{E}^{\mu}), \Delta$  (j) Watershed tree The combinatorial space of all the  $\rho$ -rotations for  $0 \leq \rho \leq \mu$  is the watershed tree [1] of the saliency graph  $(\mathfrak{S}^{\mu}, \Delta)$ .

#### Evolution of the size of the different families of $\rho$ -rotations (y-axis) with respect to $\rho$ (x-axis) in log-log scale

#### References

 L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:1163–1173, 1996.

 B. Nouvel and É. Rémila. Characterization of bijective discretized rotations. In International Workshop on Combinatorial Image Analysis (IWCIA), Proceedings, volume 3322 of Lecture Notes in Computer Science, pages 248–259. Springer, 2004.

#### Funding

This work was supported by the French Agence Nationale de la Recherche (Grants ANR-22-CE45-0034 and ANR-23-CE45-0015).







