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Abstract—

In the retail industry, SCM holds significant importance as
it ensures the efficient movement of goods from suppliers to
customers. In this intricate and fast-paced environment, the
availability of accurate information and data is crucial. The
purpose of this paper is to develop a framework that enhances
forecasting accuracy and efficiency in supply chain operations
within the retail industry. By analyzing the latest research
and advancements in the field, this paper seeks to contribute
valuable insights into the potential of deep learning for supply
chain management. The ultimate goal is to provide retailers
with a reliable tool that empowers them to make informed
decisions based on accurate predictions, thereby optimizing their
supply chain operations and better meeting customer demands
in the dynamic retail landscape. DLSTM-SCM, the framework
developed in this paper, updates dynamically the deployed LSTM
models to predict the upcoming day’s sales using historical sales
data in addition to statistical features like lagging and shifting
to enhance forecasting precision. The efficacy of DLSTM-SCM
is demonstrated through its performance on real benchmarks,
where it yielded significant improvements compared to existing
methods.

Index Terms—Time Series, Demand Forecasting, Supply Chain
Management, RNN, Deep Learning, Sales Forecasting, LSTM.

I. INTRODUCTION

ITH the advent of new technologies and the growing

complexity of global trade. Supply Chains (SC) have
become increasingly important and complex. The supply chain
is the connected series of activities that is concerned with
planning, coordinating, and controlling material, parts and
finished goods from supplier to customer [1]. For example,
the COVID-19 pandemic has highlighted the value of resilient
supply chains and the requirement for organizations to be able
to quickly adjust to changing conditions.

Existing solutions in SCM, including time series forecasting
and demand forecasting used in [2] and [3], have made signif-
icant strides. However, they contend with notable limitations.
They often struggle to capture intricate hierarchical patterns
within SC datasets, which can be complex and multi-tiered.
Additionally, these solutions frequently overlook the inclusion
of crucial statistical features, compromising their predictive
accuracy. Bridging these gaps represents a promising direction
for enhancing the efficacy of Deep Learning (DL) applications
in SCM. Future solutions should focus on addressing these
limitations to optimize SC operations and decision-making
effectively [4].

This paper tackles the limitations identified earlier in SCM
solutions by proposing the implementation of a dynamic model
that incorporates a broader set of features, enabling it to
effectively track and decipher complex patterns. Its primary
contribution is the development of DLSTM-SCM, a dynamic
tool that effectively captures complex hierarchical dataset
patterns. DLSTM-SCM leverages DL techniques and incor-
porates essential statistical features like lagging and shifting
to deliver highly accurate forecasting results. Thus DLSTM-
SCM empowering more precise decision-making and optimiz-
ing SC operations.

In the upcoming sections, we will cover key aspects of
DLSTM-SCM. Section II reviews related work of using Al
in the supply chain context. Section III details DLSTM-SCM.
In Section IV, we present the run experiment results. Finally,
we conclude the paper in Section V while providing the future
directions related to DLSTM-SCM

II. RELATED WORK

This section explores and discusses the utilization of deep
learning approaches in the supply chain domain and their
profound impact on decision-making and overall performance
enhancements.

Amani and Sarkodie [5] automated meat production reg-
ulation and monitoring by leveraging Industry 4.0 principles
and addressing Sustainable Development Goal 12. For meat
supply chain management, they employed a classifier based
on Deep Convolutional Neural Networks and Particle Swarm
Optimization algorithms. The dataset, sourced from a Turkish
store, was used to classify meat photos as fresh or rotting.
Their method achieved 100% accuracy in meat authenticity
classification, surpassing the 99.62% reported by Ulucan et
al. [6].

Chong et al. [2] applied real-time series data to soft-Markov
Decision Process based inventory management. Their numer-
ical results highlight the effectiveness of Deep Reinforcement
Learning for accurately forecasting product demand within a
significant supply chain management system. The study’s cred-
ibility was reinforced by the explicit depiction of stock level
variations in response to demand fluctuations. Additionally, the
experimental findings underscored the importance of entropy
optimization, which enabled the agent to navigate episodes
with extreme demand history variations.



Oyewola et al. [3] aimed to enhance SCM efficiency while
reducing manual intervention and associated costs. They have
demonstrated that Bayesian Optimization with the Tree Parzen
Estimator and AIIkKNN can optimize deep learning models,
such as LSTM and One Dimensional Convolutional Neural
Network (1D-CNN). The obtained results indicated that com-
bining the Tree Parzen Estimator with 1D-CNN and AIIKNN
can enhance the accuracy of supply shipment price datasets.
The data samples were sourced from Kaggle, although it is
worth noting that the industry sample may not fully represent
the entire sector.

Tan et al. [7] examined deep learning software ecosystems,
focusing on TensorFlow and PyTorch. Their analysis compared
package usage within these ecosystems, revealing similarities,
except for a higher prevalence of research-related projects in
PyTorch. This suggests that PyTorch is preferred by academics
due to its ease of use and suitability for rapid prototyping,
while TensorFlow is more geared towards Al product develop-
ment. Utilizing Generalized Additive Models, they uncovered
a nonlinear relationship between the number of authors and
downstream projects, which is inversely associated with the
number of dependent packages.

Wang et al. [8] introduced a framework for forecasting
commodity demand in the retail supply chain. Their approach
leverages vertical federated learning to address data security
and privacy concerns in the context of new retail. The authors
developed a vertical federated LSTM model to securely en-
crypt and integrate data from multiple departments, resulting
in a new dataset that preserves data privacy throughout the
entire supply chain demand forecasting system. The results
demonstrated that Fed-LSTM outperforms existing Federated
Learning-based machine learning methods, ensuring the con-
fidentiality of business data and providing an effective sales
forecasting tool.

Xu and He [9] applied a Deep Belief Network to assess
financial credit risk in online supply chain management,
specifically targeting small and medium-sized firms in the
automobile industry. Their approach utilized a Deep Learning
Neural Network comprising Restricted Boltzmann Machines
and a SOFTMAX classifier to evaluate credit risk. They col-
lected comprehensive data from 100 small and medium-sized
businesses, totaling 300 datasets. The method was validated
using a wind dataset, achieving an evaluation accuracy of
96.04%, surpassing the performance of other methods such
as Support Vector Machines and Logistic Regression.

The studied SCM works, offer insights into DL’s effec-
tiveness but exhibit limitations. They excel in specific tasks
like demand forecasting and credit risk assessment but often
employ limited datasets and overlook the use of comprehen-
sive features, potentially hindering broader applicability and
superior results. These studies underscore the need for more
complex datasets and a richer feature set to enhance the ver-
satility and accuracy of DL approaches in SCM. Compared to
the studied studies, DLSTM-SCM relies on a dynamic model
known for its adaptability. It excels in adjusting and optimizing
predictions as supply chain data evolves, DLSTM-SCM is

also enriched with an extensive feature set on complex dataset.
This combination has notably improved result accuracy, setting
a new standard for SC applications.

III. DLSTM-SCM FRAMEWORK

To predict future sales, DLSTM-SCM uses a potent predic-
tion model that makes use of deep neural networks, particu-
larly LSTM. To accurately anticipate future sales performance,
the prediction model learns patterns, trends, and dependencies
by examining prior sales data. Figure 1 illustrates DLSTM-
SCM’s workflow described below.

1) Initially, it takes historical sales data as input.

2) Then, DLSTM-SCM preprocesses it (e.g., date lists,
time sequences), configures model parameters, and un-
dergoes training/testing.

3) Evaluation metrics (RMSE, loss, validation loss) are
then applied.

4) Further, statistical features like lag and shift enhance
predictions, with iterative updates for optimization.

5) Ultimately, DLSTM-SCM delivers accurate sales fore-
casting, aiding supply chain management.

In the following, we detail each step of DLSTM-SCM.

A. Data Preprocessing

During the analysis, we look more on the correlation
between entities such as stores. For example, Figure 2 shows
the highest correlation between the store 1 and 2 (CA_1 and
CA_2 ), which are located in the same state for California
based on Walmart dataset. This strong correlation suggests
that these two stores share similar sales patterns and may be
influenced by similar factors in their respective regions.

The steps follow detail the preprocessing procedures we
have considered within DLSTM-SCM.

1) Date List Creation for Time Series Analysis: In order
to present a Time Series with the right dates, we made a
“dates list” that will be helpful. We assigned a variable named
“date_index” to the value of the column “date” from the
calendar date frame (Algorithm 1).

Algorithm 1 Data Processing.
Require: calendar_df : Calendar DataFrame
Require: sales_train_validation_df : Sales Train Valida-
tion DataFrame
1: date_index = calendar_df['date’] {Extract ’date’ col-
umn from the calendar DataFrame}
2: dates = date_index[0 : 1913] {Select the first 1913
dates}
3: dates_list = |]
4: for each date in dates do
5. _date = strptime(date, %Y — %m — %d’).date()
{Convert date string to datetime format}
6:  APPEND _date to dates_list {Add the formatted date
to the list}
7: end for
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Fig. 1. DLSTM-SCM Framework Work-Flow.
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Fig. 2. Correlation between Stores Sales

2) Daily Item Sales Creation: We follow a number of
processes to produce a dataframe that represents daily item
sales. We begin by including a column that functions as a
unique identifier by fusing item IDs and store IDs. Then, we
made a transpose matrix, where the rows stand for days and
the columns for specific goods. We used item-store IDs in
place of the product numbers. The index is specified to be a
list of dates, and datetime is selected as the index type. These
changes provide a structured dataframe, which makes it easier
to analyze daily item sales since it has dates as the index and
item-store combinations as column names.

3) Data Normalization: we used MinMaxScaler to normal-
ize our data within a feature range of -1 to 1 (Equation 1).
This specific normalization process enhances the accuracy and
reliability of our predictions by scaling numerical attributes
while maintaining their distinctive characteristics.

,  x—min(z)

(1)

~ max(z) — min(z)

4) Time Sequences Creation: We employed a technique
for creating data windows or sequences (Algorithm 2). Each
sequence in our example had 28 successive samples which
represents 4 weeks. These sequences will be used to anticipate
the sales for the next day. Thanks to the design of these
sliding windows, the RNN model can then detect temporal
correlations and patterns in the data, improving the accuracy
of our predictions.

Algorithm 2 Sliding Windows for Sequence Data.

Require: data : Input data array

Require: seq_length: Length of the sliding window sequence

1: x + [] {Initialize empty array for input sequences }

: y « [] {Initialize empty array for output values}

: for i from 0 to (LENGTH(data) — seq_length — 2) do
_x < SUBARRAY (data, i, i+ seq_length — 1) {Create
input sequence}
_y + ELEMENT_AT(data, i + seq_length) {Get cor-
responding output value}
APPEND _z to = {Append input sequence to x}
APPEND _y to y {Append output value to y}

end for

return z, y
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Fig. 3. Creation of weekly Time Sequences.

B. LSTM Modeling

LSTM is a type of RNN that is specifically designed to
handle sequential data, such as time series, speech, and text.
LSTM networks are capable of learning long-term dependen-
cies in sequential data, which makes them well-suited for tasks
such as language translation, speech recognition, and time
series forecasting [10]. This dependency is retained by the
cells and the memory manipulations are done by the gates



(Figure 4).

Fig. 4. LSTM Architecture [11].

In LSTM, three gates are distinguished.

(a)

(b)

Forget Gate: The forget gate filters cell state infor-
mation by processing current input z; and previous
cell output h;_; through weight matrices and biases.
An activation function generates a binary output: O for
discarding information and 1 for retaining it for future
use. The forget gate equation is:

fe=0(Wy - [he—1,24] + by)

where:

o W represents the weight matrix for the forget gate.

e [hi—1, z¢] denotes the concatenation of the previous
hidden state and the current input.

e by is the bias associated with the forget gate.

« o represents the sigmoid activation function.

Input gate: The input gate augments the cell state
with pertinent data. It employs the sigmoid function to
control information relevance, akin to the forget gate,
using inputs h;—; and x;. Next, a vector is constructed
via the tanh function, outputting a range from -1 to
+1, encompassing potential values from h;_; and z;.
Finally, the vector and controlled values are multiplied
to yield the essential information. The equations for the
input gate operations are as follows:

iy = (Wi~ [hi—1, 2] + by)
C, = tanh(We - [he—1, x¢] + be)
Ci=fi®Ci1+i,0C,

Where:

e W, is the weight matrix associated with the input
gate.

o W, is the weight matrix for creating the vector.

o b; is the bias related to the input gate.

b. is the bias for vector creation.

« o represents the sigmoid activation function.

©® denotes element-wise multiplication.

o tanh signifies the hyperbolic tangent activation
function.

(c) Output Gate: The output gate extracts valuable infor-
mation from the current cell state for presentation as out-
put. It begins by creating a vector through the application
of the tanh function on the cell state. Subsequently, the
sigmoid function is employed to regulate information
and filter values to remember, involving inputs h;_; and
;. Lastly, the vector and controlled values are multiplied
to produce an output sent to the next cell as both output
and input. The equation for the output gate is:

o =0 (W - [hi—1, 2] + Do)

DLSTM-SCM provides the layouts of the three models for
predicting future sales.
The LSTM models takes several parameters into account:

o Num-classes: This represents the number of outputs.

« Input size: a single input consisting of 28 samples.

« Hidden layers: This indicates the number of hidden layers
within each LSTM cell.

o Num layers: In our current configuration, this can be
increased if needed.

1) Single Layer Model: This module builds a straightfor-
ward LSTM model with a single LSTM layer and a dense input
layer. In the single-layer model, a solitary input composed
of 28 samples was employed. The model featured a singular
layer, one class, and a hidden size of 512 (Algorithm 3). The
parameters are carefully chosen to strike a balance between
model complexity, training efficiency, and performance. Fine-
tuning these parameters based on the specific dataset and
problem at hand is crucial to achieving optimal results in
LSTM modeling.

Algorithm 3 Single Layer LSTM Training.
Require: Hyperparameters
I E+500,L1le—3,1+ 1, H+512, N+ 1,C+1
{Set hyperparameters}
2: Initialize LSTM: L <+ LSTM(C,I,H,N), L <+
LSTM(C, I, H, N).to(device) {Initialize LSTM model}
3: Set criterion, optimizer, scheduler: M < MSE Loss,
O < Adam optimizer(L.parameters(),lr = L),
S <« LR Scheduler(O, patience = 500, factor =
0.5, min;r = le — 7,eps = le — 8) {Set loss, optimizer,
and scheduler}
4: for ein 1 to E do
Set LSTM mode: L.train() {Set LSTM model to
training mode}
Forward pass: O < L(X.to(device))
Zero gradients: O.zero_grad() {Zero the gradients}
Calculate loss: L < M (O, Y.to(device))
Backpropagate gradients: L.backward()
{Backpropagate gradients}
10:  Update model: O.step() {Update model parameters}
11: end for
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2) Multiple Layer Model: To enhance our model’s perfor-
mance, we increased the training epochs to 700 and added two
extra LSTM layers while maintaining the number of classes
and hidden size constant (Algorithm 4). The inclusion of
multiple LSTM layers enables the model to capture intricate
sequential patterns, enhancing its predictive abilities. These
adjustments unlock the potential for improved forecasting
accuracy and deeper data insights through the utilization of
multiple LSTM layers. These hyperparameters play a critical
role in shaping the LSTM model’s architecture and behavior,
directly impacting its predictive capabilities.

Algorithm 4 Multiple Layer LSTM Training.
Require: Hyperparameters
1: E<«~ 700, L+ 1e—3, 1+ 1, H<+ 512, N+ 2,C«+1
{Set hyperparameters }
2: Initialize LSTM: L <« LSTM2(C,I,H,N), L <+
LSTM2(C, I, H, N).to(device) {Initialize LSTM model }
3: Initialize weights: L.apply(init_weights)
4: Set criterion, optimizer, scheduler: M < MSE Loss,

@) — Adam optimizer(L.parameters(),lr =
L, weight_decay = le — 5), S —
LR Scheduler(O, patience = 100, factor =
0.5,min_lr = le — 7,eps = le — 8) {Set loss,

optimizer, and scheduler}

5: for ein 1 to E do
Set LSTM mode: L.train() {Set LSTM model to
training mode}

7. Forward pass: O < L(X.to(device)) {Perform for-
ward pass}

8 Zero  gradients and clip:  O.zero_grad(),
clip_grad_norm_(L.parameters(),1) {Zero gradients
and apply gradient clipping}

9:  Calculate loss: L < M(O,Y.to(device)) {Calculate
loss}

10:  Backpropagate gradients: L.backward()

11:  Adjust learning rate: S.step(L) {Adjust learning rate
using scheduler}

12:  Update model: O.step() {Update model parameters}

13: end for

3) Adding More Layers and Features:

In our pursuit of better predictive performance, we intro-
duced delays and rolling windows using data frames for seam-
less implementation. This allowed us to enhance our model
by incorporating additional features and refining our training
approach. We calculated means and standard deviations within
rolling windows (Algorithm 5). However, this introduced NaN
(Not-a-Number) values, which were replaced with zeros. De-
spite the data’s multidimensionality, these changes improved
model performance to match the previous version. Notably, we
now preserve the best model based on the lowest validation
loss, marking a significant improvement.

IV. EXPERIMENTAL RESULTS

Algorithm 5 Shifting Data.
Require: DataFrame DF {Input DataFrame}
1. start_time <+ time.time() {Record start time}
2. for i in [1,7, 14, 28, 365 do
3:  Print *Shifting:’, ¢ {Print current shift value}
4 DF[/lagurstr(i)]eDF[’sales’].transform()\m:z.shift(i))
{Shift ’sales’ column by ¢ positions}
5: end for

In order to evaluate the efficiency of DLSTM-SCM, we
used the Walmart dataset, which contains hierarchical sales
data, to assess how well our framework performed. To assess
the model’s effectiveness, we ran trials using RMSE. Each of
the three models we suggested includes convolutional layers
in addition to the classification layers used by the others. We
utilized a rolling window to train the models, and a dropout is
used to avoid over-fitting. Throughout the process of creating
the models for our various implementations, PyTorch was
employed.

Figure 5 illustrates the outcomes of the single-layer model,
where a noticeable reduction in both measures loss and vali-
dation loss. As the model learns, the training loss decreases,
but after approximately 300 epochs, the validation loss starts
to rise, hinting at possible overfitting. To address this, consider
regularization or architectural adjustments. Monitoring this
divergence helps determine the right number of epochs or early

stopping.
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Fig. 5. Single Layer Model Results

Figure 6 presents the performance results of a multiple-
layer model during training. Both training and validation losses
follow a decreasing trend. However, maintaining a consistent
gap between the training and validation losses is essential to
ensure the model’s generalization performance. Compared to
the single-layer model results, the multiple-layer model shows
a relatively lower validation loss, indicating improved pre-
dictive performance. This demonstrates the potential benefits
of adding more layers to the model for capturing complex
patterns in the data.

The third model depicted in Figure 7 demonstrates the most
promising results among the three configurations. It displays
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Fig. 6. Multiple Layer Model Results

the results of the statistical features-based model during its
training process. Notably, both the training and validation
losses exhibit a decreasing trend, indicating effective learning.
Interestingly, the statistical features-based model shows sig-
nificantly lower losses compared to the previous models. This
suggests that the model’s predictive performance is notably
superior to the earlier models.
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Fig. 7. Statistical Features Based Model Results

V. CONCLUSION

In this paper, DLSTM-SCM framework for enhancing
supply chain performance through time series forecasting has
been proposed. We initially employed a single-layer model,
which provided a foundational understanding of the problem.
However, recognizing the potential for improved accuracy, we
ventured into more advanced territory, integrating a multi-layer
LSTM model. Building upon this foundation, we introduced a
third model enriched with lag features. The outcomes exceeded
our expectations, demonstrating the promise of DLSTM-SCM
for sales forecasting and supply chain optimization while
updating online the LSTM model. Looking ahead, our future
work will delve deeper into these advancements, exploring
the application of G3RU models to further refine and enhance
our forecasting capabilities. With each step, we continue to

advance DLSTM-SCM for supply chain forecasting, driving
improved performance and efficiency in this critical domain.
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