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Proactive Vehicular Traffic Re-routing for Lower
Travel Time

Juan (Susan) Pan, Iulian Sandu Popa, Karine Zeitouni, and Cristian Borcea

Abstract—Traffic congestion causes driver frustration and
costs billions of dollars annually in lost time and fuel con-
sumption. This paper presents five traffic re-routing strategies
designed to be incorporated in a cost-effective and easily de-
ployable vehicular traffic guidance system that reduces travel
time. The proposed strategies proactively compute individually-
tailored re-routing guidance to be pushed to vehicles when signs
of congestion are observed on their route. The five proposed
strategies are Dynamic Shortest Path (DSP), A∗ shortest path
with repulsion (AR∗), Random k-Shortest Paths (RkSP), Entropy
Balanced k-Shortest Paths (EBkSP), and Flow Balanced k-
Shortest Paths (FBkSP). Extensive simulation results show the
proposed strategies are capable of reducing the travel time as
much as a state-of-the-art Dynamic Traffic Assignment (DTA)
algorithm, while avoiding the issues that make DTA impractical
such as lack of scalability and robustness, and high computation
time. Furthermore, the variety of proposed strategies allows
tuning the system to different levels of trade-off between re-
routing effectiveness and computational efficiency. Also, the
proposed traffic guidance system can significantly improve the
traffic even if many drivers ignore the guidance or if the system
adoption rate is relatively low.

Index Terms—proactive driver guidance, traffic load balancing,
vehicular congestion avoidance, vehicular networks.

I. INTRODUCTION

Despite significant advances of in-car navigation systems
(e.g., Garmin, TomTom), web services for route computation
(e.g., Google, Microsoft), and dynamic traffic assignment [9],
[24], we are still spending a lot of time in traffic jams. It is
predicted that by 2015, the congestion cost will rise to $133
billion and the amount of wasted fuel will jump to 2.5 billion
gallons [34]. Hence, finding effective solutions for congestion
mitigation at reasonable costs is becoming a stringent problem.

With the deployment of traffic surveillance infrastructure
on more roads (e.g., loop detectors, video cameras), we have
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started to witness web-based services/applications that present
the drivers with the current view of the traffic and let them
decide which route to follow. However, the usefulness of
these applications is limited: (i)They have mostly accurate
information about the highways, and thus are not very useful
for city traffic; and (ii) they cannot prevent congestions and,
at the same time, it is known that no true equilibrium can be
found under congestion [9].

Recently, companies such as Google [1] and TomTom [2]
have started to use infrastructure-based traffic information to
compute traffic-aware shortest routes. However, these solutions
do not try to prevent congestions explicitly (i.e., they are
reactive solutions) and provide the same guidance for all
vehicles on the road at a certain moment as function of
their destination (i.e., pull model in which drivers query
for the shortest route to destination). Therefore, similar to
route oscillations in computer networks, they could lead to
unstable global traffic behavior: when it happens, congestion
is switched from one route to another if a significant number
of drivers use the guidance.

This situation could be avoided by new solutions on dy-
namic user-optimal traffic assignment [9]. These solutions
periodically compute the assignment of traffic flows to routes
that lead to user equilibrium. Unfortunately, there is still a sig-
nificant gap between the theoretical or simulation results and
potentially deployable solutions. Some issues are: tractability
for large scale road networks, capability of providing real-
time guidance, behavior in the presence of congestion, ability
to work when not all drivers are part of the system, and
robustness to drivers who ignore the guidance.

The time is ripe for building a proactive, intelligent, and
real-time traffic guidance system based on the dynamic situ-
ations on the road network. In this system, vehicles can be
viewed as both mobile sensors (i.e., collect real-time traffic
data) and actuators (i.e., change their path in response to newly
received guidance). The system is cost-effective and easily
deployable because it does not require road-side infrastructure;
it can work using only smart phones carried by drivers 1.
Where road-side sensors are available, the system can take
advantage of them to supplement the data provided by vehicles
to build an accurate representation of the global real-time
traffic conditions. When signs of congestions are observed
on certain road segments, it computes proactive, individually-
tailored re-routing guidance, which is pushed to vehicles that
would pass through the congested segments.

1In the future, once vehicular embedded systems become widespread, they
could be used instead of smart phones.
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This paper introduces such a cost-effective and easily de-
ployable vehicular traffic guidance system that reduces the
effect of traffic congestions. Then, evaluates five re-routing
strategies designed to be incorporated in this system: 1)
Dynamic Shortest Path (DSP), which assigns to each vehicle
the current shortest time path to destination; 2) A∗ shortest
path with Repulsion (AR∗), which modifies the A∗ shortest
path algorithm [17] by considering both the travel time and
the paths of the other vehicles (as a repulsive force) in
the computation of the shortest path; 3) Random k Shortest
Paths (RkSP), which computes kSPs 2 for each re-routed
vehicle and randomly assigns the vehicle to one of them; iv)
Entropy Balanced kSP (EBkSP), which computes kSPs for
each vehicle and assigns the vehicle to the path with the lowest
popularity as defined by the path entropy; v) Flow Balanced
kSP (FBkSP), which computes kSPs for each vehicle and
assigns the vehicle to the path that minimizes the impact of
traffic flow in a network region. Specifically, our contributions
are as following:
• We propose five novel re-routing strategies and extensive

evaluate them through various simulations settings over
two medium-size urban road networks. All our strategies
result in significantly lower average travel time compared
to a “no re-routing” baseline. Among the proposed strate-
gies, AR∗ has the lowest average travel time, but the
highest computation cost. EBkSP and FBkSP can achieve
comparable travel times as AR∗, while demanding lower
CPU times for the re-routing computations.

• We employ a tool implementing a state-of-the-art DTA
algorithm for traffic optimization to compare it against
our strategies. Compared to DTA, our strategies obtain
similar travel times at (much) lower computation costs.
Besides, our strategies are much more scalable with the
number of vehicles than DTA.

• We measure the robustness of the system by investigating
compliance and penetration rate. The results show our
strategies are still effective in alleviating congestion even
if many drivers ignore the guidance or if the system
adoption rate is relatively low, which is important in
facilitating the adoption of the system at a large scale.

The rest of this paper is organized as follows. Section II
discusses related work. Section III describes the system model
and our assumptions. Section IV introduces the five re-routing
strategies and the DTA algorithm used as baseline. Section V
presents the experimental results and their analysis. We con-
clude and give directions for future work in Section VI.

II. RELATED WORK

Projects such as Mobile Millennium [42], [20], CarTel [11],
JamBayes [19], Nericell [30], and surface street estima-
tion [16] use vehicle probe data collected from on-board GPS
devices to reconstruct the state of traffic and estimate shortest
travel time. The proposed research moves beyond this idea:
instead of investigating the feasibility and accuracy of using
mobile phones as traffic sensors, we are focusing on using

2We use kSPs for short for k shortest paths in the remainder of this paper.

that information to recommend routes more intelligently, thus,
achieving better efficiency in terms of avoiding congestion and
reducing travel time.

Services such as INRIX [3] provide real-time traffic infor-
mation at a certain temporal accuracy, which allows drivers
to choose alternative routes if they are showing lower travel
times. Systems such as Google Maps and Microsoft’s Bing
are able to forecast congestion and its duration by perform-
ing advanced statistical predictive analysis of traffic patterns.
Additionally, short term non-recurrent congestions can be
predicted as well [4]. Based on such information, according
to Wardrop’s first traffic equilibrium principle [40], drivers
could be able to reach a user-optimum traffic equilibrium.
It is known, however, that no true equilibrium can be found
under congestion [21]. Even more important, the usefulness of
such services is limited by their reactive nature: they cannot
prevent congestions. Our solution moves one step forward
by providing effective methods for proactive re-routing when
congestion is predicted based on real-time traffic information.

A large body of existing route planning research focuses
on fast generation of (k)shortest paths [35], [26] in highly
dynamic scenarios with frequent traffic information update.
In particular, [35] presents transit-node routing and highway-
node routing to reduce the average query time and memory
requirements. The work in [26] proposes two new classes of
approximation techniques that use pre-computation and avoid-
ance of complete recalculations on every update to speed up
the processing of continuous route planning queries. However,
current instantaneous shortest paths are not necessarily equal
to time-dependent shortest paths. These algorithms calculate
shortest paths based only on the snapshot of current traffic
conditions without considering the dynamic future conditions.

One of the essential properties of the road network is the
time-dependency of the travel time. Computing shortest paths
in a time varying spatial network is challenging since the edge
(i.e., road segment) travel time changes dynamically. In this
case, the computation not only considers the instantaneous
travel time in one single snapshot of the traffic graph but
also the relationship among the consecutive snapshots across
time. George et at. [15] demonstrated a fast greedy time-
dependent shortest path algorithm (SP-TAG) by using a Time
Aggregated Graph (TAG) data structure instead of the time-
expanded graph. SP-TAG saves storage and computation cost
by allowing the properties of edges and nodes to be modeled
as a time series instead of replicating nodes and edges at each
time unit. While algorithms such as SP-TAG provide insights
into the dynamics of traffic networks, two obstacles remain
besides increased computational cost. First, it is impractical
to assume the system knows the exact travel time series of
every single road segment given the traffic dynamics. Second,
these algorithms do not help with switching congestion from
one spot to another if all the drivers are provided the same
time-dependent shortest path.

An alternative to our work could be the research done
on dynamic traffic assignment (DTA) which leads to either
system-optimal or user-optimal route assignments. DTA re-
search can be classified into two categories: analytical methods
and simulation-based models. Analytical models such as [13],
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[29], [28] formulate DTA as either nonlinear programming
problems, optimal control problems, or variational inequalities.
Although they provide theoretical insights, the computational
intractability prevents their deployment in real systems [32].

Simulation-based approaches [9], [39], [25], [14] have
gained greater acceptability in recent years, in which the
time-dependent user equilibrium is computed by iterative
simulations. The simulations are used to model the theoretical
insights that cannot be derived from analytical approaches.
This process computes the assignment of traffic flows until
the travel times of all drivers are stationary. Unfortunately,
there are still a number of issues associated with these
approaches that make their deployment difficult: tractability
for large scale road networks given the computational burden
associated with the simulator, capability of providing real-
time guidance, effectiveness in the presence of congestion, and
behavior of drivers who ignore the guidance. For example, they
assume the set of Origin-Destination (OD) pairs and the traffic
rate between every OD pair are known. This information is
highly dynamic especially in city scenarios, leading to frequent
iterations of computationally expensive algorithms even when
not needed from a driver benefit point of view. Additionally,
the OD set is large, and the DTA algorithms may not be
able to compute the equilibrium fast enough to inform the
vehicles about their new routes in time to avoid congestions.
Our system, on the other hand, is designed to be effective
and fast, although not optimal, in deciding which vehicles
should be re-routed when signs of congestion occur as well
as computing alternative routes for these vehicles.

The complexity of DTA systems has led scientists to look
for inspiration in Biology and Internet protocols. In [36],
Wedde et al. developed a road traffic routing protocol, Bee-
JamA, based on honey bee behavior. Similarly, Tatomir et
al. [38] proposed a route guidance system based on trail-
laying ability of ants. Inspired by the well-known Internet
routing protocols, Prothmann et al. [33] proposed decentral-
ized Organic Traffic Control. However, since they employ ad
hoc networking, these approaches have only a partial view
of the traffic conditions, which may lead to less accurate
re-routing. Also, simply treating vehicles as packets which
always listen to the guidance ignores the nature of human
behavior. Furthermore, these systems react to real-time data
without insight into future conditions, thus introducing greater
vulnerability to switching congestion from one spot to another.

III. SYSTEM MODEL

Our traffic guidance system is composed of: (1) a cen-
tralized traffic monitoring and re-routing service (which can
physically be distributed across several servers), and (2) a
vehicle software stack for periodic traffic data reporting (po-
sition, speed, direction) and showing alternative routes to
drivers. Vehicles run this software either on a smart phone
or an embedded vehicular system. Vehicles are equipped with
GPS receivers and can communicate with the service over
the Internet when needed. When starting a trip, each vehicle
informs the service of its current position and destination; the
service sends back a route computed according to its strategy.

It is assumed that the service knows the road network as well
as the capacity and legal speed limits on all roads.

Logically, the traffic guidance system operates in four
phases executed periodically: (1) data collection and represen-
tation; (2) traffic congestion prediction; (3) vehicle selection
for re-routing; and (4) alternative route assignment for each
such vehicle and pushing the guidance to the vehicles. Since
data collection has been studied extensively in the literature,
we do not address this issue and just assume that the central-
ized service receives traffic data from vehicles and road-side
sensors where available. We discuss in detail each of the other
phases in this section and Section IV.

A. Traffic data representation and estimation

The road network is represented as a directed, weighted
graph, where nodes correspond to intersections, edges to
road segments, and weights to estimated travel times. The
weights are updated periodically as new traffic data becomes
available. Several methods can be employed to estimate the
travel time over a road segment. For instance, using vehicle
probe data collected from on-board GPS devices to reconstruct
the state of traffic is a well-studied topic [42], [24]. We use
the Greenshield’s model [6] to estimate the travel time since
it is used extensively in dynamic traffic assignment models by
transportation researchers. The model considers that there is
a linear relationship between the estimated road speed Vi and
the traffic density Ki (vehicles per meter) on road segment i,
as in Equation 1:

Vi = Vf (1−
Ki

Kjam
) Ti = Li/Vi (1)

where Kjam and Vf are the traffic jam density and
the free flow speed for road segment i, while Ti and
Li are the estimated travel time and length for the
same segment. The free flow speed Vf is defined as
the average speed at which a motorist would travel if
there were no congestion or other adverse conditions. To
simplify our implementation, we consider that the free
flow speed is the road speed limit. Basically, Ki/Kjam

is the ratio between the current number of vehicles
and the max number of vehicles. The
current number of vehicles is obtained
from the traffic data collected by the service,
whereas the max number of vehicles =
length of road/(avg vehicle length+min gap).

B. Congestion prediction

Periodically, the service checks the road network to detect
signs of congestion. A road segment is considered to exhibit
congestion signs when Ki/Kjam > δ, where δ ∈ [0, 1] is
a predefined threshold value. Choosing the right value for δ
is particularly important for the service performance. If it is
too low, the service could trigger unnecessary re-routing; this
may lead to an increase in the drivers’ travel times. If it is too
high, the re-routing process could be triggered too late and
congestion will not be avoided. The evaluation in section V-B
confirms these hypotheses.
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Fig. 1: The vehicle selection process

C. Selection of vehicles to be re-routed

When a certain road segment presents signs of congestion,
the service looks for nearby vehicles to re-route. Specifically,
we select vehicles from incoming segments (i.e., segments
which bring traffic into the congested one). To decide how
far from congestion to look for candidates for re-routing, the
service uses a parameter L (level). This parameter denotes the
furthest distance (in number of segments) a candidate vehicle
can be away from the congested segment. In practice, L could
be computed as function of the severity of congestion; for
example, we can use the “level of service” (LOS) defined in
the Highway Capacity Manual [27]. L’s value has to be large
enough to mitigate congestion. If L is too high, however, more
vehicles than necessary will be selected for re-routing, which
can have undesired consequences (e.g., creating congestion in
another spot). Since our focus is on the re-routing algorithms
and the analysis of their performance, we decided to consider
L a tuning parameter that is varied during our experiments.
We plan to investigate an efficient way for selecting its value
in the presence of dynamic traffic conditions in future work.

The service performs a breadth first search (BFS) on the
inverted network graph (i.e., the road network graph is di-
rected), starting from the congested segments with maximum
depth L and considers all these cars as candidates for re-
routing. The process is illustrated in Figure 1. Assuming
L=2 and signs of congestion are detected on the segment
Sc, the system recursively selects the vehicles situated on the
incoming segments of the congested segment in two steps.
First, the vehicles located on segments S1 are included in the
candidate set, followed by the vehicles situated on segments
S2.

We select the union of all the vehicles affected by all
the congested segments in the whole network within the
same level, then perform vehicle ranking (as described in
Section III-D), path computations, and path assignments (in
Section IV).

D. Ranking the selected vehicles

The selected vehicles need to be ranked and assigned to
alternative paths according to their rank for all strategies,
except DSP. In this way, the performance of the strategies
improve. The impact a congested road segment has on a
vehicle’s travel time is different depending on the remaining
distance to the vehicle’s destination. Intuitively, the drivers that
are close to their arrival point may have a different perception
of the congestion than the drivers that are far away from their
destination. Our system uses an urgency function to rank the

vehicles that are selected for re-routing. Hence, the vehicles
with higher urgency are re-routed first and get relatively better
routes.

Definition 1. Given a set of vehicles V = (v1, v2, v3, ..., vm)
to be re-routed, we define two urgency functions to compute
the re-routing priority of a vehicle in V :
• Absolute Congestion Impact: ACI=RemTT -RFFTT
• Relative Congestion Impact: RCI=(RemTT -
RFFTT )/RFFTT

where RemTT is the remaining travel time, and RFFTT is
the remaining free flow travel time for the vehicle.

ACI measures the impact of all the (congested) segments of
the remaining journey of a vehicle, since (RemTT -RFFTT )
is the absolute increase of the travel time with respect to the
free flow travel time. With ACI , the longer the remaining
distance to the destination for a vehicle is, the higher is
the probability for that vehicle to get a higher rank (as
the difference RemTT -RFFTT normally increases with the
RFFTT ). On the other hand, RCI weighs the congestion
impact on a vehicle relative to its remaining travel time. Hence,
RCI gives a higher priority to vehicles that are close to
their destination. Since the further the vehicle is from its the
destination, the higher are the number of alternative paths and
the potential benefit of re-routing, we expect ACI to perform
better than RCI in our system.

IV. RE-ROUTING STRATEGIES

Recent research has proved that real-time traffic flow data
and road travel time can be determined based on data reported
by vehicles or road-side sensors [19], [42], [30]. The question
is how to utilize this knowledge in an intelligent fashion to
avoid congestion and reduce the drivers’ travel times. This
section presents five re-routing strategies that we classify in
two categories. The first, presented in Section IV-A, includes
two re-routing strategies that compute a single, alternative new
path for each re-routed vehicle. The strategies are based on the
well-known Dijkstra algorithm and on the A∗ algorithm with
a modified heuristic, respectively. Section IV-B presents the
second category consisting of three re-routing strategies that
compute multiple, alternative new paths for each of the re-
routed vehicles. Then, different heuristics are used to choose
the best alternative path to be assigned to a vehicle. Based
on the five proposed strategies, we describe the main re-
routing process executed by the traffic guidance system in
Section IV-C. Finally, Section IV-D presents a Dynamic Traffic
Assignment strategy [14] that we use as a baseline to measure
the effectiveness and efficiency of the proposed strategies.

A. Single Shortest Path Strategies

1) Dynamic Shortest Path (DSP): DSP is a classical re-
routing strategy that assigns the selected vehicles to the path
with lowest travel time. However, different from the existing
systems, our system takes a proactive approach. Specifically,
each time a road segment presents signs of congestion, the
service obtains the set of cars whose paths intersect this
road segment and computes for each car a new shortest
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path based on the current travel time in the road network.
Therefore, the path of each car can be periodically updated
on an event-driven basis. The advantage of this strategy lays
in its simplicity and consequently reasonable computational
cost, i.e., O(E + V logV ) [12], where E is the number of
road segments and V is the number of intersections of the
road network. We expect this strategy to provide good results
when the number of re-routed vehicles is low, since in this
case the risk of switching congestion from one spot to another
is low. Hence, locally redirecting the traffic when congestion
happens should be sufficient in this case. On the other hand,
when the traffic density is higher, there is an increased risk of
switching the congestion from one road to another. Moreover,
the re-routing frequency for a driver is likely to increase in
this case, which can be annoying to drivers.

2) A∗ Shortest Path With Repulsion (AR∗): The DSP strat-
egy only takes into account the current view of the traffic
when performing re-routing, without considering the impact
the re-routing will have on the future traffic. To address this
limitation, we propose AR∗, which modifies the A∗ search
algorithm to include the prior re-routing decisions into the
computation of the current shortest path. A∗ [17] uses a best-
first search and a heuristic function to determine in which
order to visit the network nodes (road intersections in our
case). Given a node x, a heuristic function F (x) is computed
as the sum G(x)+H(x). G(x) is the path-cost from the start
node to x, which corresponds to the travel time in our case,
while H(x) is a heuristic estimation of the remaining travel
time from x to the destination node. In addition, H(x) has to
be “admissible” (i.e., it must not overestimate the remaining
travel time to the destination) to produce the shortest path
between the source and the destination. Therefore, H(x) is
computed as the Euclidean distance divided by the maximum
speed in the road network.

Future congestion occurs if many drivers take the same road
segment within the same future time window. 3 As we assume
that the drivers share their route information with the service,
it is possible to estimate the future footprint of each driver in
the road network.

Definition 2. A weighted footprint counter, fci, of a road
segment i is defined as follows: fci = ni × ωi, where ni
is the total number of vehicles that are assigned to paths
that include segment i, and ωi is a weight associated with
i. ωi = lenavg

leni×lanei
× V favg

V fi
, where lenavg is the average road

segment length in the network, V favg is the average free flow
speed of the network, leni is the length of i, V fi is the free
flow speed of i, and lanei is number of lanes of i.

In the formula, ni represents the discretized future traffic
flow on road i. We decided to use weights in the formula in
order to count for different road characteristics. For example,
suppose there are two road segments ri, rj . Although ni=nj ,
the segments should not be treated equally since ri has higher
capacity (more lanes or longer length), thus the possibility of
causing congestion is lower. In other words, the impact of the

3The time window size equals the period used by the system to evaluate
congestion.

traffic flow ni on road ri is lower than nj on rj even though
ni=nj .

In AR∗, we modify the heuristic function F (x) to include
the other vehicles sharing the same path as a repulsive force.
Specifically, we define the repulsive score R(x) of a node x
as the sum of the weighted footprint counters (cf. Definition
2) from the starting node to the node x. Thus, the path-cost
function becomes F (x) = (1−β)×(G(x)+H(x))+β×R(x),
where G(x) and H(x) are computed as in the original algo-
rithm and β is a weighting parameter. G(x)+H(x) measures
the travel time factor, while R(x) reflects the impact of other
vehicle traces on the examined path. Since the travel time and
the repulsive force use different metrics, we normalize their
values and compute F (x) as a linear combination of the two
factors. The parameter β allows a variable weighting between
the travel time factor and the repulsive force factor. If β is too
large, the repulsive force factor becomes predominant and the
resulting path can be diverted too far away from the shortest
path. Oppositely, if β is too low, AR∗ will behave similarly
to the naive DSP strategy. In our experiments, we determine
empirically the value of β that leads to the best effectiveness
for the AR∗ algorithm.

The complete algorithm is presented as pseudo code in
Algorithm 1. Starting from the initial node, the algorithm
maintains a queue of nodes to be traversed, denoted as the
open set (lines 3-5). At each iteration, the node with the
lowest Fscore value is removed from the queue (lines 16-
19), the values of its neighbors are updated accordingly (lines
27-28), and these neighbors are added to the queue (line 30).
The algorithm continues until the end node has been reached
or until the queue is empty. The normalization of the travel
time and the repulsive force factors is done at line 14. A path
is returned at line 18 if found, otherwise an empty path is
returned in line 48.

Figure 2 illustrates a simple example of how AR∗ is used
in re-routing. We suppose that vehicles v1, v2, v3 having the
same origin and destination, i.e., from ab to ij, need to be re-
routed and that urgency(v1) > urgency(v2) > urgency(v3).
At the beginning, since no vehicle has been assigned any path,
AR∗ performs normal A∗ search and assigns the shortest path
ab, bc, cd, di, ij to vehicle v1. When computing the shortest
path for vehicle v2, AR∗ will find ab, bg, gh, hi, ij. Although
v2 has the same destination as v1, the path found by AR∗ is
different since it considers the footprints produced by v1 as
a repulsion. Hence, AR∗ avoids the already assigned paths as
much as possible, while still keeping the new path as short as
possible. Finally, the procedure is repeated for vehicle v3 and
the path ab, bc, cd, di, ij is obtained for the same reasons.

Notice that AR∗ has to be employed by the re-routing sys-
tem in an iterative manner. Namely, after the selected vehicles
to be re-routed have been ranked based on their urgency, the
system calculates sequentially each vehicle’s route starting
from the most urgent one. Therefore, in the case of AR∗,
the computation time increases linearly with the number of
re-routed vehicles. On the other hand, as explained in the next
sections, the rest of the proposed re-routing methods optimize
this phase by grouping the vehicles to be re-routed based on
their origin-destination, which leads to lower computational
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Fig. 2: AR∗ re-routing example. All road segments have same
weight and β = 0.5.

Algorithm 1 A Star Shortest Path with Repulsion Re-routing
1: procedure AstarRepulsion(start,end)
2: P[start]=empty {the reverse pointer of the path, which is used to re-

construct the path}
3: closedset = set() {The set of nodes already evaluated}
4: openset = set()
5: openset.add(start) {The set of tentative nodes to be evaluated, initially

containing the start node}
6: Gscore[start] = 0.0 {Travel time cost from start along best known path}
7: Hscore[start] = Euclidean(start, end)/maxspeed
8: Rscore[start] = 0.0
9: Fscore[start] = 1.0

10: while openset is not empty do
11: sumF=SumFscore(openset)
12: sumR=SumRscore(openset)
13: for all node in openset do
14: Fscore[node]=(1-β)*Fscore[node]/SumF + β*Rscore[node]/SumR
15: end for
16: current=getleastFscore(openset)
17: if current==end then
18: return (Fscore[current],P)
19: end if
20: openset.remove(current)
21: closedset.add(current) {add current to closedset}
22: for all edge in current.outEdges do
23: node=edge.endnode
24: if node in closedset then
25: continue
26: end if
27: tentative g score=Gscore[current] + edge.actualtime
28: tentative r score=Rscore[current] + edge.weight footprints
29: if node not in openset then
30: openset.add(node)
31: Hscore[node]=Euclidean(node, end)/maxspeed
32: tentative is better=True
33: else
34: if tentative g score<Gscore[node] then
35: tentative is better=True
36: else
37: tentative is better=False
38: end if
39: end if
40: if tentative is better == True then
41: P[node]=edge
42: Gscore[node]=tentative g score
43: Rscore[node]=tentative r score
44: Fscore[node]=Gscore[node]+Hscore[node]
45: end if
46: end for
47: end while
48: return (0.0,{})
49: end procedure

complexity.

B. Multiple Shortest Paths Strategies

The two strategies proposed above compute a single path for
each re-routed vehicle. However, the two methods have oppo-
site behaviors. On the one hand, DSP sacrifices effectiveness

(since it does not consider the impact of re-routing on the
future traffic) to optimize the computational cost (by grouping
the re-routed vehicles on their origin-destination). On the other
hand, AR∗ trades efficiency (since it computes an alternative
path for each vehicle) for effectiveness (by taking into account
the future traffic configuration). In this section, we introduce
a new class of re-routing strategies to obtain the best trade-off
between efficiency and effectiveness. For these strategies, the
re-routing process is divided into two steps. First, k loopless
shortest paths are computed for each selected vehicle based on
the travel time in the road network, where k is a predefined
parameter. Compared to DSP this approach involves a higher
computation time, but it still permits to group vehicles on their
origin-destination. Therefore, we expect the computation time
to be lower than AR∗. Second, the vehicles are assigned to one
of their k-shortest paths in the order of their ranking. Among
the k-shortest paths, the algorithm generally selects the path
the least employed by other vehicle traces. Hence, we expect
this class of strategies to have an effectiveness similar to AR∗.
We propose three heuristics for the selection of the best path
among the k-shortest paths.

1) Random k Shortest Paths (RkSP): RkSP assigns each
selected vehicle to one of the k paths randomly. The goal
is to avoid switching congestion from one spot to another by
balancing the re-routed traffic among several paths. Compared
to DSP, the price to pay is a higher computational complexity,
O(kV (E + V logV )) [23], which increases linearly with k.
Although a larger k will allow better traffic balancing, it also
increases the difference in the travel time among the k paths.
Therefore, to prevent an excessive increase of the travel time
for some drivers, RkSP limits the maximum allowed relative
difference between the fastest and the slowest path to 20%.

2) Entropy Balanced k Shortest Paths (EBkSP): While
RkSP addresses the main potential shortcoming of DSP (i.e.,
moving congestion to another spot), it has its own deficien-
cies. First, it increases the computational time, which matters
because the alternative paths must be computed and pushed to
vehicles before they pass the re-routing intersection. Second, it
assigns paths randomly to vehicles, which is far from optimal
both from a driver point of view and from the global traffic
point of view. To address this second shortcoming of RkSP,
we propose the EBkSP strategy. The idea is to perform a
more intelligent path selection by considering the impact that
each selection has on the future density of the affected road
segments. The more intelligent path selection comes at the
cost of a slightly increased complexity. However, we expect
this optimization to improve the traffic from a global point
of view. In addition, as in AR∗, EBkSP ranks the cars to
be re-routed based on an urgency function that quantifies the
degree to which the congested road affects the driver travel
time. Thus, the more affected vehicles will have priority and
be re-routed first.

The entropy idea comes from Shannon information the-
ory [37]. Several works [43], [10] have successfully applied it
to compute the popularity of an area. To avoid creating new
congestions through re-routing, we associate a “popularity”
measure to road segments in EBkSP. We use entropy to define
the popularity of a path as follows.
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Fig. 3: A EBkSP re-routing example. All segments have same
weight.

Definition 3. Let (p1, ..., pk) be the set of paths computed for
the vehicle which will be assigned next. Let (r1, ..., rn) be
the union of all segments of (p1, ..., pk), and let (fc1, ..., fcn)
be the set of weighted footprint counters associated with these
segments. The popularity of pj is defined as Pop(pj) = eE(pj).
E(pj) is the weighted entropy of pj and is computed as
E(pj) = −

∑n
i=1

fci

N ln fci

N , N =
∑n
i=1 ni.

The value of E(pj) measures the probability that a number
of vehicles will be on the path pj in a time window. According
to the above definition, we have 0 ≤ Pop(pj) ≤ m, where m
is the number of vehicles. Pop(pj) has the maximum value
m when every previously assigned vehicle traverses entirely
pj (i.e., they take the same path). Pop(pj) has the minimum
value when no one takes the path pj . Intuitively: the higher
the popularity of a path, the higher the probability that more
drivers will take this path.

After vehicle selection and ranking, we assign each vehicle
to the least popular path among its k-shortest paths in order
to avoid potential future congestions. Specifically, the first
vehicle is assigned the current best path without considering
others. Then, the road network footprints are updated based
on the new path. When assigning the second vehicle, the
popularity score of its k-shortest paths are calculated and the
least popular path will be chosen. The process is then repeated
for the rest of the re-routed vehicles.

Figure 3 illustrates an example of EBkSP re-routing. We
assume that vehicles (v1, v2, v3) have been initially assigned
to their shortest time paths, and each road has the same
weight (ωi = 1). Vehicles v4 (identified by the question mark)
arrives, and then EBkSP rerouting takes place. The footprints
of (v1, v2, v3) in the next time window are (fg, gh, hi, ij),
(ab, bg, gh, hi, ij), and (ch, hk), respectively. For v4, which
travels from ab to ij, there are three alternative paths with
similar travel times: p1(ab, bg, gh, hi, ij), p2(ab, bc, ch, hi, ij),
and p3(ab, bc, cd, di, ij). The union of their segments is the
set (ab, bg, gh, hi, ij, bc, ch, cd, di), and their weighted foot-
print counters are (1,1,2,2,2,0,1,0,0). Consequently, N=11,
EV (p1)=2.29, EV (p2)=1.67 and EV (p3)=0.53. Hence, v4 will
be assigned to p3 because it is the least popular.

3) Flow Balanced k Shortest Paths (FBkSP): RkSP and
EBkSP distribute the traffic load of the re-routed vehicles by
randomly choosing between alternative paths or by balancing
the system entropy among multiple paths. Since the key idea
is load balancing, an alternative approach that we propose is

(a) The old assignment

(b) The new assignment

Fig. 4: A FBkSP example. ωfg = ωgh = ωhi = ωij = ωch =
1, ωab = ωbc = ωcd = ωde = ωaf = ωbg = ωdi = ωej = 2.

to directly balance the traffic load, i.e., the weighted footprint
counters, through local search optimization [18]. The goal of
the local ”search” is to find the path assignment in which
the sum of the weighted footprint counters is minimal, i.e., to
minimize

∑
siεS

fcsi
in a network region, where S is the set of

all region segments. As we recall from Definition 2, weighted
footprint counter fci indicates the impact of the traffic flow
on road segment ri (i.e., the possibility of generating future
congestion on ri). Therefore, the summation of the weighted
footprints counters of all the road segments measures the risk
of congestion of the whole network. In another words, as a
weighted footprint counter indicates the future flow magnitude,
minimizing the sum of the weighted footprint counters means
having balanced flows on all paths, and thus, reducing the risk
of producing congestion.

Figure 4 illustrates how the path assignment affects the
total number of weighted footprint counters. Assume that
initially the vehicles (v1, v2, v3) are assigned to the paths
(ab, bc, cd, di, ij), (fg, gh, hi, ij) and (ab, bc, ch), respec-
tively, and that the road segments have different weights (cf.
Figure 4). Then, the sum of the weighted footprint counters
in this network region is 18 (cf. Figure 4a). However, if
v1 switches to the path (ab, bg, gh, hi, ij), the sum of the
weighted footprint counters is reduced to 16 as shown in Fig-
ure 4b. Therefore, the system will select the latter assignment.

To implement the optimization of the total number of
footprints in a road network region, we use a random search
strategy (cf. Algorithm 2). The system generates first a good
path assignment solution for all selected vehicles by assigning
to each vehicle the path with the current least number of
footprints (lines 2-8 in Algorithm 2). This initial assignment
does not necessarily guarantee the minimum sum of footprint
counters of the considered network region, i.e., the union of
all segments of the k shortest paths of the re-routed vehicle.
Therefore, the system randomly modifies the initial assignment
in order to improve it (lines 14-16). If the new assignment
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Algorithm 2 Flow Balanced k Shortest Path Re-routing
1: procedure LocalOptAssign(allkPaths, sortedVehicles)

{generate initial solution}
2: for all vehicle in sortedVehicles do
3: {origin, dest}=getVehicleOD(vehicle)
4: newpath = pickPath leastfootprints(allkPaths, origin, dest)
5: reduction=getReduction()
6: vehicle.selectedpath=newpath
7: updateFootprint(vehicle)
8: end for

{locally optimize the initial solution}
9: iter=0

10: repeat
11: for all vehicle in sortedVehicles do
12: {origin, dest}=getVehicleOD(vehicle)
13: newpath=pickpath random(allkpath,orgin,dest)
14: newreduction=getReduction(newpath,vehicle.selectedpath)
15: if newReduction<reduction then
16: vehicle.selectedpath=newpath
17: updateFootprint(vehicle)
18: reduction=newReduction
19: end if
20: end for
21: iter=iter+1
22: until iter>MaxIteration{MaxIteration is a constant, set as 10 here.}
23: end procedure

reduces the total number of weighted footprint counters in
the network region, the new assignment is accepted (lines 18-
19). Otherwise, the assignment is rejected. This process runs
iteratively until the limit number of iterations is attained (line
26).

Disjointness of the k paths. The k-shortest paths (kSP)
algorithm used in the paper computes a set of k shortest-time
paths that are loopless but potentially overlapping. Using k
disjoint shortest paths (or paths with a low degree of similarity)
does not necessarily improve the re-routing performance of
our algorithms. In order to compute k disjoint shortest paths,
a typical algorithm computes first m shortest paths (m>k),
and then selects the k disjoint paths from the set of m paths.
Once the computation cost for determining the m paths is paid,
EBkSP and FBkSP will perform better over m paths than over
a subset of k paths because the total number of road segments
that can be used for load balancing is larger. The experimental
results presented in Section V-B confirm that increasing the k
value improves significantly the effectiveness of the re-routing.

C. Re-routing Process

In this section, we present the global re-routing process on
which our traffic guidance system is based on. The process
is presented in Algorithm 3. The system periodically looks
for signs of congestion in the road network (line 4). If
signs of congestion are detected, then the system selects the
vehicles situated near to the congested road segments (cf.
Section III-C) and ranks them based on the urgency function
(cf. Section III-D). Finally, alternative routes are computed
for the selected vehicles by using one of the five proposed re-
routing strategies. It is worth noticing that except AR∗, all the
other re-routing strategies optimize the alternative path search
by grouping the vehicles on their origin-destination (line 10).
This can lead to a significant reduction of the computational
cost as showed in Section V-B.

Algorithm 3 The main process
1: procedure main
2: while true do
3: updateEdgeWeights()
4: congestedRoads=detectCongestion(edgeWeights)
5: if #congestedRoads>0 then
6: for all road in congestionRoads do
7: selectedVehicles=selectedVehicles

S
selectVehicles(road)

8: end for
9: sortedVehicles=sortByUrgency(selectedVehicles)

10: allpaths=Emtpy
11: if not AR∗ then
12: odPairs=updateODPairs(selectedVehicles)
13: if DSP then
14: allPaths=Dijkstra(odPairs)
15: else
16: allPaths=compuate all kShortestPaths(odPairs)
17: end if
18: doReroute(allPaths, sortedVehicles)
19: else
20: for all vehicle in sortedVehicles do
21: {origin, dest}=getVehicleOD(vehicle)
22: newPath=AstarRepulsion(origin,dest)
23: if newPath is not empty then
24: setRoute(vehicle, newPath)
25: end if
26: end for
27: end if
28: end if
29: wait(period) {The process executes periodically.}
30: end while
31: end procedure

32: procedure doReroute(allPaths, sortedVehicles)
33: if FBkSP then
34: LocalOptAssign(allPaths, sortedVehicles)
35: else
36: for all vehicle in sortedVehicles do
37: {origin, dest}=getVehicleOD(vehicle)
38: if DSP then
39: newPath = allPaths[origin][dest][0]
40: end if
41: if RkSP then
42: newPath = pickPath random(allPaths[origin][dest])
43: end if
44: if EBkSP then
45: newPath = pickPath leastPopular(allPaths[origin][dest])
46: updateFootprint(vehicle, newPath)
47: end if
48: setRoute(vehicle, newPath)
49: end for
50: end if
51: end procedure

D. Dynamic Traffic Assignment

The work on DTA algorithms is essential for the problem
we consider in this paper, i.e., improving the driving travel
time through traffic re-routing and guidance. Nevertheless, as
explained in Section II, DTA is not yet the most viable solution
for real-time traffic guidance, mainly because of the DTA’s
very high computational complexity coupled with the high
dynamics of the traffic and the imperfections in traffic knowl-
edge. In spite of this, DTA can offer valuable information as,
for example, the level of improvement in the travel time that
can be achieved in an ideal situation (i.e., where computational
cost is not an issue and the traffic information is perfect).
Therefore, we employ DTA to obtain a lower bound on the
optimization of the travel time for comparison with the results
produced by the proposed strategies.

The DTA model that we use in this paper tries to achieve
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stochastic user equilibrium (SUE) through an iterative sim-
ulation process and mathematical modeling (see Section II).
Given the traffic demand, it chooses some initial routes as-
suming zero traffic. Then, it calculates the network load and
the travel times by simulation and updates the route choices of
the drivers. This process is repeated until the travel times are
stationary or a maximum number of iterations is reached. The
simulation-based DTA tool we employ was proposed in [14],
[5]. At least three parameters have to be given as input: a road
network, a set of trips, and the maximum number of iterations.
The higher the number of iterations is, the higher is the
probability to achieve a SUE traffic state. In our experiments,
we defined the maximum number of iterations to 50, since that
was the value specified in [8]. The DTA algorithm, as defined
in [14], is summarized next:

Step 1:Initialize the route of each driver by the optimal route
in the empty network.

Step 2:Calculate the time dependent costs of the road seg-
ments by simulation.

Step 3:Recalculate the optimal routes of a certain portion p
of the drivers using the time dependent costs from
step 2.

Step 4:If routes have changed in step 3, go to step 2.
Note that the DTA algorithm involves not only shortest path

graph computations but also simulations. The purpose of the
simulation is to help DTA acquire a relative accurate estima-
tion of the travel times given the assignment of the previous
iteration. Then, the estimated travel times are used to adjust
the assignment in the next iteration. However, this inevitably
leads to increased computational burden. In comparison, our
approach proposes alternative routes to drivers during their
entire journey based on the dynamic conditions in the road
network, and most of the computation is spent on shortest
path graph algorithms. Therefore, we expect our approach to
be more efficient than DTA.

V. EVALUATION

The main objective of our simulation-based evaluation is
to study the performance of the five re-routing strategies
under various scenarios. Specifically, we address the following
questions:
• Which strategy leads to the most benefits for drivers in

terms of travel time and number of re-routings?
• What is the tradeoff between strategy effectiveness and

their efficiency in terms of computation time? How do the
proposed strategies compare to a DTA-based approach in
terms of effectiveness and efficiency?

• Which strategies scale better with the number of cars?
• How do parameters (number of alternative paths, car

selection level, etc.) influence the performance?
• How robust is the system under various compliance rates

(i.e., percentage of drivers who follow the guidance) and
penetration rates (i.e., percentage of vehicles which have
our software)?

A. Simulation setup
We employed SUMO 15.0 [7] and TraCI [41] for our simu-

lations. SUMO is an open source, highly portable, microscopic

Fig. 5: The simulation process

TABLE I: Statistics of the two road networks
Brooklyn Newark

Network area 75.85km2 24.82km2

Total number of road segments 551 578
Total length of road segments 155.55km 111.41km
Total number of intersections 192 195

road traffic simulation package designed to handle large road
networks. TraCI is a library providing extensive commands
to control the behavior of the simulation including vehicle
state, road configuration, and traffic lights. We implemented
the re-routing strategies algorithms using TraCI. Essentially,
when SUMO is called with the option to use TraCI, SUMO
starts up, loads the scenario, and then waits for a command.
Thus, variables in the simulation can be changed (e.g., new
paths assigned to certain vehicles). Then, a new command can
be sent with how many seconds to run the simulation before
stopping and waiting for another command.

We downloaded two urban road maps from Open-
StreetMap [16] in osm format. One is a section of Brooklyn,
NY and the other is in Newark, NJ. We use the Netconvert tool
in SUMO to convert the maps into a SUMO usable format,
and the Trafficmodeler tool [31] to generate vehicle trips.
Netconvert removes the pedestrian, railroad, and bus routes,
and sets up a static traffic light at each intersection to make
the simulations more realistic (as the maps do not have STOP
signs). All roads have the same speed limit (13.9 m/s); some
roads have one lane in each direction, while others have just
one lane based on the specification in the OpenStreetMap osm
file. The statistics of the two networks are shown in Table I.
By default, the shortest travel time paths are automatically
calculated and assigned to each vehicle at the beginning of
simulation based on the speed limit. Figure 5 illustrates the
simulation process. Figures 6 (a) (b) show the traffic flow
in both networks. We used Trafficmodeler to generate a total
of 1000 cars in the Brooklyn network from the left area to
the right area in an interval of 1000 seconds. The origins
and the destinations are randomly picked from the left area
and the right area, respectively. In the Newark network, 906
cars were generated having the origins picked randomly from
the peripheral road segments and the destinations on the road
segments inside the hot spot circle.

In the simulations, we use the default settings in SUMO
15.0 for vehicle length=5m, the minimal gap=2.5m, the car
following model (Krauss [22]), and the driver’s imperfec-
tion=0.5. For each scenario, we average the results over 20
runs. Initially, we assume an ideal scenario in which all drivers
have the system and accept the route guidance. We relax these
assumptions in the last part of the evaluation. Table II defines
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(a) Brooklyn (b) Newark

Fig. 6: Traffic flow in the road networks

the parameters used in our evaluation. We performed extensive
experiments to determine the best values for these parameters.
Section V-B will show results for urgency function, level L,
and number of paths k. For the sake of brevity, we do not
show results for period, δ, and β. We choose 450s as re-
routing period and 0.7 as the congestion threshold because they
produce good results with moderate computation. We observe
that β between [0.05, 0.1] produces good results on both
networks for AR∗. Thus, we select 0.05 for all the following
experiments.

We also implemented a DTA-based re-routing strategy (cf.
Section IV-D) by using a DTA tool provided with the SUMO
generator.

B. Results and Analysis

Average travel time. Figure 7 presents the average travel
time obtained with the five strategies and with DTA on both
networks. The “no-reroute” bars indicate the travel time in the
absence of any re-routing. The results show that all the pro-
posed strategies improve the travel time significantly. In most
cases, the proposed strategies obtain travel times at least two
times lower than no-rerouting. For instance, with a selection
level of 3, compared to “no-reroute”, EBkSP reduces the travel
time by 2.2 times and 4.5 times on Brooklyn and Newark,
respectively. As expected, DTA has the best average travel
time since it can achieve user equilibrium. Based solely on
the obtained average travel time, we rank the five strategies as
following: DTA>AR∗ >(EBkSP, FBkSP)>RkSP>DSP>no-
rerouting. The results confirm the hypotheses laid out in
Section IV with the statistical significance of 95% confidence

TABLE II: Parameters used in the evaluation

period The frequency of triggering the re-routing; by
default period=450s

threshold
δ

Congestion threshold; if Ki/Kjam > δ, the
road segment is considered congested; by
default δ = 0.7

urgency Urgency policy: RCI or ACI

level L
Network depth to select vehicles for re-
routing starting from the congested segment
and using BFS on the inverted network graph

# paths k The max number of alternative paths for each
vehicle; by default k = 4

repulsion
weight β

The weight of repulsion in AR∗; by default
β = 0.05

(a) Brooklyn

(b) Newark

Fig. 7: Average travel time (L=(3,4), k=4, urgency=ACI ,
period=450s, δ=0.7, β=0.05)

interval. DSP can improve the travel time because it re-
routes dynamically the vehicles by considering the traffic
conditions. However, in some cases, e.g., if many vehicles
have similar current positions and destinations, respectively,
new congestions can be created by the re-routing process.
RkSP avoids this shortcoming since it balances the traffic flow
over several paths. Nevertheless, a randomly picked path is
not necessarily the best one. EBkSP and FBkSP offer even
better performance by carefully selecting the path for each re-
routed vehicle. Finally, AR∗ has the best performance among
the proposed strategies as it considers all the other vehicles in
the road network in the computation of a new route.

Our experiments also demonstrated that setting the depth
level to 3 or 4 is best for selecting a relatively optimal number
of vehicles for re-routing (the two values lead to similar
performance for Brooklyn, while level 3 is better for Newark).
Lower level values do not select enough cars, whereas higher
values increase the number of re-routings (see Figure 8).
Therefore, we set the level parameter to 3 in the remaining
experiments.

Average number of re-routings. It is important that the
re-routing frequency for a given vehicle during a trip stay
low. From the driver point of view, changing the path to the
destination too often can be distracting and annoying. From
the system point of view, having a low number of re-routings
means decreasing the computational burden because the re-
routing process is costly. Figure 8 compares the number of re-
routings across the five proposed strategies. In terms of average
number of re-routings AR∗ <(EBkSP, FBkSP)<RkSP<DSP
with 95% confidence interval 4. Compared to DSP, AR∗

reduces the average number of re-routings by up to 2.0 and
1.5 times, while compared to RkSP, AR∗ is better by 1.6 and
1.3 times on Brooklyn and Newark, respectively. The reason

4We performed a t-test for each pair of strategies.
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(a) Brooklyn

(b) Newark

Fig. 8: Average number of re-routings (L=(3,4), k=4,
urgency=ACI , period=450s, δ=0.7, β=0.05)

(a) Brooklyn

(b) Newark

Fig. 9: Number of congested road segments as function of the
number of iterations.(L=3, k=4, urgency=ACI , period=450s,
δ=0.7, β=0.05)

is that by considering future path information in the re-routing
decision, EBkSP, FBkSP and AR∗ can not only mitigate the
current congestion, but also avoid creating new congestions;
hence, the lower necessity for recurrent re-routing.

To confirm this analysis, we also measured the number of
congested segments in each iteration. Figure 9 shows the re-
sults. As traffic is generated during the first 1000 seconds (i.e.,
iterations 1-3), the number of congested roads increases for all
strategies. Then, the number of congested roads decreases for

two reasons. First, no more traffic is generated, and this effect
is observed in the “no-rerouting” curve. Second, and more
importantly for our strategies, re-routing helps to dramatically
reduce this number. As expected, EBkSP and FBkSP have
comparable results and reduce the number of congested roads
faster than DSP and RkSP. Also, we noticed that although
AR∗ did not have the best performance at the beginning of
the simulation, it was capable to alleviate congestion much
faster than the other methods afterwards.

Distribution of travel time and re-routing frequency. The
average travel time and the average number of re-routings
measure the performance of the system from a global point
of view. Here, we investigate the performance from a driver
point of view. How many drivers end up with a shorter travel
time? We introduce two new metrics. The first metric is the
relative travel time (RelT), which is defined as the ratio of
the travel time with re-routing and the travel time with no
re-routing; thus, RelT measures the travel time gains or loses
for individual drivers. The second metric is RRF, which in
this experiment is defined as the number of re-routings per
hour experienced by a driver; thus, RRF measures the driver
distraction due to re-routing.

Figure 10 (b) presents the cumulative distribution of RelT
and RRF for each re-routing strategy for the Brooklyn net-
work. The values are averages (per driver) computed across 20
runs of simulations. We obtained similar results for the Newark
network, which we omit. AR∗ has the best results for both
RelT and RRF, followed closely by EBkSP and FBkSP. The
system manages to improve the travel time for a large majority
of drivers. Similarly, a large majority of drivers experience
no more than 3 re-routings per hour, which we believe is
acceptable in city scenarios with heavy traffic.

However, there is a relatively small percentage of drivers
(i.e., ranging from 10% for AR∗ to 25% for DSP), that end
up with increased travel time after re-routing. The observed
increase is limited to less than 50% for most of these drivers.
Note that this phenomenon is equally present in DTA, where
around 15% of the drivers have increased travel time. The
main reason for these results is that the proposed re-routing
strategies have not been designed to achieve user-optimal
equilibrium, and thus cannot guarantee the best travel time for
each user. More surprisingly, even DTA which was designed
to achieve user equilibrium cannot do it; our conjecture is
that this is due to the difficulty to find an equilibrium under
congestion [9]. We understand that a few bad experiences with
the system could impact its adoption rate. Therefore, as future
work, we plan to investigate strategies to lower the number of
drivers with increased travel time and to bound this increase
to low values.

CPU time. So far, the results indicate that AR∗ produces
the best travel times (near to the DTA times), followed closely
by EBkSP, FBkSP, and in some cases, by RkSP. An important
question is what is the computational performance among all
the proposed five strategies. To answer it, we need to first
look at the algorithm complexity for the Dijkstra shortest path
(used by DSP), k-shortest paths (used by RkSP, EBkSP and
FBkSP) and A∗ (used by AR∗). Dijkstra shortest path and k-
shortest paths require O(E+V logV ) and O(kV (E+V logV )),
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(b) Re-routing frequency CDF

Fig. 10: CDF of relative travel time and re-routing frequency
per hour on Brooklyn network.(L=3, k=4, urgency=ACI ,
period=450s, δ=0.7, β=0.05)

respectively, while A∗ was proven to be faster than Di-
jkstra [35]. However, this complexity analysis is pertinent
only when we consider the selection of an alternative path
for one single vehicle. From the system point of view, the
global computational complexity also depends on the number
of re-routings processed in a time window; this number is
a function of the number of congested road segments and
the congestion severity (i.e., how many vehicles are selected
for re-routing). Additionally, DSP, RkSP, FBkSP and EBkSP
compute shortest paths after grouping the vehicles on their
origin-destination, whereas AR∗ calculates a new path for each
vehicle. Therefore, AR∗ could require a larger computation
time than the other methods.

Figure 11 (a) shows the global CPU time consumed for
re-routing by the five methods and by DTA. Note that the
experiments were conducted on a 64 bit Ubuntu machine with
Intel Core i5-2467M CPU(1.6GHz) and 4GB of memory. We
observe DSP requires the least CPU time for re-routing, mainly
due to the low complexity of the shortest path algorithm and to
grouping the re-routed vehicles. AR∗ consumes significantly
more CPU time. For example, it requires 2 and 2.3 times more

CPU time than RkSP and EBkSP on Brooklyn. The main
reason is that AR∗ cannot group the re-routed vehicles like
the other methods as stated in Section IV-A2.

EBkSP, FBkSP and RkSP are situated in between the
above mentioned methods from the CPU time point of view.
Interestingly, EBkSP and FBkSP require less computation
time than RkSP even though they execute more complex
path selection algorithms in addition to the k-shortest path
computation. The explanation is that EBkSP and FBkSP
decrease the total number of re-routings processed in a period.
This decrease becomes apparent when we look at the number
of origin-destination (OD) pairs involved in the computation
as indicated in Figure 11 (b). The total number of OD pairs is
lower for EBkSP and FBkSP than for RkSP. While DSP has
the largest number of OD pairs, it still has the lowest CPU
time because of its much lower computational complexity for
path calculation.

DTA has the largest CPU time and scales poorly with an
increasing number of vehicles (in terms of CPU time) when
compared to AR∗ or the other proposed methods (as shown
in Figure 12 (b)). Also, it is worth noticing that DTA assumes
all vehicles in the system known at the beginning (i.e., when
it computes its routes). However, in real life, vehicles may
appear at any time, and DTA would be required to perform
its expensive computation over and over again. Therefore, due
to its very high computational cost in real life, DTA may be
impractical (i.e., it may not be able to compute alternative
routes fast enough in order to mitigate congestions).

In conclusion, if we consider both the travel time and
the CPU time, EBkSP and FBkSP appear to be the best
strategies since they offer the best trade-off between re-routing
effectiveness and computational efficiency. If computational
cost is not an issue, one can use the AR∗ strategy, while in

(a) CPU time

(b) Number of OD pairs

Fig. 11: CPU time and number of origin-destination pairs for
both networks (L=3, k=4, urgency=ACI , period=450s, δ=0.7,
β=0.05)
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(a) Average travel time

(b) CPU time

Fig. 12: The average travel time and CPU time for
Brooklyn network for different traffic densities (L=3, k=4,
urgency=ACI , period=450s, δ=0.7, β=0.05)

the opposite case, DSP is the most appropriate choice.
Traffic density. The results presented up to here already

offer a good idea about the capabilities of the proposed re-
routing strategies to alleviate traffic congestions. Yet there
is an important aspect that still needs to be explored, i.e.,
how the proposed methods scale with the increase of the
traffic volume. To respond to this question, we conducted
another set of experiments on the Brooklyn network, where
we increased the number of vehicles from 1000 to 2500.
Figure 12 shows the obtained results both for the average
travel time and the CPU time for different traffic densities.
AR∗ and DTA present the best scalability from the average
travel time point of view. However, these methods are also
the least scalable from the CPU time point of view. As we
can see, DTA exhibits particularly poor scalability compared
to the proposed strategies, confirming our hypothesis that DTA
is not yet a suitable approach for real-time traffic management.
Also, somewhat interestingly, AR∗ obtained better average
travel times than DTA (see Figure 12 (a)) when the number of
vehicles was above 1500. This is certainly due to the fact that
the 50 iterations limit we set in the DTA tool is not sufficient to
achieve user equilibrium for higher traffic densities. Therefore,
a higher number of iteration is needed in this case, which will
lead evidently to even higher CPU times.

Number of alternative paths. k is a determinant parameter
for the performance of RkSP, FBkSP and EBkSP, which
require k-shortest paths computation. A larger k value allows
for better traffic balancing but introduces higher computational
complexity. Furthermore, the maximum allowed difference
between the slowest path and the fastest path is 20% in
our setting. Therefore, large k values may not be necessary
because they would lead to computing many useless paths.
Figure 13 compares the performance of RkSP, EBkSP and

(a) Average travel time

(b) CPU time

Fig. 13: Average travel time, CPU time for RkSP, EBkSP and
FBkSP as function of k for the Brooklyn network (L=3, k=(2,
3, 4, 5, 6), urgency=ACI , period=450s, δ=0.7)

FBkSP with different k values on the Brooklyn network. The
k value is irrelevant for DSP and AR∗.

We observe that RkSP does not exhibit any performance
improvement for k > 2, while both EBkSP and FBkSP
consistently produce lower travel times with higher k values.
Figure 13 (b) shows the computational cost increases linearly
with k for all the kSP methods. However, EBkSP and FBkSP
are more scalable than RkSP especially for larger k values
(e.g., EBkSP requires 32% less CPU time than RkSP when k
equals 6). The efficiency of EBkSP and FBkSP is due to the
reduction of the number of OD pairs.

Urgency function. Among the five proposed algorithms,
EBkSP, FBkSP and AR∗ use an urgency function to sort the
list of vehicles selected for re-routing (cf. Section III-D). To
measure the performance difference between the two proposed
ranking policies – RCI and ACI (cf. Definition 1), we
conducted the ANOVA statistics test over the average travel
time from 30 simulations with EBkSP and FBkSP. The results
show that ACI produces lower average travel times than RCI
(p < 0.01) with a 95% confidence interval. The result con-
firmed our previous analysis in Section III-D. Thus, we used
ACI as our default urgency function in all the experiments.

Compliance rate. It is unrealistic to assume that every
driver follows the re-routing guidance. The drivers’ compli-
ance rate is an important factor for the re-routing strategy
design. Therefore, we measured the average travel time while
varying the compliance rate for the five proposed strategies
and for DTA. For our strategies, a compliance rate of x%
means that each of the selected vehicles switches to the new
route with x% probability during each re-routing period. For
DTA, x% of the vehicles are randomly selected to follow the
DTA assigned route, while the rest follow their initial shortest
time route.
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(a) Low compliance rate

(b) All compliance rates

Fig. 14: Average travel time as a function of the compli-
ance rate on Brooklyn network. (L=3, k=4, urgency=ACI ,
period=450s, δ=0.7, β=0.05)

Figure 14 (a) indicates that the average travel time can be
significantly improved by all five strategies even under low
compliance rates. This is due to the fact that even under low
compliance rates, the drivers who comply with the guidance
can still receive more rapid routes, which in turn can improve
the travel time for the rest of the drivers. Figure 14 (b) shows
the average travel time for a wide range of compliance rates.

In particular, when the compliance rate is low, RkSP,
EBkSP, FBkSP and AR∗ show significantly better travel times
than DTA. The reason is that when compliance is low, the
drivers who comply benefit much more from our guidance
than from the DTA guidance. In the DTA approach, the
route computation is done once before any vehicle enters the
network. If the compliance rate is low, the DTA-computed
routes are far from a user equilibrium, inclusively for the
compliant drivers. Differently, our strategies can adjust the
vehicles’ routes periodically based on the current traffic infor-
mation. Therefore, although the non-compliant drivers create
congestion in the network, the compliant ones can still receive
fairly good paths, which implicitly reduces the congestion
level in the network.

Penetration rate. To understand how easy is to deploy our
solution in real life, we study the effect of the penetration
rate on the average travel time. Specifically, each vehicle has
x% probability of participating in the system, i.e., providing
positioning information and receiving guidance. Hence, the
system sees and guides only these x% of the vehicles. The
accuracy of congestion detection and road travel time estima-
tion depend directly on this parameter. Additionally, similar
to the compliance rate, the effectiveness of the load balancing
mechanism implemented by the re-routing strategies increases
with the percentage of vehicles that use the system.

In this set of experiments, we consider two cases: only the
vehicles equipped with the system provide traffic information
(which we call “penetration rate without sensors”), and both

(a) Sensors: Vehicles Only

(b) Sensors: Vehicles & Road-Side

Fig. 15: Average travel time as a function of the penetra-
tion rate on Brooklyn network (L=3, k=4, urgency=ACI ,
period=450s, δ=0.7, β=0.05)

vehicles equipped with the system and road-side sensors
provide traffic information (which we call “penetration rate
with sensors”). For clarity, we list in Table III the main
differences between these two cases and the experiments for
compliance rate.

Figure 15 (a) shows the average travel time for various
penetration rates, when traffic data are collected only from
vehicles (i.e., no support from road-side sensors). When the
penetration rate is low, the performance of the proposed meth-
ods is the same as “no-reroute”. In this case, the service does
not have enough data to accurately detect signs of congestion.
Once the penetration rate is greater than 0.4, the system is
able to improve the travel time. For penetration rates above
0.6, EBkSP, FBkSP and AR∗ start to perform better than DSP
and RkSP, since a larger number of vehicles are re-routed,
which requires a more advanced load balancing mechanism.
Compared to our methods, DTA performs better under low
penetration rates since the DTA re-routing is not triggered by
the congestion detection as in our approach.

To boost the adoption of the system, we believe that data
from road-side sensors (in conjunction with data from vehi-
cles) can be leveraged to detect congestion more accurately in
case of low penetration rates. When road sensors are present,
the road traffic density can be measured, the congestion can be
detected, and the travel time can be estimated more accurately.
Figure 15 (b) demonstrates that most of our methods can sig-
nificantly improve the travel time even under low penetration
rates if road-side sensor information is available. Furthermore,
EBkSP, FBkSP, and AR∗ perform better than DTA in this case.
When penetration rate is low (x%), DTA distributes evenly the
x% vehicles without considering the rest, which can still create
congestion. Therefore, the alternative routes proposed by DTA
are not as effective in alleviating congestion. Our strategies can
take advantage of the sensor information to divert the x% of
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TABLE III: Comparison between compliance and penetration rate
Road
traffic
density

Congestion
detection Re-routing Load balancing

Compliance
rate Accurate Accurate

All vehicles provide posi-
tioning information. At each
re-routing, only x% of vehi-
cles follow the guidance

Considers all vehicles (ex-
cept DSP)

Penetration
rate without
sensors

Inaccurate Inaccurate

Predefined x% of vehicles
that provide positioning in-
formation receive guidance
and comply with the guid-
ance

Considers only the x% of
vehicles (except DSP)

Penetration
rate with
sensors

Accurate Accurate

Predefined x% of vehicles
that receive guidance and
comply with the guidance.
The system obtains accurate
traffic data from sensors and
vehicles

Considers only the x% of
vehicles (except DSP)

the drivers and to reduce congestion.
Summary of the experimental results. The objectives

of the experiments were threefold. First, we measured the
effectiveness of the proposed methods to alleviate congestion
and to improve the drivers’ travel time, their computational
efficiency in achieving this goal, and their scalability with
an increasing number of vehicles. To have a more precise
idea of the performance level offered by the proposed meth-
ods, we used a state-of-the-art DTA tool as a baseline. The
experimental results show our methods are very effective in
fighting congestion, being capable of improving the travel
time as much as a DTA approach. In addition, our methods
are (much) more computationally efficient and scalable than
DTA, which makes them more appropriate for use in real-life
applications. Furthermore, the palette of proposed methods
offers a wide range of choices having different trade-offs
between effectiveness and efficiency, which responds to a large
variety of real-life scenarios.

Second, we conducted a more in-depth set of experiments
to understand how the parameters used by our methods in-
fluence their performance. The experimental results give a
good indication as to which are the most suitable values for
some of these parameters (i.e., urgency function, re-routing pe-
riod, congestion threshold) in conjunction with the employed
method. For other parameters (i.e., number of alternative paths
k) and algorithms (i.e., EBkSP and FBkSP), it is still a matter
of choice between effectiveness and efficiency, opening the
possibility to even finer system tuning.

Third, we considered a more realistic scenario and assessed
the robustness of our system under compliance and penetration
rates below 100%. The results indicate that our system can
still improve significantly the travel time even under low
compliance rates and that our approach is more robust than
DTA. Besides, if accurate traffic data (e.g., collected by road
side sensors) can be provided to the system, then our strategies
exhibit good robustness with various penetration rates.

TABLE IV: Comparison of all the five strategies
Effectiveness AR∗ >(EBkSP, FBkSP)>RkSP>DSP
Efficiency DSP>(EBkSP, FBkSP)>RkSP>AR∗

Re-routing
frequency AR∗ >(EBkSP, FBkSP)>RkSP>DSP

Robustness (AR∗, EBkSP, FBkSP)>RkSP>DSP

To summarize the performance of the proposed strategies,
we rank them according to four criteria in Table IV, where
A > B means that strategy A is better than strategy B.
While each method has its own advantages and shortcomings,
the experimental results made us conclude that the entropy
method (EBkSP) and the local optimization method (FBkSP),
which led to very similar results, should be the preferred
strategies, as they offer the best trade-off between performance
and computation cost.

VI. CONCLUSIONS AND FUTURE WORK

Heartened by the ubiquitousness of mobile devices such as
smart phones or on-bord vehicle units, this paper envisions
a novel approach to tackle the ever more stringent problem
of traffic congestion. This approach is based on a traffic
guidance system that monitors traffic and proactively pushes
individually-tailord re-routing guidance to vehicles when there
are signs of congestion. The system is responsible for sev-
eral functions such as traffic data representation, congestion
prediction, and selection of the vehicles to be re-routed. We
chose to focus in this paper on a key element of our re-routing
system, i.e., the re-routing strategies. We proposed five re-
routing strategies to compute alternative routes for vehicles.
Then, we conducted an extensive set of simulation-based
experiments to validate our approach. The results showed the
proposed re-routing algorithms are very effective in mitigating
congestion and adapt well to the dynamic nature of the
traffic, being also more efficient and scalable than existing
approaches. In addition, our traffic guidance system remains



16

useful even with low compliance rate and moderate penetration
rate. The experiments also demonstrated how the performance
can be tuned by varying parameters such as re-routing method,
number of alternative paths, and density threshold.

As future work, we plan to explore three directions. First,
we will design an adaptive approach for vehicle selection that
considers additional parameters such as road segment length,
measured compliance rate, and estimated penetration rate. The
objective is to obtain a (fully) self-tunable system capable
of automatically adjusting the system parameters depending
on the traffic conditions. Second, we will study methods to
reduce the number of drivers who do not benefit from re-
routing and to limit the increase in their travel time. Third,
we intend to investigate a hybrid architecture that off-loads
parts of the computation and decision process in the network
and uses V2V communication to better balance the need for
privacy, scalability, and low overhead with the main goal of
low average travel time.
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