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Abstract. Autonomous robotics require secure and decentralized decision-making systems
that ensure data privacy and computational efficiency, especially in critical areas. Current
centralized models or human input are associated with data breaches and security vulnerabil-
ities. To counter these, we propose CoRODDA, a dedicated framework combining federated
learning and graph neural networks. CoRODDA enhances object detection and data as-
sociation in autonomous robots, enabling them to learn from local data while preserving
privacy and interpreting graph-structured associated data to understand the surrounding
environments. The experiments showed the effectiveness of CoRODDA compared to the
state-of-the-art, particularly in non-detected objects, improving data privacy and decision-
making capabilities.

Keywords: Federated Learning · Graph Neural Network · Autonomous Robots · Data As-
sociation · Object Detection · Security.

1 Introduction

Motivation. Although significant advancements have been made in robotic systems, a key challenge
that persists is the execution of complex tasks during censorious situations in critical environments.
These tasks, based on object detection and data association, need to be performed in a decentralized
manner while ensuring data privacy [1]. Conventional approaches often fall short in situations
where centralized data aggregation is either unfeasible or poses a threat to privacy [2]. However, in
the current era of rapid technological evolution, autonomous robotic systems are recognized as a
driving force behind numerous industry transformations [3, 4]. Yet, a global challenge remains to
ensure these robotic systems not only carry out complex tasks (such as object detection and data
association) but also maintain data privacy, especially in outdoor environments [5, 6].

Related Work. Existing solutions often grapple with challenges when centralized data process-
ing becomes infeasible, or as data privacy takes center stage [7]. Recognizing these challenges,
the adoption of Graph Neural Networks (GNNs) and Federated Learning (FL) has significant ad-
vancements in autonomous robotic systems, notably in intricate tasks like object detection and
data association [8]. GNNs, renowned for their adeptness in managing graph-structured data, have
revolutionized robotic interactions and understanding of their surroundings [9]. In parallel, FL
has ushered in transformative methodologies, allowing robots to harness local data insights while
upholding rigorous data privacy and refining computational efficiency [10].

The field of Fed and GNN has seen extensive research, covering areas such as privacy preser-
vation, non-IID data challenges, decentralization, and FL personalization [11]. Though innovative
techniques such as local differential privacy and homomorphic encryption have been seminal, they
also underscore computational and model convergence dilemmas. Persistent challenges revolve
around data heterogeneity and the nuances of managing non-IID data. Decentralization, despite
its merits in distributed control, contends with obstacles in real-time responsiveness and model
scalability [12]. While numerous strategies address spatial-temporal dependencies, aligning them
with the dynamic needs of stakeholders is a complex endeavor [13]. Striking an equilibrium between
instantaneous adaptability and stringent data privacy remains a significant hurdle [14].

Contributions. In the realm of autonomous robotics, the integration of GNN and FL (FedGNN)
holds great promise. GNNs are pivotal for handling graph-structured data, empowering robots to
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understand better and navigate their environment. Concurrently, FL ensures efficient decentral-
ized learning, emphasizing data privacy. We develop a Collaborative Real-Time Object Detection
and Data Association (CoRODDA) framework for autonomous robots using FedGNN that syn-
ergistically leverages the capabilities of both FL and GNNs, specially tailored for object detection
and data association tasks. Emphasizing real-world critical applications, CoRODDA stands out,
marking a new frontier in data privacy and decision-making. Drawing from an extensive review of
the related literature and building on the state-of-the-art, this work presents the following contri-
butions:

1. Suggest CoRODDA, an amalgamation of FL and GNN strengths, optimized for object de-
tection Section 2.

2. An in-depth assessment of CoRODDA, highlighting its preeminence in maintaining data
privacy and decision-making Section 3.

2 CoRODDA Framework

In this section, we present a detailed overview of our proposed framework, highlighting the sig-
nificance and operation of each component. Figure 1 depicts the structure of CoRODDA. It
progresses through a series of local and centralized stages, with each stage serving a pivotal role in
realizing the overarching objective of detecting objects with low scores or those missed by object
detection algorithms.
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Fig. 1: Detailed Object Detection Process in CoRODDA.

1. Local Operations:
(a) Data Acquisition and Preprocessing: Robots capture images, serving as the primary

input for CoRODDA. All raw image data remains localized to each robot, ensuring the
confidentiality of the initial dataset.

(b) Object Detection and Extraction: Advanced object detection techniques and pre-
defined models are utilized to identify objects within the processed images. This step also
meticulously extracts the spatial boundaries of identified objects.

(c) Graph Generation and Training: A graph that represents detected objects and their
spatial relationships is produced. FedGNN model is then fed with this data. Robots indi-
vidually refine their models without transmitting any data elsewhere.

2. Centralized Operations:
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(a) Model Aggregation: The server accumulates updates from all participating robots, re-
fining a global model to improve object detection capabilities and confidence scores.The
strength of the federated learning approach is evident here, as only model updates, devoid
of any raw or derivative data, are shared.

(b) Real-time Analysis: The global model is employed for real-time object analysis. Feedback
is dispatched to the robots, amplifying their ability to recognize not just common objects
but also those that might be minute or situated closely — objects previously undetected
by initial techniques.

3 Experimental Results

In this section, we analyze CoRODDA’s performance in object detection with YOLOv5 across 80
classes, using the Stanford Drone Dataset4. CoRODDA uses a spatial approximation to segment
insights across a federated network. By incorporating the GNN model, GraphSAGE, CoRODDA
interprets graph-structured data, emphasizing cooperative learning and data privacy.

3.1 GNN Model Architecture

Central to CoRODDA is the GraphSAGE GNN model, known for its ability to generalize larger
unseen graphs. Its selection is based on attributes apt for our application. Below, we detail the
model’s architecture and features.

– Node Features: Nodes are defined by features forming the base for further analysis. These
features capture the essential attributes and characteristics of the nodes,

– Network Depth: The 16-layer deep model emphasizes critical data patterns through multiple
nonlinear transformations.

– Optimization: We use the Adam optimizer with a 0.01 learning rate, known for its adaptive
properties, to strike a balance between convergence speed and precision.

– Dropout: A 0.5 dropout rate is applied to reduce overfitting by randomly deactivating neurons
during training.

– Training Duration: The model is trained over 10 epochs to optimize learning without risking
overfitting.

– Metrics: Post-training, the model achieves a 73% accuracy rate for the training dataset,
demonstrating its proficiency in handling graph data.

This intricate architecture, characterized by its depth, underscores our commitment to achiev-
ing unparalleled results in graph data processing and analysis. The model is adept at capturing
contextual information and relational dependencies, as illustrated in Figure 2. Over the span of 10
epochs, the training accuracy begins at 70.31% and peaks at 73.09%, while the validation accuracy
commences at 71.31% and culminates at 74.09%. In tandem, the F1 Score for training initiates at
65.18% and reaches 69.00%, and for validation, it starts at 66.18% and ascends to 70.00%.

3.2 Enhancements via FL

In his approach, we have married the strengths of GNNs with the decentralization and privacy
preservation features of FL. Key attributes and advantages of this federated model are:

– Decentralized Training: Our approach empowers each robot with its own GNN model,
promoting learning from real-time interactions. This reduces communication needs, optimizes
bandwidth, and notably bolsters data privacy by retaining data locally.

– Genetic Algorithms: We utilize GAs in the FL workflow, refining model weights by mim-
icking biological evolution. As a result, models are iteratively optimized based on performance
with local datasets.

4 https://cvgl.stanford.edu/projects/uav_data/
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Fig. 2: Accuracy and F1 Score achieved by the GNN Model.

– Federated Genetic Algorithm [15–17]: Our advanced FedGA method amalgamates weights
from all robot models, crafting a holistic global model that benefits from the entire network’s
collective intelligence.

– Collaborative Data Utilization: Robots contribute unique insights, and when combined,
these diverse updates form a global model that’s adaptable and represents various environ-
ments.

– Accuracy Gains: Post a 50-epoch training, our federated and genetically enhanced approach
achieved a significant 78% rise in accuracy.

Fig. 3: Accuracy improvement over epochs in
the federated GNN Model.

The trajectory of accuracy over training epochs
is illustrated in Figure 3 which shows the distinct
improvements brought by FedGA. Table 1 methodi-
cally contrasts the standalone GNN model with the
enhanced FedGA and FedAVG models. The most
notable observations from this table are:

– FedGA has undergone a significant increase in
training epochs compared to the 10 epochs of
the standalone GNN model.

– In terms of accuracy, FedGA achieved a notable
5% improvement over the GNN model, register-
ing at 78% for the validation training. Mean-
while, FedAVG slightly underperformed with an
accuracy of 70.8% training dataset.

– Furthermore, the F1 Score for FedGA outshines
both the GNN model and the FedAVG, boast-
ing a score of 80%, a marked increase from the
GNN model’s 69% and a substantial leap from
FedAVG’s 0.59%.

3.3 Integration with YOLOv5 and Performance Insights

In CoRODDA, we combine the real-time object detection capabilities of YOLOv5 with the so-
phisticated data interpretation potential of FedGNN, resulting in significant performance enhance-
ments.

3.3.1 YOLOv5 Object Detection YOLOv5 efficiently detects objects in images using confi-
dence scores; while high scores signify precise detection, low scores can result in missed objects,
represented by empty brackets.

– Predefined Classes in YOLOv5. YOLOv5 is trained in specific classes. Objects outside
these classes, may be present but remain undetected due to the predefined scope.
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Metrics/Features GNN Model FedGa FedAVG
Input features per node 3 3 (Unchanged) 3 (Unchanged)
Hidden layers 16 16 (Unchanged) 16 (Unchanged)
Optimizer’s learning rate 0.01 0.01 (Unchanged) 0.01 (Unchanged)
Dropout rate 0.5 0.5 (Unchanged) 0.5 (Unchanged)
Training epochs 10 50 50
Achieved accuracy 73% 78% 70.8%
F1 Score 69% 80% 0.59%
Inference time Real-time Real-time Real-time
Machine Specifications MacBook Pro M1 chip, 16GB RAM

Table 1: Comparative Summary of Performance Metrics and Model Features.

– FedGNN’s Role in Refinement. FedGNN adopts a graph-based approach that leverages
spatial relationships between objects for a deeper understanding. It refines YOLOv5’s initial
detections and improves accuracy.

– Performance Indicators. CoRODDA provides the following performance indicators:
1. Detection Accuracy. It evaluates the correctness compared to ground truth annotations.

Collaboration between YOLOv5 and FedGNN enhances the accuracy.
2. F1 Score. An harmonic mean of precision and recall, providing a balanced detection

performance measure.

Fig. 4: Comparison of YOLO and FL-GNN
Scores for Object Regions. Green bars cor-
respond to objects missed by YoloV5.

3.3.2 Results To shed light on the confidence dif-
ferences between the YOLOv5 and CoRODDA ob-
ject detection algorithms, Figure 4 was charted. In
this figure, the x-axis represents different object re-
gions (or images), while the y-axis quantifies their
corresponding scores. Blue bars denote YOLO’s con-
fidence, whereas green bars depict the scores from
CoRODDA for images overlooked by YOLOv5.

The notable drop in confidence scores for
CoRODDA, evident from the green bars, suggests
that while it identifies objects YOLOv5 misses, it is
often less confident in its detections. Objects may be
missed by YOLOv5 due to factors like subtle vari-
ations in lighting, orientation, or occlusions, which
might be more perceptible to CoRODDA. However, the framework’s lower confidence could also
arise from the challenges in dealing with such nuances. This comparison emphasizes the unique
strengths and potential gaps of both algorithms, underscoring their combined potential in providing
a holistic object detection system.

4 Conclusion

This paper has highlighted the significance of enhancing robotic responsiveness in dynamic set-
tings. Our research journey began with an in-depth examination of the complexities of decision-
making, which subsequently uncovered distributed object detection as a pivotal solution. Through
CoRODDA, we illustrated the mechanism of robots capturing images, detecting objects, and sys-
tematically representing the detected object’s coordinates on a graph. Intriguingly, the subsequent
processing by FedGNN, which updates a central server in real-time, offers insights into potential
optimizations in the realm of object detection. As the server meticulously analyzes the derived
data, the prospects of enhancing object detection precision emerge more clearly, aligning seam-
lessly with the overarching goals we set out with. This work underscores the potential for refining
robotic actions, adaptability, and interactions, especially in dynamic contexts. As we continue to
push the boundaries of automated capabilities, the findings from this study provide a roadmap
for future endeavors in this domain and we target to improve the federation process and apply
CoRODDA on more benchmarks.
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