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Introduction

The distribution of the sequence of twin primes [START_REF] Dress | Sur une somme liee a la function de Mobius[END_REF][START_REF] Goldston | Higher correlations of divisor sums related to primes I: triple correlations[END_REF], [START_REF] Goldston | Higher correlations of divisor sums related to primes I: triple correlations[END_REF][START_REF] Iwaniec | Analytic number theory[END_REF], . . . , (p, p + 2), . . . , and the distributions of other sequences of prime pairs, and prime k-tuples are long standing topics of research in number theory. Discussions on the prime pairs problems appear in [START_REF] Ribenboim | The new book of prime number records[END_REF], [START_REF] Narkiewicz | The development of prime number theory[END_REF], and many other references in the vast literature on this subject.

A century ago the expected quantitative forms of some of these problems were written down, and some numerical data were computed to back the claims. The predicted asymptotic form of the twin primes problem is given below.

Conjecture 1.1. ([6, Conjecture B, p. 43]) There are infinitely many twin prime pairs. If π 2 (x) is the number of pairs less than x, then 3 , where C 2 > is a constant defined by

π 2 (x) = 2C 2 x 2 1 (log t) 2 dt + O x (log x)
C 2 = p≥3 1 - 1 (p -1) 2 = 0.6601618605898407646766938915352060 . . . .
The modern theory of the distribution of twin primes are discussed in [START_REF] Pintz | Landau's problems on primes[END_REF], [START_REF] Maynard | On the Twin Prime Conjecture[END_REF] and by other authors.

Let Λ(n) denotes the weighted prime power indicator function, (von Mangoldt function),

Λ(n) = log n if n = p k , 0 if n ̸ = p k . (1.1)
The conjecture is equivalent to the weighted sum 2≤n≤x Λ(n -1)Λ(n + 1) = 2C 2 x + o(x).

(1.2)

This note proposes a weaker but unconditional asymptotic formula.

Theorem 1.1. If x ≥ 1 is a large real number, then 2≤n≤x Λ(n -1)Λ(n + 1) ≫ x log log x (log x)(log log log x) .

A short outline of this article is provided here. The proof Theorem 1.1 of appears in Section 7, it is a simple corollary of Theorem 4.1 in Section 4. The basic materials required to prove the fundamental result in Theorem 4.1 are developed and proved in Section 2 to Section 6. Section 2 deals with several forms of the finite sum m,n≤x 1/[m, n], which are of independent interest in number theory. The proof Theorem 1.1 of appears in Section 7.

Foundational Results

The expressions (m, n) = gcd(m, n) and [m, n] = lcm(m, n) denote the greatest common divisor and the lowest common multiple respectively. The totient function is defined by

φ(n) = n p|n 1 - 1 p , (2.1) 
and the Mobius function is defined by

µ(n) = (-1) w if n = p 1 p 2 • • • p w , 0 if n ̸ = p 1 p 2 • • • p w . (2.2)
The nonnegativity of the finite sum

m,n≤x µ(m)µ(n) [m, n] > 0 (2.3)
and the convergence of the associated series as x → ∞ is the subject a study in [START_REF] Dress | Sur une somme liee a la function de Mobius[END_REF], and in sieve theory. Similar techniques are used here to derive several estimates and verify the nonnegativity of some related finite sums. These finite sums arise in the analysis of the main term and error term of Theorem 4.1.

Elementary Identities.

Lemma 2.1. If m, n ≥ 1 are a pair of integers, then,

gcd(m, n) = d|(m,n) φ(d).
Proof. The claim follows from the additive to multiplicative relation

d|(m,n) φ(d) = p v ||(m,n) 1 + φ(p) + φ(p 2 ) + • • • + φ(p v ) (2.4) = p v ||(m,n) p v = gcd(m, n), where p v || (m, n) is the maximal prime power divisor. ■ Lemma 2.2. If m, n ≥ 1 are a pair of integers, then, 1 [m, n] = 1 mn d|(m,n) φ(d).
Proof. Use Lemma 2.1, to transform the denominator as follows.

1 [m, n] = gcd(m, n) mn = 1 mn d|(m,n) φ(d).
(2.5)

■ Lemma 2.3. If m, n ≥ 1 are a pair of integers, then, 1 φ([m, n]) = 1 φ(mn) d|(m,n) φ(d).
Proof. Substitute the identity (2.1) to transform the denominator as follows.

1 φ([m, n]) = 1 [m, n] p|[m,n] 1 - 1 p -1 (2.6) = gcd(m, n) mn p|mn 1 - 1 p -1 = 1 φ(mn) d|(m,n) φ(d).
The reverse the identity (2. 

B(x) = m, n≤x µ(m)µ(n) log m log n φ([m, n]) (2.9) = m,n≤x µ(m)µ(n) log m log n φ(mn) d|(m,n) φ(d) = d≤x φ(d) m,n≤x d|(m,n) µ(m)µ(n) log m log n φ(mn) .
Replace the change of variables m = dr and n = ds, where r, s ≥ 1 are squarefree integers such that gcd(r, s) = 1 to obtain the expression

B(x) = d≤x φ(d)µ 2 (d) φ(d 2 ) r,s≤x/d (d,rs)=1 gcd(r,s)=1 µ(r)µ(s) log dr log ds φ(rs) (2.10) = d≤x µ 2 (d) d     r≤x/d (d,r)=1 µ(r) log dr φ(r)     2 > 0.
Next, the asymptotic formula for the inner sum given in Lemma 2.7 leads to

B(x) = d≤x µ 2 (d) d     r≤x/d (d,r)=1 µ(r) log dr φ(r)     2 (2.11) = d≤x µ 2 (d) d G(d) + O e -b √ log x 2 = d≤x µ 2 (d)G 2 (d) d + O (log x)e -b 1 √ log x .
The singular series G(d) > 1 is an absolutely convergent series, see (2.15) below, and has the asymptotic form specified in (2.16). Together, these estimates yield the lower bound

B(x) ≫ d≤x µ 2 (d) d + O e -b 2 √ log x
(2.12)

≫ log x log log x + O e -b 2 √ log x ≫ log x log log x since log x log log x ≪ d≤x µ 2 (d) d = 6 π 2 log x + O 1 log x . (2.13)
Hence, the product B(x) satisfies the inequality

log x log log x ≪ m, n≤x µ(m)µ(n) log m log n φ([m, n]) ≪ log x, (2.14)
which is an unbounded function as x → ∞. ■ 2.3. The Singular Series for Prime Pairs. For each integer d ≥ 1 the singular series

G(d) = 0 if d = 2m + 1, > 1 if d = 2m, (2.15)
is a small constant > 1. More precisely, for m ≥ 2, the singular series is given by the infinite product

G(2m) = 2C 2 2<p|m p -1 p -2 > 1.
(2.16)

The first case G(2) = 2C 2 > 1 is called the twin prime constant, see Conjecture 1.1.

Lemma 2.6. ([5, Lemma 2.1]) Let ≥ 2 be a fixed integer, and let x ≥ 1 be a large number.

The following statements are valid.

(i) n≤x gcd(m,n)=1 µ(n) φ(n) = O e -c √ log x , (ii) n≤x gcd(m,n)=1 µ(n) log n φ(n) = G(m) + O e -c √ log x ,
where c > 0 is a constant.

Lemma 2.7. If x ≥ 1 is a large number, then, n≤x/d (d,n)=1 µ(n) log dn φ(n) = G(m) + O e -b √ log x ,
where b > 0 is a constant.

Proof. A simple expansion of the finite sum into two finite sums and repeated applications of Lemma 2.6 return

n≤x/d (d,n)=1 µ(n) log dn φ(n) = n≤x/d gcd(d,n)=1 µ(n) log n φ(n) + (log d) n≤x/d gcd(d,n)=1 µ(n) φ(n) (2.17) = G(m) + O e -c √ log x + O (log d)e -c √ log x = G(m) + O e -b √ log x ,
where c, b > 0 are constants. ■ 2.4. Sum of Twisted Log Function.

Lemma 2.8. If x is a large number, then

n≤x µ(n) log n = O xe -c √ log x ,
where c > 0 is an absolute constant.

Proof. Recall the asymptotic formula 

M (t) = n≤t µ(n) = O te -a √ log t ,
µ(n) log n = x 2 (log t)dM (t) (2.18) = O x(log x)e -a √ log x - x 2 M (t) t dt = O xe -c √ log x ,
where a, c > 0 are constants. ■

Integers in Arithmetic Progressions

An effective asymptotic formula for the number of integers in arithmetic progressions is derived in Lemma 3.1. The derivation is based on a version of the basic large sieve inequality stated below.

Theorem 3.1. Let x be a large number and let

Q ≤ x. If {a n : n ≥ 1} is a sequence of real number, then q≤Q q 1≤a≤q n≤x n≡a mod q a n - 1 q n≤x a n 2 ≤ Q (10Q + 2πx) n≤x |a n | 2 .
Proof. The essential technical details are covered in [2, Chapter 23]. This inequality is discussed in [START_REF] Gallagher | The large sieve[END_REF] and the literature in the theory of the large sieve.

■ Lemma 3.1. If x ≥ 1 is a large number and 1 ≤ a < q ≤ x, then max 1≤a≤q n≤x n≡a mod q 1 - 1 q n≤x 1 = O x q e -c √ log x , (3.1) 
where c > 0 is a constant. In particular,

n≤x n≡a mod q 1 = x q + O x q e -c √ log x . (3.2)
Proof. Trivially, the basic finite sum satisfies the asymptotic

n≤x 1 = [x] = x -{x}, (3.3) 
where [x] = x -{x} is the largest integer function, and the number of integers in any equivalent class satisfies the asymptotic formula

n≤x n≡a mod q 1 = x q + E(x). (3.4) 
Let Q = x and let the sequence of real numbers be a n = 1 for n ≥ 1. Now suppose that the error term is of the form

E(x) = E 0 (x) = O (x α ) , (3.5) 
where α ∈ (0, 1] is a constant. Then, the large sieve inequality, Theorem 3.1, yields the lower bound

q≤x q 1≤a≤q n≤x n≡a mod q 1 - 1 q n≤x 1 2 = q≤x q 1≤a≤q x q + O (x α ) - [x] q 2 = q≤x q 1≤a≤q x q - x q + O (x α ) - x -{x} q 2 ≫ q≤x q 1≤a≤q x α + {x} q - x q 2 ≫ q≤x q 1≤a≤q |x α | 2 ≫ x 2α q≤x q 1≤a≤q 1 ≫ x 2α q≤x q 2 ≫ x 3+2α . (3.6) 
On the other direction, it yields the upper bound

q≤x q 1≤a≤q n≤x n≡a mod q 1 - 1 q n≤x 1 2 ≤ Q (10Q + 2πx) n≤x |a n | 2 (3.7) ≤ x (10x + 2πx) n≤x |1| 2 ≪ x 3 .
Clearly, the lower bound in (3.6) contradicts the upper bound in (3.7). Similarly, the other possibilities for the error term

E 1 = O x (log x) c and E 2 = O xe -c √ log x , (3.8) 
contradict large sieve inequality. Therefore, the error term is of the form

E(x) = O x q e -c √ log x = O x q(log x) c = O x q , (3.9) 
where c > 0 is a constant. ■

Fundamental Result

The classical weighted twin primes counting function has the form

1≤n≤x Λ(n)Λ(n + 2) = 2≤n≤x+1 Λ(n -1)Λ(n + 1). (4.1)
The derivation of a lower bound for the number of twin primes is based on a new weighted twin primes counting function

ψ T (x) = 1≤n≤x w(n)Λ(n -1)Λ(n + 1). (4.
2)

The weight factor w(n) = Λ(n -1) ≥ 0 provides effective control over the error term at the cost of a smaller main term, by a factor of approximately log x. Proof. Substitute the identity Λ(n) = -d|n µ(d) log d, see [1, Theorem 2.11], then reverse the order of summations.

ψ T (x) = 2≤n≤x Λ 2 (n -1)Λ(n + 1) = n≤x Λ(n + 1) d 1 |n-1 µ(d 1 ) log d 1 d 2 |n-1 µ(d 2 ) log d 2 = 1≤d 1 ≤x-1 1≤d 2 ≤x-1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) n≤x d 1 |n-1, d 2 |n-1 Λ(n + 1). (4.3) 
Let x 1 = (log x) c 0 , with c 0 > 0 constant, and partition the triple finite sum.

ψ T (x) = 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) n≤x d 1 |n-1, d 2 |n-1 Λ(n + 1) (4.4) + 1≤d 1 ≤x 1 1≤d 2 ≤x 1 d 1 >x 1 or d 2 >x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) n≤x d 1 |n-1, d 2 |n-1 Λ(n + 1) = M (x) + E(x).
Summing the main term computed in Lemma 5.1 and the error term computed in Lemma 6.1, yields

ψ T (x) = M (x) + E(x) ≫ x log log x log log log x + O xe -c √ log x ≫ x log log x log log log x , (4.5) 
where c > 0 is a constant. ■

Lower Bound For The Main Term

An effective lower bound for the main term arising in Theorem 4.1 is computed in this section.

Lemma 5.1. If x ≥ 1 is a large number, and x 1 = (log x) c 0 , where c 0 > 0, then,

M (x) = 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) 1≤n≤x d 1 |n-1, d 2 |n-1 Λ(n) ≫
x log log x log log log x .

Proof. Let x be a large number and let 

d 1 d 2 ≤ x 2 1 = (log x) 2c 0 ≤ e c 1
M (x) = 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) 1≤n≤x d 1 |n-1, d 2 |n-1 Λ(n) (5.1) = 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) x φ([d 1 , d 2 ]) + O xe -c 1 √ log x = x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) φ([d 1 , d 2 ]) +O     xe -c 1 √ log x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 (log d 1 )(log d 2 )     = M 0 (x) + M 1 (x).
The first subsum M 0 (x) is estimated in Lemma 5.2 and the second subsum M 1 (x) is estimated in Lemma 5.3. Summing these estimates yields

M (x) = M 0 (x) + M 1 (x) ≫ x log log x log log log x + O xe -c 2 √ log x ≫ x log log x log log log x , (5.2) where c 2 > 0 is a constant. ■ Lemma 5.2. Assume that d 1 | n -1, d 2 | n -1. If x ≥ 1 
is a large number, and x 1 = (log x) c 0 , where c 0 > 0, then

M 0 (x) = x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) φ([d 1 , d 2 ]) ≫ x log log x log log log x .
Proof. By Lemma 2.5 the quadruple finite sum

F (x) = d 1 , d 2 ≤x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) φ([d 1 , d 2 ]) ≫ log log x log log log x . (5.3) 
Thus, the product xF (x) ≫ (x log log x)/(log log log x) verifies the claim. ■ Lemma 5.3. If x ≥ 1 is a large number, and x 1 = (log x) c 0 , then,

M 1 (x) = O     xe -c 1 √ log x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 log(d 1 ) log(d 2 )     = O xe -c 2 √ log x ,
where c 0 , c 1 , c 2 > 0 are constants.

Proof. As previously stated

x 1 = (log x) c 0 ≤ e c 1 √ log x
, where c 0 > 0 and c 1 = c 1 (c 0 ) > 0 are constants. Now, an estimate of the quadruple finite sum yields

M 1 (x) = O     xe -c 1 √ log x 1≤d 1 ≤x 1 1≤d 2 ≤x 1 (log d 1 )(log d 2 )     = O xe -c 1 √ log x (log x 1 ) 2 • (x 1 ) 2 = O xe -c 1 √ log x (log x) 2c 0 +1 = O xe -c 2 √ log x , (5.4) 
where c 1 , c 2 > 0 is a constant. ■

Upper Bound For The Error Term

The error term arising in Theorem 4.1 consists of a sum of three finite sums

E(x) = 1≤d 1 ≤x 1 1≤d 2 ≤x 1 d 1 >x 1 or d 2 >x 1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) 1≤n≤x d 1 |n-1, d 2 |n-1 Λ(n + 1) (6.1) = x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 + 1≤d 1 ≤x-1 x 1 <d 2 ≤x-1 + x 1 <d 1 ≤x-1 x 1 <d 2 ≤x-1 = E 1 (x) + E 2 (x) + E 3 (x). Lemma 6.1. Assume that d 1 | n -1, d 2 | n -1. If x ≥ 1 
is a large number, and

x 1 = (log x) c 0 < xe c 1 √ log x , then E(x) = O xe -c √ log x ,
where c, c 0 , c 1 > 0 are constants.

Proof. Except for minor changes, the analysis of the upper bounds for finite sums E 1 (x), E 2 (x) and E 3 (x) are similar. The first one is computed in Lemma 6.2. Summing these estimates yields

E(x) = E 1 (x) + E 2 (x) + E 3 (x) (6.2) = O xe -c √ log x . ■ Lemma 6.2. Assume that d 1 | n -1, d 2 | n -1. If x ≥
1 is a large number, and

x 1 = (log x) c 0 < xe c 1 √ log x , then E 1 (x) = x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) 1≤n≤x d 1 |n-1, d 2 |n-1 Λ(n + 1) = O xe -c 3 √ log x ,
where c 0 , c 1 , c 3 > 0 are constants.

Proof. First replace Λ(n) = -d|n µ(d) log d in the inner sum.

E 1 (x) = - x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) 1≤n≤x d 1 |n-1, d 2 |n-1 d 3 |n+1 µ(d 3 ) log(d 3 ) = - x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 ) 1≤n≤x d 1 |n-1, d 2 |n-1 d 3 |n+1
1. (

The last finite sum is rearranged in the equivalent form

E 1 (x) = - x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 ) (6.4) ×        1≤n≤x d 1 |n-1, d 2 |n-1 d 3 |n+1 1 - x [d 1 , d 2 , d 3 ] + x [d 1 , d 2 , d 3 ]        = -x x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 ) [d 1 , d 2 , d 3 ] - x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 )        1≤n≤x d 1 |n-1, d 2 |n-1 d 3 |n+1 1 - x [d 1 , d 2 , d 3 ]        = T 0 (x) + T 1 (x).
The subsum T 0 (x) is estimated in Lemma 6.3 and subsum T 1 (x) is estimated in Lemma 6.4. Summing these estimates completes the proof.

■ Lemma 6.3. Assume that d 1 | n -1, d 2 | n -1, and d 3 | n + 1. If x ≥ 1 is a large number, and x 1 = (log x) c 0 < xe c 1 √ log x , then T 0 (x) = -x x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log d 3 [d 1 , d 2 , d 3 ] = O xe -c 3 √ log x ,
where c 0 , c 1 , c 3 > 0 are constants.

Proof. The hypothesis

d 1 | n -1, d 2 | n -1, and d 3 | n + 1 implies that [d 1 , d 2 , d 3 ] = [d 1 , d 2 ]d 3 (6.5) since gcd(d 1 d 2 , d 3 ) = 1.
Thus, the finite sum can be factored as

T 0 (x) = -x x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 ) [d 1 , d 2 , d 3 ] (6.6) = -x x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 ) [d 1 , d 2 ] 1≤d 3 ≤x+1 µ(d 3 ) log(d 3 ) d 3 .
Applying Lemma 2.8 to the inner sum in (6.6) and Lemma 2.4 to the middle sum, yield Quod erat inveniendum. ■

T 0 (x) = O     x x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 log(d 1 ) log(d 2 ) [d 1 , d 2 ] e -c 2 √ log x     (6.7) = O x(log x) 5 e -c 2 √ log x = O xe -c 3 √ log x , where c 1 , c 2 , c 3 > 0 are constants. ■ Lemma 6.4. Assume that d 1 | n -1, d 2 | n -1, and 
d 3 | n + 1. If x ≥ 1 is a large number, and x 1 = (log x) c 0 < xe c 1 √ log x , then T 1 (x) = x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 1≤d 3 ≤x+1 µ(d 1 ) log(d 1 )µ(d 2 ) log(d 2 )µ(d 3 ) log(d 3 )        1≤n≤x

Theorem 4 . 1 .

 41 If x ≥ 1 is a large real number, then 2≤n≤x w(n)Λ(n -1)Λ(n + 1) ≫x log log x log log log x .

√

  log x , where c 0 > 0 and c 1 = c 1 (c 0 ) > 0 are constants. Let q = [d 1 , d 2 ]. Applying the prime number theorem for prime in arithmetic progression, see [9, Corollary 11.19], [7, Corollary 5.29.] et cetera, yields

d 1 |n- 1 ,= O xe -c 4 √x 1 log(d 1

 1411 log x , where c 0 , c 1 , c 4 > 0 are constants. Proof. Let q = [d 1 , d 2 , d 3 ]. Taking absolute value and invoking Lemma 3.1 yield|T 1 (x)| ≤ x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 1≤d 3 ≤x+1 log(d 1 ) log(d 2 ) log(d 3 ) 1≤n≤x d 1 |n-1, d 2 |n-1 <d 1 ≤x-1 1≤d 2 ≤x-1 1≤d 3 ≤x+1 log(d 1 ) log(d 2 ) log(d 3 ) x [d 1 , d 2 , d 3 ] ) log(d 2 ) log(d 3 ) [d 1 , d 2 , d 3 ].The hypothesisd 1 | n -1, d 2 | n -1,andd 3 | n + 1 implies that [d 1 , d 2 , d 3 ] = [d 1 , d 2 ]d 3 (6.9) since gcd(d 1 d 2 , d 3 ) = 1.Thus, the finite sum can be factored as|T 1 (x)| ≪ xe -c √ log x x 1 <d 1 ≤x-1 1≤d 2 ≤x-1 log(d 1 ) log(d 2 ) [d 1 , d 2 ]

= O xe -c 4 √ 7 .≫

 47 sum, and applying Lemma 2.4 to the middle sum returnT 1 (x) = O xe -c √ log x • (log x) 5 • (log x) 2 (6.11) = O x(log x) 7 e -c √ log x log x ,where c, c 1 , c 4 > 0 are constants.■ The Main ResultThe main result in this work provides a weak form of the twin primes conjecture described in Section 1.Proof. (Theorem 1.1) Partial summation, and an application of Theorem 4x log log x (log x)(log log log x) .