
HAL Id: hal-04371567
https://hal.science/hal-04371567

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fedga-meta: Federated learning framework using genetic
algorithms and meta-learning for aggregation in

industrial cyber-physical system
Badra Souhila Guendouzi, Samir Ouchani, Hiba Al-Assaad, Madeleine Jradi

To cite this version:
Badra Souhila Guendouzi, Samir Ouchani, Hiba Al-Assaad, Madeleine Jradi. Fedga-meta: Federated
learning framework using genetic algorithms and meta-learning for aggregation in industrial cyber-
physical system. International Conference on Cyber Security and Resilience, 2023, Venice, Italy.
�hal-04371567�

https://hal.science/hal-04371567
https://hal.archives-ouvertes.fr


FedGA-Meta- Federated Learning Framework using

Genetic Algorithms and Meta-Learning for

Aggregation in Industrial Cyber-Physical Systems

Souhila Badra GUENDOUZI

LINEACT CESI

Lyon, France

bguendouzi@cesi.fr

Samir OUCHANI

LINEACT CESI

Aix-en-Provence, France

souchani@cesi.fr

Hiba EL ASSAAD

LINEACT CESI

Toulouse, France

halassaad@cesi.fr

Madeleine EL ZAHER

LINEACT CESI

Toulouse, France

melzaher@cesi.fr

Abstract—In Industry 4.0, factories encounter significant
challenges in making informed decisions to maintain or en-
hance their industry standing. By utilizing machine learning
(ML), they can improve product quality, decrease produc-
tion downtime, and boost operational efficiency. However,
acquiring datasets with sufficient variation and diversity to
train a robust neural network centrally is a challenge within
the industrial sector. Consequently, federated learning (FL)
offers a decentralized approach that safeguards data privacy,
enabling smart infrastructures to train collaborative models
locally and independently while retaining local data. In this
paper, we present FedGA-Meta framework, which combines
FL, meta-learning, and domain adaptation to enhance model
performance and generalizability, particularly when training
across distributed factories with varying network and data
conditions. The results obtained demonstrate the effective-
ness and efficiency of our FedGA-Meta framework.

Index Terms—Industrial Cyber-physical systems, Federated
Learning, Domain Adaptation, Meta-Learning, Data hetero-
geneity, Decision-making

I. Introduction

With the abundance of data available today, AI tech-

niques are being applied across various sectors. However,

data confidentiality and user privacy constraints present a

significant challenge in developing robust decision-making

mechanisms, especially in industrial environments where

safety and quality of service are crucial. In Industrial CPS

(ICPS), components are connected in a centralized architec-

ture with global decision-making based on collected data. FL

[1] has emerged as a promising solution, enabling distributed

client devices to collaboratively train a shared prediction

model while keeping training data local. FL has gained

considerable interest in the industry due to its advantages

over traditional ML approaches. Further, it has been adopted

by several industry giants, including Google, Apple, and

Microsoft. Google, for example, used FL to improve the

accuracy of its keyboard app, Gboard, by training the model

on users’ devices [2]. Similarly, Apple used FL to improve

the accuracy of its QuickType keyboard, and Microsoft used

it to train a model that predicts the likelihood of a Windows

machine being infected with malware [3].

Despite the benefits of FL, training in heterogeneous and

potentially complex networks presents significant challenges,

particularly during the aggregation step, which must be

addressed to fully realize its potential. These challenges en-

compass privacy preservation, limited communication, han-

dling data and model heterogeneity, and reducing algorithm

convergence complexity, among others [4].

The main goal of this work is to overcome the limitations

of FedGA-ICPS [5] by integrating Meta-Learning and Domain

Adaptation, which are ML techniques and aim to enhance

model performance and generalizability while minimizing

both communication and computation overhead in FL pro-

cess. By incorporating these techniques, we strive to develop

a more efficient and effective FedGA-Meta framework that

enhances the aggregation process of FL and deploys it for

ICPS. The main contributions of this paper are as follows.

• Surveying the main contributions related to the FL

aggregation approaches and applications.

• Developing a framework to enhance the performance

analysis and the decision support to ICPS.
• Modeling formally ICPS components and compositions.

• Proposing a federated solution to enhance the collabora-

tive learning phases between ICPS components through

genetic algorithms, meta-learning and domain adapta-

tion techniques to reduce the domain shift problem.

• Studying the convergence and the effectiveness and

efficiency of FedGA-Meta.
• Comparing FedGA-Meta within the existing solutions

and validating it on benchmarks.

The next section surveys the contributions related to FL

aggregation algorithms. Section III develops our proposed

framework, FedGA-Meta, that is validated in Section IV.

setImmediate0.454041262844035198setImmediate0.454041262844035197setImmediate0.454041262844035196setImmediate0.454041262844035195setImmediate0.454041262844035194setImmediate0.454041262844035193setImmediate0.454041262844035192setImmediate0.454041262844035191setImmediate0.454041262844035190setImmediate0.454041262844035189setImmediate0.454041262844035188setImmediate0.454041262844035187setImmediate0.454041262844035186setImmediate0.454041262844035185setImmediate0.454041262844035184setImmediate0.454041262844035183setImmediate0.454041262844035182setImmediate0.454041262844035181setImmediate0.454041262844035180setImmediate0.454041262844035179setImmediate0.454041262844035178setImmediate0.454041262844035177setImmediate0.454041262844035176setImmediate0.454041262844035175setImmediate0.454041262844035174setImmediate0.454041262844035173setImmediate0.454041262844035172setImmediate0.454041262844035171setImmediate0.454041262844035170setImmediate0.454041262844035169setImmediate0.454041262844035168setImmediate0.454041262844035167setImmediate0.454041262844035166setImmediate0.454041262844035165setImmediate0.454041262844035164setImmediate0.454041262844035163setImmediate0.454041262844035162setImmediate0.454041262844035161setImmediate0.454041262844035160setImmediate0.454041262844035159setImmediate0.454041262844035158setImmediate0.454041262844035157setImmediate0.454041262844035156setImmediate0.454041262844035155setImmediate0.454041262844035154setImmediate0.454041262844035153setImmediate0.454041262844035152setImmediate0.454041262844035151setImmediate0.454041262844035150setImmediate0.454041262844035149setImmediate0.454041262844035148setImmediate0.454041262844035147setImmediate0.454041262844035146setImmediate0.454041262844035145setImmediate0.454041262844035144setImmediate0.454041262844035143setImmediate0.454041262844035142setImmediate0.454041262844035141setImmediate0.454041262844035140setImmediate0.454041262844035139setImmediate0.454041262844035138setImmediate0.454041262844035137setImmediate0.454041262844035136setImmediate0.454041262844035135setImmediate0.454041262844035134setImmediate0.454041262844035133setImmediate0.454041262844035132setImmediate0.454041262844035131setImmediate0.454041262844035130setImmediate0.454041262844035129setImmediate0.454041262844035128setImmediate0.454041262844035127setImmediate0.454041262844035126setImmediate0.454041262844035125setImmediate0.454041262844035124setImmediate0.454041262844035123setImmediate0.454041262844035122setImmediate0.454041262844035121setImmediate0.454041262844035120setImmediate0.454041262844035119setImmediate0.454041262844035118setImmediate0.454041262844035117setImmediate0.454041262844035116setImmediate0.454041262844035115setImmediate0.454041262844035114setImmediate0.454041262844035113setImmediate0.454041262844035112setImmediate0.454041262844035111setImmediate0.454041262844035110setImmediate0.45404126284403519setImmediate0.45404126284403518setImmediate0.45404126284403517setImmediate0.45404126284403516setImmediate0.45404126284403515setImmediate0.45404126284403514setImmediate0.45404126284403513setImmediate0.45404126284403512setImmediate0.45404126284403511Finally,
Section V concludes the paper and give hints on our

FedGA-Meta related perspectives.

II. Litterature

To collaborate learning and make enhancement in

decision-making, FL works by having a server that collects

local model weights for each communication round t, aggre-
gates them to create a global neural network model with

global weights wt
, and then broadcasts the latter to all

participants to make local updates.



McMahan et al. [1] introduced "Federated Averaging" or

FedAVG with the following steps: global model weights

are initialized and broadcasted to clients, who then train

their local models. Some clients send their progress to the

central server for aggregation, which averages the local

model weights to create a stronger aggregated model. This

process is iteratively repeated in subsequent FL rounds in-

volving all participants. The FedPer algorithm, proposed

by Arivazhagan et al. [6] supposes that each local model

consists of (1) base layers that are similar and shared by all

participants, and (2) personalized layers that are unique to

each participant. Thus, the participants communicate to the

server, for the aggregation, the base layers instead of the

totality of the model while retaining the other layers.

FedProx is an FL framework, proposed by Li et al. [4]. It

is a generalization of FedAVG with some modifications to

address the heterogeneity of data and systems (systems and

statistical heterogeneity). Mainly, the participants optimize

the loss function with a proximal regularization term to

penalize the wide divergence between them. Wang et al. [7]

proposed Federated Matched Averaging (FedMA), which is a

new layers-wise FL algorithm for modern CNNs and LSTMs.

Layers are independently trained and communicated to the

server. FedMA requires FL communication rounds equal to

the number of layers in local models, that are similar for all

participants. Briggs et al. [8] proposed FL with hierarchical

clustering of local models to improve learning on non-IID

data. They group similar clients’ local models in order to

mitigate their divergence and execute aggregation for each

cluster of local models.

Hu et al.[9] proposedMHAT, a heterogeneous aggregation
training for FL that addresses heterogeneous model archi-

tectures and client-server communication costs by focusing

on the model outputs rather than its parameters. Xie et al.

[10] proposed an asynchronous FL aggregation (FedAsyn)
method that builds a global model for any incoming local

model to improve the flexibility and scalability of FL. Ek

et al.[11] proposed FedDist FL aggregation algorithm for

Human Activity Recognition (HAR) that can change the

architecture of their models by finding variations between

particular neurons among the clients to mitigate their di-

vergence in case of heterogeneous and non-IID datasets.

FedGA Guendouzi et al. [5] is an aggregation algorithm with

genetic algorithms to solve the problem of data and model

heterogeneity. With FedGA, all participants upload only the

base layer weights to the central server. Then, the latter

calculates the new weights by calling the genetic algorithm,

where a weight vector is used to be as a chromosome.

Assuming a centralized public dataset (source domain DS)

on the aggregator server for constructing the global model,

with private datasets from multiple collaborators as target do-

mains (D1
T , ..., D

N
T ), FedGA-ICPS and other FL aggregation

algorithms may face challenges due to domain shifts. Also,

enhancing only part of the neural network models isn’t ideal

for decision-making, and deploying FedGA-ICPS with many

collaborators can increase time complexity because of the

increase number of collaborators that increase it complexity.

The goal of FedGA-Meta is to overcome these limitations

by extending FedGA-ICPS formalism and integrating meta-

learning, domain adaptation, and FL. This unified framework

aims to enable efficient learning, adaptation to varying data

distributions using domain adaptation techniques, generalize

learning to make FedGA-Meta scalable using meta-learning,

and enhance the performance and applicability of models.

III. FedGA-Meta Framework

In this section, we introduce first the global overview of

FedGA-Meta then we detail it according to its workflow.

As shown in Fig. III, FedGA-Meta considers the architecture

of an Industrial CPS with layers: Edge, Fog, and Cloud. It
combines edge collaborators εtype=e with similar feature

spaces and associates them to a specific fog εtype=f , estab-

lishing a hierarchical representation. Also, it performs the

aggregation at two different levels: Fog and Cloud. Relying on

aggregation at two levels, FedGA-Meta targets to 1) preserve

the personalization of data and neural network models, 2)

address scalability and generalizability by employing meta-

learning and domain adaptation techniques and 4) reduce the

communication overhead between the collaborators and the

central server. As depicted in Fig. III, FedGA-Meta workflow

is a 7-steps framework executed as follows.

• Step 1: The global model, initialized or updated by

the cloud server, is shared with fog servers in the

hierarchical architecture, giving each fog server access

to the latest global model as a starting point.

• Step 2: Fog servers fine-tune the global model and share

the updated version with their edge collaborators.

• Step 3: Edge collaborators independently update their

models with deep learning techniques tailored to their

data and share their enhanced models with the fog

servers in Step 4, which aggregate the models within

the same feature space.

• Step 5: Fog servers receive and store local models, exe-

cute the FedGA aggregation algorithm using subdatasets

from the connected edge collaborators, and perform

the inner-update of the MAML [12], a meta-learning

algorithm, allowing for efficient combination of local

models and adaptation of the global model.

• Step 6: Fog servers calculate the loss associated with

their updated models and share this metric with the

cloud server, which uses this information to refine the

global model and assess the framework’s performance.

• Step 7: The cloud server executes the outer-update

of the MAML algorithm [12], enabling the model to

learn from a variety of tasks, with each reflecting the

distinct data distribution associated with a separate fog

layer in the hierarchical architecture. This approach

effectively leverages the collective knowledge available

across multiple fog layers.

In the following, we detail FedGA-Meta steps including the

formalization of ICPS, the learning phase, and the aggrega-

tion process.



Fig. 1. An overview of FedGA-Meta Framework .

A. Industrial CPS Formalism

FedGA-Meta considers a system S = ⟨E ,D,N , T , CT ⟩ as
a composition of a set of entities E that manipulate a specific

data D. They interact and interleave through a network of

physical and logical channels (N ) to accomplish a precise

task (T ) in a given context CT .
1) Modeling the entities: An entity ε ∈ E can be an

IIoT, an edge node, a fog node, or a cloud server that

executes specific actions or collaborates with other entities

to perform global tasks. To evaluate the guard related to an

action, the entity ε run its associated machine learning model

n ∈ Nm that evaluates the variables of the specified guard.

To enhance the decision-making of an entity ε, FedGA-ICPS
develops techniques to help entities update periodically their

associated ns. ε is the main entities describing ICPS, and it

is defined by ⟨id, type, attr, Actuator,Σ, Beh⟩, where:
• id is a finite set of tags id1, . . . , idi, . . . ∈ id identifying

the entities.

• type : id → {i, e, f, c} returns the type of the entity;

that can industrial IoT (i), edge (e), fog (f), or cloud (c).

• attr : id → 2T returns the attributes of an entity,

such that T = {p, l} where p and l stand respectively

for physical characteristics (memory, processing power,

battery, etc) and a logic expression that specifies the

performance of an entity.

• Actuator specifies the status of an entity by evaluating

its attributes,

• Σ : id → 2A is a partial function that returns a

finite subset of atomic actions. It depends on the type

of entity εi to be executed by the latter, and initially,

A = {Start, Send, Receive, Update, Predict, Train,
Aggregate, Terminate},

• Beh : id × Σ → L returns the behavior of an entity

written in the language L, and the syntax of L is given

by: B ::= α | B ·B | B+gB, where α ∈ Σ. The operator
“ · “ composes sequentially the actions and +g is , by

the functionality Predict . When g∆=⊤ the guarded

decision become a non-deterministic choice.

2) Modeling the data: The data D describes the different

data manipulated by the entities, exchanged and shared

between them or broadcasted in the network. It is defined

by a tuple ⟨E , Ds, attDs
, Nm, attNm

,Mea,Ass⟩, where:
• Ds is a finite set of dynamic datasets (with element d1,

. . . , di, . . . , d|Ds|), where dp = {(xk, yk)}
|dp|
k=1 is a public

dataset shared between entities, and xk and yk are k-th
sample and label respectively in dp.

• attDs : Ds → 2{type,domain,size,distribution,F}
returns

the characteristics of a dataset d ∈ Ds, where they

represent data type (e.g. images), domain of application

(e.g. aeronautical equipment maintenance), dataset size,

samples distribution (e.g. number of samples per class)

and features representation of the dataset respectively.

• Nm is a finite set of neural network models (with

element n1, . . . , ni, . . . ,n|Nm|.), where nϵ is the global

model of the ICPS.
• attNm

: Nm → 2{type,task,w}
returns the structure of

a neural network model n, where type, task, and w
represent its architecture (e.g. convolutional neural net-

work), its output (e.g. object detection) and weights vec-

tors respectively (e.g. nϵ is represented by the weights

parameters wϵ).

Ass: E×2F ×T → Ds×Nm returns the architecture of

a neural network n and its associated local dataset d.
• Mea : Ds×Nm → 2{accuracy,loss,F1−score}

returns the

evaluation measures of a neural network model n ∈ Nm

trained by a dataset d ∈ Ds.

3) Modeling the Network: The network N defines how the

entities are connected and communicate. An entity εi can

be connected to another one through a physical or logical

channel for communication or to a subsystem. We define a

network N as a graph where vertices are the entities and

the edges are the way that they interact and connected N =
⟨E , Chan, Prot, Rel⟩, where:

• Chan is a finite set of channels, Prot is a finite set of

protocols where ϵProt is the empty protocol, and

• Rel : E × E → Chan × Prot relies two entities with a

channel and a protocol. When Prot is assigned, it means

both nodes are physically connected.

4) Modeling the Tasks: The task T is the main goal of the

system. It describes the sequence of actions that should be

realized by each entity. We define a task by a tree where the

root represents the main goal of the system S , the children

are sub-goals of the entities, and leafs are the final product

for each entity. The task T is the tuple ⟨G,⪯⟩, where:
• G is a finite set of goals where g ∈ G is the root (the

main goal),

• (G,⪯) is a preorder relation on G.
5) Context: It can be seen as a container of entities

that can change dynamically, by integrating or excluding

entities, changing protocols, and updating tasks, but they

should follow certain rules and policies PL. A context CT



is the tuple ⟨E ′ ⊆ E , T ′ ⊆ T ,PL⟩. In FedGA-ICPS, a policy

is expressed as a temporal logic formula.

B. Learning

Initially, an entity ε(id=i∧type=e) provides its neural net-

work model ni and private dataset di. The goal of this process
is to solve a DL problem locally (e.g. classification) by training

ni with di and getting by the end the evaluation metrics that

need to be optimized. For example, using cross-entropy as the

loss metric of a classification problem needs to be minimized

as much as possible by applying an optimization algorithm,

such as a stochastic gradient descent algorithm. The edge

node ε(id=i∧type=e) can fine-tune a neural network model

nj from ε(id=j∧type=f) after the aggregation step. Algorithm

1 run locally on ε(id=i∧type=e) to fine-tune its initial model.

Algorithm 1 Local Update
1: Function EdgeUpdate ▷ Run on edge entity

ε(id=i∧type=e) ∈ E .
2: Input
3: nj partial model of εid=j∧type=f

4: B batch size

5: E local epochs

6: η learning rate

7: Output
8: wi ▷ layers’ weights of ni.

9: β ← (Split di into mini-batches of size B)
10: for each local epoch i from 1 to E do
11: for batch b ∈ β do
12: wi ← wi − η∆wi

L(nwi
, b) ▷ Local learning.

13: end for
14: end for
15: End Function EdgeUpdate

C. Aggregation

In order to preserve the personalization of private data and

neural network models as well as reduce the communica-

tion overhead between cloud and edge entities, FedGA-Meta
divides the aggregation process into two levels, fog-based

aggregation and cloud-based aggregation. The details of these

are mentioned as follows:

1) Fog-based Aggregation: A fog entity ε(id=j∧type=f)

groups a set of edge entities ε(type=e) ∈ E that have the

same feature spaces and share the same neural network

architecture. Further, it provides a secure dataset dj , that
comprises a variety of distinct subdatasets derived from the

connected edge collaborators, and a partial model nj . When

the aggregation process is started, each εtype=f initializes

nj and broadcasts it to ε(type=e) ∈ E . These latter train

and update (Section III-B) their neural network models and

share them with εtype=f for partial aggregation by applying

FedGA [5]. The output is then a new nj , presented by:

nj = GA(nj , dj ,W ) where W = ∪Ei=1wi (1)

As a result, each εtype=f ∈ E will have a distinct nj

architecture. More precisely, each architecture has different

personalized layers (e.g. feature extractors layers in CNN

case) but it shares the same decision-making architecture

(e.g. classification layers in CNN case). Afterward, nj will

be trained using the inner-update of MAML [12] algorithm.

Algorithm 2 FedGA-Meta Aggregation Step1
1: Function FogAggregation ▷ Run on cloud entity

ε(id=j∧type=f) ∈ E
2: Input
3: wϵ Layer’s weights of nϵ

4: E ∈ E Set of associated edge entities

5: Output
6: Lπj

Q (nwj ) Loss

7: W = ϕ ▷ Initialize an empty population of weight’s

vectors

8: for each edge entity e ∈ E do
9: W ←W

⋃
e.ClientUpdate(wϵ) ▷ Get

local layer’s weights from each εtype=f ∈ E and update

the population

10: end for
11: wj = GA(nj , dj ,W ) ▷ Execute GA to get new weights

12: wj = wj − α∆wj
Lπj

S (nwj
) ▷ Execute inner-update of

MAML

13: return Lπj

Q (nwj
)

14: End Function FogAggregation

Each ε(id=j∧type=f) provides a meta-learning task πj ,

where dj is split into support set dS = {(xk, yk)}|dS |
k=1 and a

query set dQ = {(x′
k, y

′
k)}

|dQ|
k=1 . Therefore, ni is trained using

dS in order to get a new weight’s vector wj . The inner-update

of nj is given by 2 as follows.

wj = wj − α∆wj
Lπj

S (nwj
) (2)

After that, wj is split into wj, base and wj, per, which rep-

resent respectively the weights of base and the personalized

layers related ti nj . In addition, εtype=f∧id=j evaluates nj

with dQ and calculates the loss functions by freezing the

personalized layers. Finally, the losses (the evaluations of the

loss functions) Lπj

Q (nwj ) will be shared with the aggregator

for the second step of MAML as presented in Algorithm 2.

2) Cloud-based Aggregation: The cloud entity εtype=c re-

ceives Lπj

Q (nwj
) from each εtype=f and applies the outer-

update of MAML algorithm to get the global model nϵ by

applying Eq. 3.

wϵ = wϵ −
γ

J
∆wϵ

|J|∑
j=1

Lπj

Q (nwj ), where J = ∪ εtype=f (3)

At the end of this step, εtype=c broadcasts wϵ to all εtype=f ∈
E for another FL round, until achieving the final round.

Algorithm 3 stepwise the phase of cloud-based aggregation.



IV. Experiments

In this section, we evaluate the effectiveness and efficiency

of FedGA-Meta on different federated real datasets and mod-

els. Compared to the traditional FL approaches, we show that

FedGA-Meta can provide faster convergence, higher accuracy,

and also reduce the system overhead.

A. Experimental setup

FedGA-Meta has been implemented using PyTorch ML

framework [13] with other neural network libraries, such as

PyGAD [14] that helps to train neural network models using

genetic algorithms. We use digit recognition as a real use case

of our experiments, which is an image classification problem.

Therefore, we selected MNIST [15], USPS [16], SVHN [17],

MNISTM [18], and EMNIST [19] as benchmark datasets.

Our system consists of five εtype=f (5 fogs), where each

groups four εtype=e (20 edges in total). We assign for each

fog entity a different dataset (MNIST, SVHN, MNISTM or

EMNIST) that is distributed unequally over its edge enti-

ties. Further, FedGA-Meta generates five heterogeneous CNN

models that share the same decision-making out layers. To

make it heterogeneous, it assigns a model to each fog entity.

Then, the models are trained using mini-batches SGD, ReLU

activation functions, and dropout functions to deal with

overfitting. Also, they consist of two fully connected layers

as base layers. We compare FedGA-Meta with FedPer and

FedGA-ICPS frameworks, and also without considering FL

paradigm (NoFL).

B. Experimental results

In order to assess the impact of the computing capacity

on FedGA-Meta entities, we evaluate the average accuracy of

their models by reducing the number of training epochs. We

set three experiments: the number of local epochs equals to

1, 5, and 20. For each experiment, we ran the four algorithms

for 20 FL communication rounds. As it is shown in Figure

Algorithm 3 FedGA-Meta Aggregation Step1
1: Function GlobalAggregation ▷ Run on cloud entity

ε(id=i∧type=c) ∈ E
2: Input
3: nϵ Global model

4: J A set of fog entities J ⊂ E
5: γ Meta-learning hyperparameter

6: F FL rounds

7: Output
8: wϵ layers’ weights of nϵ

9: G = ϕ ▷ Initialize an empty set of losses

10: for each FL round k from 1 to F do
11: for each fog entity j ∈ J do
12: G← G

⋃
j.FogAggregation(wϵ) ▷ Get losses

from each εtype=f ∈ E
13: end for
14: wϵ ← wϵ − γ

J

∑
g∈G g ▷ Outer-update of MAML

2, FedGA-Meta provides good results compared to other

approaches. When the local epoch is equal to 1, FedGA-Meta
achieved an average accuracy of 88.28% compared with

NoFL, FedGA, and FedPer that achieved an average accuracy

of 55.09%, 82.45% and 84.76% respectively. We conclude

that FedGA-Meta does not require entities possessing high

computing capacity to participate in the FL process. So, we

have only to increase the number of FL communication

rounds to get the higher accuracy for all entities models E .

Fig. 2. The Performance of FL strategies on MNIST, USPS, SVHN, MNISTM,

and EMNIST datasets for different local epochs E.

By taking into account the restricted processing power

of edge entities, we set the default number of local epochs

to only 1 for all experiments. Also, the number of FL

communication rounds is fixed at 20. Table I summarizes

the setup of our experiments and shows the final accuracy

of each edge entity’s local model. The results confirm that

without implementing FL, the convergence will never be

completed. In this case, implementing FedGA-ICPS or FedPer
because of the domain shift problem for some of the local

models. That is why proposing FedGA-Meta can tackle this

limitation using MAML algorithm and gives higher accuracy.

Fog Edge NoFL FedPer FedGA FedGA_Meta

εtype=f

ε1 49.46 % 86.19 % 87.07 % 93.68 %

ε2 47.54 % 87.94 % 92.20 % 97.38 %

ε3 3.22 % 90.23 % 90.38 % 98.33%

ε4 46.39 % 91.57% 93.54% 94.04%

εtype=f

ε5 79.59 % 88.37 % 89.30 % 97.69 %

ε6 95.49 % 83.65 % 79.93% 99.35 %

ε7 85.75 % 94.60 % 85.66 % 99.68 %

ε8 66.77 % 95.42 % 97.05 % 98.37 %

εtype=f

ε9 67.31 % 95.26 % 95.20 % 95.65%

ε10 76.53 % 96.06 % 96.35 % 96.90 %

ε11 74.10 % 97.27 % 96.58 % 97.52 %

ε12 57.79 % 93.94 % 93.27 % 91.67%

εtype=f

ε13 49.46 % 58.43 % 50.68 % 79.89 %

ε14 30.14 % 58.17 % 50.26 % 78.23%

ε15 0.252 % 72.10 % 69.83 % 80.02%

ε16 46.74 % 66.06 % 57.38 % 81.56 %

εtype=f

ε17 17.92% 84.03 % 74.70 % 95.21 %

ε18 11.50 % 74.42 % 69.02 % 94.82 %

ε19 54.13 % 90.00 % 76.97 % 99.90 %

ε20 0.31 % 90.14 % 88.45 % 92.21%

TABLE I

The accuracies of Final models at each edge entity.



V. Conclusion

In this work, we studied some of the existed FL aggregation

methods. Also, we have given a first step toward a com-

prehensive methodology for enhancing performance analysis

in order to create a more robust ICPS. We have designed

and implemented a framework, called FedGA-Meta, based on

FL dedicated to ICPS, focusing on the aggregation method

that it is implemented with genetic algorithms, meta-learning

and domain adaptation based approaches. The developed

FedGA-Meta framework describes a system as a collection of

things, each of which has its own structure and behavior for

carrying out a certain purpose. To expedite the analysis and

learning processes, in the experiment part, we demonstrated

the efficacy of the suggested framework using renowned

benchmarks with different scenarios. As a future work, we

intend to expand the framework in many directions, mainly:

1) Incorporating additional ML techniques and selecting

automatically the best agent for the aggregation pro-

cess. This objective can be achieved and tested first by

applying reinforcement learning.

2) The case when a model is weak and no pre-trained

model already exists, a new mechanism to handle this

issue could be considered by relying on data fusion,

mimicking different nodes, and generating data using

stochastic models.

3) Covering more ICPS architecture by decentralizing the

system using blockchain schemes.

4) Evaluating the framework on more complex use cases

and benchmarks.

References

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and

B. A. y Arcas, “Communication-efficient learning of

deep networks from decentralized data,” in Artificial

intelligence and statistics. PMLR, 2017, pp. 1273–1282.

[2] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beau-

fays, S. Augenstein, H. Eichner, C. Kiddon, and D. Ra-

mage, “Federated learning for mobile keyboard predic-

tion,” arXiv preprint arXiv:1811.03604, 2018.

[3] D. Dimitriadis, M. H. Garcia, D. M. Diaz, A. Manoel,

and R. Sim, “Flute: A scalable, extensible framework for

high-performance federated learning simulations,” arXiv

preprint arXiv:2203.13789, 2022.

[4] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar,

and V. Smith, “Federated optimization in heteroge-

neous networks,” Proceedings of Machine Learning and

Systems, vol. 2, pp. 429–450, 2020.

[5] S. B. Guendouzi, S. Ouchani, and M. Malki, “Enhancing

the aggregation of the federated learning for the indus-

trial cyber physical systems,” in 2022 IEEE International

Conference on Cyber Security and Resilience (CSR).

IEEE, 2022, pp. 197–202.

[6] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and

S. Choudhary, “Federated learning with personalization

layers,” arXiv preprint arXiv:1912.00818, 2019.

[7] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and

Y. Khazaeni, “Federated learning with matched averag-

ing,” arXiv preprint arXiv:2002.06440, 2020.

[8] C. Briggs, Z. Fan, and P. Andras, “Federated learning

with hierarchical clustering of local updates to improve

training on non-iid data,” in 2020 International Joint

Conference on Neural Networks (IJCNN). IEEE, 2020,

pp. 1–9.

[9] L. Hu, H. Yan, L. Li, Z. Pan, X. Liu, and Z. Zhang, “Mhat:

an efficient model-heterogenous aggregation training

scheme for federated learning,” Information Sciences,

vol. 560, pp. 493–503, 2021.

[10] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated

optimization,” arXiv preprint arXiv:1903.03934, 2019.

[11] S. Ek, F. Portet, P. Lalanda, and G. Vega, “A fed-

erated learning aggregation algorithm for pervasive

computing: Evaluation and comparison,” in 2021 IEEE

International Conference on Pervasive Computing and

Communications (PerCom) (PerCom 2021), Kassel, Ger-

many, Mar. 2021.

[12] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic

meta-learning for fast adaptation of deep networks,” in

International conference on machine learning. PMLR,

2017, pp. 1126–1135.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,

and S. Chintala, “Pytorch: An imperative style, high-

performance deep learning library,” in Advances in

Neural Information Processing Systems 32. Curran

Associates, Inc., 2019, pp. 8024–8035.

[14] A. F. Gad, “Pygad: An intuitive genetic algorithm python

library,” arXiv preprint arXiv:2106.06158, 2021.

[15] L. Deng, “The mnist database of handwritten digit

images for machine learning research,” IEEE Signal

Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[16] J. J. Hull, “A database for handwritten text recognition

research,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 16, no. 5, pp. 550–554, 1994.

[17] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu,

and A. Y. Ng, “Reading digits in natural images with

unsupervised feature learning,” in NIPS Workshop on

Deep Learning and Unsupervised Feature Learning 2011,

2011.

[18] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain,

H. Larochelle, F. Laviolette, M. Marchand, and V. Lem-

pitsky, “Domain-adversarial training of neural net-

works,” The journal of machine learning research,

vol. 17, no. 1, pp. 2096–2030, 2016.

[19] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik,

“Emnist: Extending mnist to handwritten letters,” in

2017 international joint conference on neural networks

(IJCNN). IEEE, 2017, pp. 2921–2926.


