Badra Souhila

Guendouzi
email: bguendouzi@cesi.fr

Samir Ouchani
email: souchani@cesi.fr

Hiba El Assaad
email: halassaad@cesi.fr

Madeleine El Zaher
email: melzaher@cesi.fr

FedGA-Meta-Federated Learning Framework using Genetic Algorithms and Meta-Learning for Aggregation in Industrial Cyber-Physical Systems

Keywords: Industrial Cyber-physical systems, Federated Learning, Domain Adaptation, Meta-Learning, Data heterogeneity, Decision-making

In Industry 4.0, factories encounter significant challenges in making informed decisions to maintain or enhance their industry standing. By utilizing machine learning (ML), they can improve product quality, decrease production downtime, and boost operational efficiency. However, acquiring datasets with sufficient variation and diversity to train a robust neural network centrally is a challenge within the industrial sector. Consequently, federated learning (FL) offers a decentralized approach that safeguards data privacy, enabling smart infrastructures to train collaborative models locally and independently while retaining local data. In this paper, we present FedGA-Meta framework, which combines FL, meta-learning, and domain adaptation to enhance model performance and generalizability, particularly when training across distributed factories with varying network and data conditions. The results obtained demonstrate the effectiveness and efficiency of our FedGA-Meta framework.

I. Introduction

With the abundance of data available today, AI techniques are being applied across various sectors. However, data confidentiality and user privacy constraints present a significant challenge in developing robust decision-making mechanisms, especially in industrial environments where safety and quality of service are crucial. In Industrial CPS (ICPS), components are connected in a centralized architecture with global decision-making based on collected data. FL [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF] has emerged as a promising solution, enabling distributed client devices to collaboratively train a shared prediction model while keeping training data local. FL has gained considerable interest in the industry due to its advantages over traditional ML approaches. Further, it has been adopted by several industry giants, including Google, Apple, and Microsoft. Google, for example, used FL to improve the accuracy of its keyboard app, Gboard, by training the model on users' devices [START_REF] Hard | Federated learning for mobile keyboard prediction[END_REF]. Similarly, Apple used FL to improve the accuracy of its QuickType keyboard, and Microsoft used it to train a model that predicts the likelihood of a Windows machine being infected with malware [START_REF] Dimitriadis | Flute: A scalable, extensible framework for high-performance federated learning simulations[END_REF].

Despite the benefits of FL, training in heterogeneous and potentially complex networks presents significant challenges, particularly during the aggregation step, which must be addressed to fully realize its potential. These challenges encompass privacy preservation, limited communication, handling data and model heterogeneity, and reducing algorithm convergence complexity, among others [START_REF] Li | Federated optimization in heterogeneous networks[END_REF].

The main goal of this work is to overcome the limitations of FedGA-ICPS [START_REF] Guendouzi | Enhancing the aggregation of the federated learning for the industrial cyber physical systems[END_REF] by integrating Meta-Learning and Domain Adaptation, which are ML techniques and aim to enhance model performance and generalizability while minimizing both communication and computation overhead in FL process. By incorporating these techniques, we strive to develop a more efficient and effective FedGA-Meta framework that enhances the aggregation process of FL and deploys it for ICPS. The main contributions of this paper are as follows.

• Surveying the main contributions related to the FL aggregation approaches and applications. • Developing a framework to enhance the performance analysis and the decision support to ICPS. • Modeling formally ICPS components and compositions.

• Proposing a federated solution to enhance the collaborative learning phases between ICPS components through genetic algorithms, meta-learning and domain adaptation techniques to reduce the domain shift problem. • Studying the convergence and the effectiveness and efficiency of FedGA-Meta. • Comparing FedGA-Meta within the existing solutions and validating it on benchmarks. The next section surveys the contributions related to FL aggregation algorithms. Section III develops our proposed framework, FedGA-Meta, that is validated in Section IV. setImmediate0.454041262844035198setImmediate0.454041262844035197 Section V concludes the paper and give hints on our FedGA-Meta related perspectives.

II. Litterature

To collaborate learning and make enhancement in decision-making, FL works by having a server that collects local model weights for each communication round t, aggregates them to create a global neural network model with global weights w t , and then broadcasts the latter to all participants to make local updates.

McMahan et al. [START_REF] Mcmahan | Communication-efficient learning of deep networks from decentralized data[END_REF] introduced "Federated Averaging" or FedAVG with the following steps: global model weights are initialized and broadcasted to clients, who then train their local models. Some clients send their progress to the central server for aggregation, which averages the local model weights to create a stronger aggregated model. This process is iteratively repeated in subsequent FL rounds involving all participants. The FedPer algorithm, proposed by Arivazhagan et al. [START_REF] Arivazhagan | Federated learning with personalization layers[END_REF] supposes that each local model consists of (1) base layers that are similar and shared by all participants, and (2) personalized layers that are unique to each participant. Thus, the participants communicate to the server, for the aggregation, the base layers instead of the totality of the model while retaining the other layers.

FedProx is an FL framework, proposed by Li et al. [START_REF] Li | Federated optimization in heterogeneous networks[END_REF]. It is a generalization of FedAVG with some modifications to address the heterogeneity of data and systems (systems and statistical heterogeneity). Mainly, the participants optimize the loss function with a proximal regularization term to penalize the wide divergence between them. Wang et al. [START_REF] Wang | Federated learning with matched averaging[END_REF] proposed Federated Matched Averaging (FedMA), which is a new layers-wise FL algorithm for modern CNNs and LSTMs. Layers are independently trained and communicated to the server. FedMA requires FL communication rounds equal to the number of layers in local models, that are similar for all participants. Briggs et al. [START_REF] Briggs | Federated learning with hierarchical clustering of local updates to improve training on non-iid data[END_REF] proposed FL with hierarchical clustering of local models to improve learning on non-IID data. They group similar clients' local models in order to mitigate their divergence and execute aggregation for each cluster of local models.

Hu et al. [START_REF] Hu | Mhat: an efficient model-heterogenous aggregation training scheme for federated learning[END_REF] proposed MHAT, a heterogeneous aggregation training for FL that addresses heterogeneous model architectures and client-server communication costs by focusing on the model outputs rather than its parameters. Xie et al. [START_REF] Xie | Asynchronous federated optimization[END_REF] proposed an asynchronous FL aggregation (FedAsyn) method that builds a global model for any incoming local model to improve the flexibility and scalability of FL. Ek et al. [START_REF] Ek | A federated learning aggregation algorithm for pervasive computing: Evaluation and comparison[END_REF] proposed FedDist FL aggregation algorithm for Human Activity Recognition (HAR) that can change the architecture of their models by finding variations between particular neurons among the clients to mitigate their divergence in case of heterogeneous and non-IID datasets. FedGA Guendouzi et al. [START_REF] Guendouzi | Enhancing the aggregation of the federated learning for the industrial cyber physical systems[END_REF] is an aggregation algorithm with genetic algorithms to solve the problem of data and model heterogeneity. With FedGA, all participants upload only the base layer weights to the central server. Then, the latter calculates the new weights by calling the genetic algorithm, where a weight vector is used to be as a chromosome.

Assuming a centralized public dataset (source domain D S) on the aggregator server for constructing the global model, with private datasets from multiple collaborators as target domains (D 1 T , ..., D N T), FedGA-ICPS and other FL aggregation algorithms may face challenges due to domain shifts. Also, enhancing only part of the neural network models isn't ideal for decision-making, and deploying FedGA-ICPS with many collaborators can increase time complexity because of the increase number of collaborators that increase it complexity. The goal of FedGA-Meta is to overcome these limitations by extending FedGA-ICPS formalism and integrating metalearning, domain adaptation, and FL. This unified framework aims to enable efficient learning, adaptation to varying data distributions using domain adaptation techniques, generalize learning to make FedGA-Meta scalable using meta-learning, and enhance the performance and applicability of models.

III. FedGA-Meta Framework

In this section, we introduce first the global overview of FedGA-Meta then we detail it according to its workflow. As shown in Fig. III, FedGA-Meta considers the architecture of an Industrial CPS with layers: Edge, Fog, and Cloud. It combines edge collaborators ε type=e with similar feature spaces and associates them to a specific fog ε type=f , establishing a hierarchical representation. Also, it performs the aggregation at two different levels: Fog and Cloud. Relying on aggregation at two levels, FedGA-Meta targets to 1) preserve the personalization of data and neural network models, 2) address scalability and generalizability by employing metalearning and domain adaptation techniques and 4) reduce the communication overhead between the collaborators and the central server. As depicted in Fig. III, FedGA-Meta workflow is a 7-steps framework executed as follows.

•

Step 1: The global model, initialized or updated by the cloud server, is shared with fog servers in the hierarchical architecture, giving each fog server access to the latest global model as a starting point. • Step 2: Fog servers fine-tune the global model and share the updated version with their edge collaborators. • Step 3: Edge collaborators independently update their models with deep learning techniques tailored to their data and share their enhanced models with the fog servers in Step 4, which aggregate the models within the same feature space. • Step 5: Fog servers receive and store local models, execute the FedGA aggregation algorithm using subdatasets from the connected edge collaborators, and perform the inner-update of the MAML [START_REF] Finn | Model-agnostic meta-learning for fast adaptation of deep networks[END_REF], a meta-learning algorithm, allowing for efficient combination of local models and adaptation of the global model. • Step 6: Fog servers calculate the loss associated with their updated models and share this metric with the cloud server, which uses this information to refine the global model and assess the framework's performance. • Step 7: The cloud server executes the outer-update of the MAML algorithm [START_REF] Finn | Model-agnostic meta-learning for fast adaptation of deep networks[END_REF], enabling the model to learn from a variety of tasks, with each reflecting the distinct data distribution associated with a separate fog layer in the hierarchical architecture. This approach effectively leverages the collective knowledge available across multiple fog layers. In the following, we detail FedGA-Meta steps including the formalization of ICPS, the learning phase, and the aggregation process.

A. Industrial CPS Formalism

FedGA-Meta considers a system S = ⟨E, D, N , T , CT ⟩ as a composition of a set of entities E that manipulate a specific data D. They interact and interleave through a network of physical and logical channels (N) to accomplish a precise task (T) in a given context CT .

1) Modeling the entities: An entity ε ∈ E can be an IIoT, an edge node, a fog node, or a cloud server that executes specific actions or collaborates with other entities to perform global tasks. To evaluate the guard related to an action, the entity ε run its associated machine learning model n ∈ N m that evaluates the variables of the specified guard. To enhance the decision-making of an entity ε, FedGA-ICPS develops techniques to help entities update periodically their associated ns. ε is the main entities describing ICPS, and it is defined by ⟨id, type, attr, Actuator, Σ, Beh⟩, where:

• id is a finite set of tags id 1 , . . . , id i , . . . ∈ id identifying the entities. • type : id → {i, e, f, c} returns the type of the entity; that can industrial IoT (i), edge (e), fog (f), or cloud (c). • attr : id → 2 T returns the attributes of an entity, such that T = {p, l} where p and l stand respectively for physical characteristics (memory, processing power, battery, etc) and a logic expression that specifies the performance of an entity. • Actuator specifies the status of an entity by evaluating its attributes, • Σ : id → 2 A is a partial function that returns a finite subset of atomic actions. It depends on the type of entity ε i to be executed by the latter, and initially, A = {Start, Send, Receive, Update, Predict, Train, Aggregate, Terminate},

• Beh : id × Σ → L returns the behavior of an entity written in the language L, and the syntax of L is given by: B :: 3) Modeling the Network: The network N defines how the entities are connected and communicate. An entity ε i can be connected to another one through a physical or logical channel for communication or to a subsystem. We define a network N as a graph where vertices are the entities and the edges are the way that they interact and connected N = ⟨E, Chan, Prot, Rel⟩, where:

= α | B •B | B + g B,
• Chan is a finite set of channels, Prot is a finite set of protocols where ϵ Prot is the empty protocol, and • Rel : E × E → Chan × Prot relies two entities with a channel and a protocol. When Prot is assigned, it means both nodes are physically connected. 4) Modeling the Tasks: The task T is the main goal of the system. It describes the sequence of actions that should be realized by each entity. We define a task by a tree where the root represents the main goal of the system S, the children are sub-goals of the entities, and leafs are the final product for each entity. The task T is the tuple ⟨G, ⪯⟩, where:

• G is a finite set of goals where g ∈ G is the root (the main goal), • (G, ⪯) is a preorder relation on G. 5) Context: It can be seen as a container of entities that can change dynamically, by integrating or excluding entities, changing protocols, and updating tasks, but they should follow certain rules and policies PL. A context CT is the tuple ⟨E ′ ⊆ E, T ′ ⊆ T , PL⟩. In FedGA-ICPS, a policy is expressed as a temporal logic formula.

B. Learning

Initially, an entity ε (id=i∧type=e) provides its neural network model n i and private dataset d i . The goal of this process is to solve a DL problem locally (e.g. classification) by training n i with d i and getting by the end the evaluation metrics that need to be optimized. For example, using cross-entropy as the loss metric of a classification problem needs to be minimized as much as possible by applying an optimization algorithm, such as a stochastic gradient descent algorithm. The edge node ε (id=i∧type=e) can fine-tune a neural network model n j from ε (id=j∧type=f) after the aggregation step. Algorithm 1 run locally on ε (id=i∧type=e) to fine-tune its initial model. w i ▷ layers' weights of n i . end for 14: end for 15: End Function EdgeUpdate

Algorithm 1 Local Update

C. Aggregation

In order to preserve the personalization of private data and neural network models as well as reduce the communication overhead between cloud and edge entities, FedGA-Meta divides the aggregation process into two levels, fog-based aggregation and cloud-based aggregation. The details of these are mentioned as follows:

1) Fog-based Aggregation: A fog entity ε (id=j∧type=f) groups a set of edge entities ε (type=e) ∈ E that have the same feature spaces and share the same neural network architecture. Further, it provides a secure dataset d j , that comprises a variety of distinct subdatasets derived from the connected edge collaborators, and a partial model n j . When the aggregation process is started, each ε type=f initializes n j and broadcasts it to ε (type=e) ∈ E. These latter train and update (Section III-B) their neural network models and share them with ε type=f for partial aggregation by applying FedGA [START_REF] Guendouzi | Enhancing the aggregation of the federated learning for the industrial cyber physical systems[END_REF]. The output is then a new n j , presented by:

n j = GA(n j , d j , W) where W = ∪ E i=1 w i (1)
As a result, each ε type=f ∈ E will have a distinct n j architecture. More precisely, each architecture has different personalized layers (e.g. feature extractors layers in CNN case) but it shares the same decision-making architecture (e.g. classification layers in CNN case). Afterward, n j will be trained using the inner-update of MAML [START_REF] Finn | Model-agnostic meta-learning for fast adaptation of deep networks[END_REF] algorithm.

Algorithm 2 FedGA-Meta Aggregation Step1

Q = {(x ′ k , y ′ k)} |d Q | k=1 .
Therefore, n i is trained using d S in order to get a new weight's vector w j . The inner-update of n j is given by 2 as follows.

w j = w j -α∆ wj L πj S (n wj) (2)
After that, w j is split into wj, base and wj, per, which represent respectively the weights of base and the personalized layers related ti n j . In addition, ε type=f ∧id=j evaluates n j with d Q and calculates the loss functions by freezing the personalized layers. Finally, the losses (the evaluations of the loss functions) L πj Q (n wj) will be shared with the aggregator for the second step of MAML as presented in Algorithm 2.

2) Cloud-based Aggregation: The cloud entity ε type=c receives L πj Q (n wj) from each ε type=f and applies the outerupdate of MAML algorithm to get the global model n ϵ by applying Eq. 3.

w ϵ = w ϵ - γ J ∆ wϵ |J| j=1 L πj Q (n wj), where J = ∪ ε type=f (3)
At the end of this step, ε type=c broadcasts w ϵ to all ε type=f ∈ E for another FL round, until achieving the final round. Algorithm 3 stepwise the phase of cloud-based aggregation.

IV. Experiments

In this section, we evaluate the effectiveness and efficiency of FedGA-Meta on different federated real datasets and models. Compared to the traditional FL approaches, we show that FedGA-Meta can provide faster convergence, higher accuracy, and also reduce the system overhead.

A. Experimental setup

FedGA-Meta has been implemented using PyTorch ML framework [START_REF] Paszke | Pytorch: An imperative style, highperformance deep learning library[END_REF] with other neural network libraries, such as PyGAD [START_REF] Gad | Pygad: An intuitive genetic algorithm python library[END_REF] that helps to train neural network models using genetic algorithms. We use digit recognition as a real use case of our experiments, which is an image classification problem. Therefore, we selected MNIST [START_REF] Deng | The mnist database of handwritten digit images for machine learning research[END_REF], USPS [START_REF] Hull | A database for handwritten text recognition research[END_REF], SVHN [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF], MNISTM [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF], and EMNIST [START_REF] Cohen | Emnist: Extending mnist to handwritten letters[END_REF] as benchmark datasets.

Our system consists of five ε type=f (5 fogs), where each groups four ε type=e (20 edges in total). We assign for each fog entity a different dataset (MNIST, SVHN, MNISTM or EMNIST) that is distributed unequally over its edge entities. Further, FedGA-Meta generates five heterogeneous CNN models that share the same decision-making out layers. To make it heterogeneous, it assigns a model to each fog entity. Then, the models are trained using mini-batches SGD, ReLU activation functions, and dropout functions to deal with overfitting. Also, they consist of two fully connected layers as base layers. We compare FedGA-Meta with FedPer and FedGA-ICPS frameworks, and also without considering FL paradigm (NoFL).

B. Experimental results

In order to assess the impact of the computing capacity on FedGA-Meta entities, we evaluate the average accuracy of their models by reducing the number of training epochs. We set three experiments: the number of local epochs equals to 1, 5, and 20. For each experiment, we ran the four algorithms for 20 FL communication rounds. As it is shown in Figure for each fog entity j ∈ J do

12:

G ← G j.F ogAggregation(w ϵ) ▷ Get losses from each ε type=f ∈ E By taking into account the restricted processing power of edge entities, we set the default number of local epochs to only 1 for all experiments. Also, the number of FL communication rounds is fixed at 20. Table I summarizes the setup of our experiments and shows the final accuracy of each edge entity's local model. The results confirm that without implementing FL, the convergence will never be completed. In this case, implementing FedGA-ICPS or FedPer because of the domain shift problem for some of the local models. That is why proposing FedGA-Meta can tackle this limitation using MAML algorithm and gives higher accuracy.

V. Conclusion

In this work, we studied some of the existed FL aggregation methods. Also, we have given a first step toward a comprehensive methodology for enhancing performance analysis in order to create a more robust ICPS. We have designed and implemented a framework, called FedGA-Meta, based on FL dedicated to ICPS, focusing on the aggregation method that it is implemented with genetic algorithms, meta-learning and domain adaptation based approaches. The developed FedGA-Meta framework describes a system as a collection of things, each of which has its own structure and behavior for carrying out a certain purpose. To expedite the analysis and learning processes, in the experiment part, we demonstrated the efficacy of the suggested framework using renowned benchmarks with different scenarios. As a future work, we intend to expand the framework in many directions, mainly:

1) Incorporating additional ML techniques and selecting automatically the best agent for the aggregation process. This objective can be achieved and tested first by applying reinforcement learning. 2) The case when a model is weak and no pre-trained model already exists, a new mechanism to handle this issue could be considered by relying on data fusion, mimicking different nodes, and generating data using stochastic models. 3) Covering more ICPS architecture by decentralizing the system using blockchain schemes. 4) Evaluating the framework on more complex use cases and benchmarks.

Fig. 1 .

 1 Fig. 1. An overview of FedGA-Meta Framework .

 where α ∈ Σ. The operator " • " composes sequentially the actions and + g is , by the functionality Predict . When g ∆ =⊤ the guarded decision become a non-deterministic choice. 2) Modeling the data: The data D describes the different data manipulated by the entities, exchanged and shared between them or broadcasted in the network. It is defined by a tuple ⟨E, D s , att Ds , N m , att Nm , M ea, Ass⟩, where: • D s is a finite set of dynamic datasets (with element d 1 , . . . , d i , . . . , d |Ds|), where d p = {(x k , y k)} |dp| k=1 is a public dataset shared between entities, and x k and y k are k-th sample and label respectively in d p . • att Ds : D s → 2 {type,domain,size,distribution,F } returns the characteristics of a dataset d ∈ D s , where they represent data type (e.g. images), domain of application (e.g. aeronautical equipment maintenance), dataset size, samples distribution (e.g. number of samples per class) and features representation of the dataset respectively. • N m is a finite set of neural network models (with element n 1 , . . . , n i , . . . ,n |Nm| .), where n ϵ is the global model of the ICPS. • att Nm : N m → 2 {type,task,w} returns the structure of a neural network model n, where type, task, and w represent its architecture (e.g. convolutional neural network), its output (e.g. object detection) and weights vectors respectively (e.g. n ϵ is represented by the weights parameters w ϵ). Ass: E×2 F × T → D s × N m returns the architecture of a neural network n and its associated local dataset d. • M ea : D s × N m → 2 {accuracy,loss,F 1-score} returns the evaluation measures of a neural network model n ∈ N m trained by a dataset d ∈ D s .

9 :

 9 β ← (Split d i into mini-batches of size B) 10: for each local epoch i from 1 to E do 11: for batch b ∈ β do 12: w i ← w i -η∆ wi L(n wi , b) ▷ Local learning.13:

 wj) Loss 7: W = ϕ ▷ Initialize an empty population of weight's vectors 8: for each edge entity e ∈ E do 9: W ← W e.ClientU pdate(w ϵ) ▷ Get local layer's weights from each ε type=f ∈ E and update the population 10: end for 11: w j = GA(n j , d j , W) ▷ Execute GA to get new weights 12: w j = w j -α∆ wj L πj S (n wj) ▷ Execute inner-update of MAML 13: return L πj Q (n wj) 14: End Function FogAggregation Each ε (id=j∧type=f) provides a meta-learning task π j , where d j is split into support set d S = {(x k , y k)} |d S | k=1 and a query set d

Algorithm 3 FedGA-Meta Aggregation Step1 1 :of n ϵ 9 :

 319 Function GlobalAggregation ▷ Run on cloud entity ε (id=i∧type=c) G = ϕ ▷ Initialize an empty set of losses 10: for each FL round k from 1 to F do 11:

Fig. 2 .

 2 Fig. 2. The Performance of FL strategies on MNIST, USPS, SVHN, MNISTM, and EMNIST datasets for different local epochs E.

 FedGA-Meta provides good results compared to other approaches. When the local epoch is equal to 1, FedGA-Meta achieved an average accuracy of 88.28% compared with NoFL, FedGA, and FedPer that achieved an average accuracy of 55.09%, 82.45% and 84.76% respectively. We conclude that FedGA-Meta does not require entities possessing high computing capacity to participate in the FL process. So, we have only to increase the number of FL communication rounds to get the higher accuracy for all entities models E.

				2,
	13:	end for		
	14:	w ϵ ← w ϵ -γ J	g∈G g	▷ Outer-update of MAML

 The accuracies of Final models at each edge entity.

	Fog	Edge	NoFL	FedPer	FedGA FedGA_Meta
		ε 1	49.46 %	86.19 %	87.07 %	93.68 %
	ε type=f	ε 2 ε 3	47.54 % 3.22 %	87.94 % 90.23 %	92.20 % 90.38 %	97.38 % 98.33%
		ε 4	46.39 %	91.57%	93.54%	94.04%
		ε 5	79.59 %	88.37 %	89.30 %	97.69 %
	ε type=f	ε 6 ε 7	95.49 % 85.75 %	83.65 % 94.60 %	79.93% 85.66 %	99.35 % 99.68 %
		ε 8	66.77 %	95.42 %	97.05 %	98.37 %
		ε 9	67.31 %	95.26 %	95.20 %	95.65%
	ε type=f	ε 10 ε 11	76.53 % 74.10 %	96.06 % 97.27 %	96.35 % 96.58 %	96.90 % 97.52 %
		ε 12	57.79 %	93.94 %	93.27 %	91.67%
		ε 13	49.46 %	58.43 %	50.68 %	79.89 %
	ε type=f	ε 14 ε 15	30.14 % 0.252 %	58.17 % 72.10 %	50.26 % 69.83 %	78.23% 80.02%
		ε 16	46.74 %	66.06 %	57.38 %	81.56 %
		ε 17	17.92%	84.03 %	74.70 %	95.21 %
	ε type=f	ε 18 ε 19	11.50 % 54.13 %	74.42 % 90.00 %	69.02 % 76.97 %	94.82 % 99.90 %
		ε 20	0.31 %	90.14 %	88.45 %	92.21%
				TABLE I