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Abstract. Much of Convolutional neural networks (CNNs)’s profound
success lies in translation invariance. The other part lies in the almost
infinite ways of arranging the layers of the neural network to make deci-
sions in particular in computer vision problems, taking into account the
whole image. This work proposes an alternative way to extend the pool-
ing function, we named rank-order pooling, capable of extracting texture
descriptors from images. Efforts to improve pooling layers or replace-add
their functionality to other CNN layers is still an active area of research
despite already a quite long history of architecture. Rank-order cluster-
ing is non-parametric, independent of geometric layout or image region
sizes, and can therefore better tolerate rotations. Many related metrics
are available for rank aggregation. In this article we present the prop-
erties of some of these metrics, their concordance indices and how they
contribute to the efficiency of this new pooling operator.

Keywords: Deep CNN, pooling function, rank aggregation, LBP, opti-
mization, linear programming, rank-order, contour extraction, segmen-
tation.

1 Introduction

A deep CNN stacks four different processing layers: convolution, pooling, ReLU
and fully-connected [5]. CNNs architecture is augmented by multi-resolution
(pyramidal) structures which come from the idea that the network needs to see
different levels of resolutions to produce good results.

Placed between two convolutional layers, the pooling layer receives several
input feature maps. Pooling [4] (a) reduces the number of parameters in the
model (subsampling) and computations in the network while preserving their
important characteristics (b) improves the efficiency of the network (c) pre-
vents overtraining. Even though pooling layers do not have parameters, they
affect the backpropagation (derivatives) calculation. Back-propagating through
the max-pooling layer simply selects the maximum neuron from the previous
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layer (on which the max-pooling was performed) and continues backpropaga-
tion only through it. The max function is locally linear for the activation that
obtained the max, so its derivative is 1, and 0 for the activation which did not
succeed. This is conceptually very similar to the differentiatiin of the activation
function ReLU(x) = max(0, x) .

Suppose a layer Hℓ comes on top of a layer Hℓ−1. Then the activation of the
ith neuron of the layer Hℓ is

Hℓi = f(
∑
j

wijH(ℓ−1)i), (1)

where f is the activation function and W = {wij} are the weights. The derivation
of Eq. (1) by the chain-rule gives the gradient flows as follows

grad(H(ℓ−1)i) =
∑
i

grad(Hℓi)f
′wij . (2)

In the case of max-pooling, f =id for the max neuron and f = 0 for all other
neurons, so f ′ = 1 for the max neuron of the previous layer and f ′ = 0 for all
other neurons. Back-propagating through the max-pooling layer simply selects
the max neuron from the previous layer (on which the max-pooling was done)
and continues back-propagation only through that.

The max-pooling function downsamples the input representation (image, hid-
den layer output matrix, etc.) making it less sensitive to re-cropping, rotation,
shifting, and other minor changes.

Weaknesses of pooling functions are well identified [21]: (a) they don’t pre-
serve all spatial information (b) the maximum chosen by the max-pooling in the
pixel grid is not the true maximum (c) average pooling assumes a single mode
with a single centroïd. How optimally take into account the characteristics of
the input image grouped in the pooling operation ? Part of the answer lies in the
work of Lazebnik’s who demonstrated the importance of the spatial structure of
close neighborhoods [8]: indeed, local spatial variations of image pixel intensities
(also called textures) characterize an “organized area phenomenon" [11] which
cannot be captured in pooling layers.

This paper proposes a new pooling operation, independent of the geometric
arrangement or sizes of image regions, and can therefore better tolerate rotations
[1].

Notations Throughout this paper small Latin letters a, b, . . . represent integers.
Small bold letters a,b are put for vectors and capital letters A,B for matrices or
tensor depending of the context. The dot product between two vectors is denoted
< a,b >. We denote by ∥a∥ =

√
< a,a >, the ℓ2 norm of a vector. X1, . . . , Xn are

non ordered variates, x1, . . . , xn non ordered observations. "Ordered statistics"
means either p(1) ≤ . . . ≤ p(n) (ordered variates) and p(1) ≤ . . . ≤ p(n) (ordered
observations). The extreme order statistics are p(1) = min{x1, x2 . . . , xn}, p(n) =
max{x1, x2, . . . , xn}. The sample range is p(n) − p(1). The p(i) are necessarily
dependent because of the inequality relations among them.
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Definition 1 (Savage [12]). The rank order corresponding to the n distinct
numbers x1, . . . , xn is the vector r = (r1, . . . , rn)

T where ri is the number of
xj’s≤ xi and i ̸= j.

The rank order r is always unambiguously defined as a permutation of the first
n integers.

2 Texture encoding

Local image descriptors are compact and rich descriptions capable of encoding
local patterns e.g. local binary patterns (LBP) and its variants [2]. Since im-
agery data is noisy, locally correlated, and usually with too many data points
per "unit" of useful information, these intermediate representations lead to an
understanding of the scene in an image without the noisy and devoid influence
sense of very many pixels that carry little inferable information. These repre-
sentations typically encode either structural (texture) information in the form
of a set of repeated primitive textons, or statistical information indicating how
different pixel intensities are arranged in a local neighborhood.

The amount of information extracted from different regions of an image de-
pends on (a) the size of the neighborhood (b) the reading order of the neighbors
(c) and the mathematical function that is used to extract the relationship be-
tween two neighboring pixels. Texture gives information on the spatial arrange-
ment of the grey levels in an image.

For instance, given a monochromatic image I, LBP generates 8-bit string for
a 3× 3 neighborhood by computing the Heaviside function t(x) of the difference
of neighboring pixel {gi|i = 0, . . . , p−1} and the central pixel gc i.e. (gi−gc) (see
Fig. 1), but (gc − gi) in case of Census transform. The only difference between
these two descriptors is the reading order of neighboring pixels and the sign of
the difference which results in 2 different bit patterns. Given the 8-bit string,
the LBP code is calculated in the range of 0 to 255 as:

Lp,r =

p−1∑
i=0

2p · t(gi − gc)with t(x) =

{
1 if x ≥ 0

0 otherwise
, (3)

where p counts the number of pixels in the neighborhood of gc, considering the
distance R between central pixel gc and the neighboring pixel gi.

example
121 201 200
190 100 164
78 77 65

→

thresholded
1 1 1
1 1
0 0 0

→

LBP weights
1 2 4

128 8
64 32 16

Pattern (10001111)2
LBP 128+8+4+2+1 = 143

Fig. 1: Example of 3×3 image neighborhood (p = 8 and R = 1).

Invariance w.r.t. any monotone transformation of the gray scale is obtained
by considering in (3) the signs of the differences t(gi − gc), i = 0, . . . , P − 1.
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But the independence of gc and {|g0 − gc|, . . . , |gP−1 − gc|} is not warranted in
practice. Moreover, under certain circumstances, LBP misses the local structure
as it does not consider the central pixel. The binary data produced by these
descriptors are sensitive to noise mainly in uniform regions of an image.To reduce
the noise sensitivity [15] have proposed a 3-level operator which describes a pixel
relationship with its neighbor by a ternary code i.e. -1,0,1 rather than a binary
code i.e. 0,1. These methods ignore the relationship between neighboring pixels
themselves and fail to get robust results [10]. It is inspired by the traditional
image feature extraction method HOG [19] which extracts the relative orders on
small local areas.

In this paper, a new encoding function is used to decide the relative order
between the pixels in each local area of a given pixel. This cost function is min-
imized by linear programming and generates rank orders (including ex-aequos
positions) which could be used in contour detection, segmentation or adaptive
image quantization.

3 Total rank order for image texture encoding

Let A = {a1, a2, . . . , an} be a set of alternatives, candidates, individuals, etc.
with cardinality |A| = n and let V be a set of voters, judges, criteria, etc. with
|V | = m. The data is collected in a (n×m) table T of general term {tij} crossing
the sets A and V (Tab. 1a). tij can be marks (tij ∈ N), value scales (tij ∈ R),
ranks of notes or binary (tij ∈ {0, 1} such as opinion yes/no).

In the following, m is the number of alternatives and m the number of voters.

T =

v(1) v(2) . . . v(k) . . . v(m)

a1

a2
...

...
ai . . . tij
...

an

(a) Data matrix T (tij ≥ 0).

→ Y (k) =

a1 a2 . . . aj . . . an
a1 0

a2 0
...

...
ai . . . y

(k)
ij

...
an 0

(b) kth pairwise comparison
matrix between alternatives ai
and aj .

Table 1: The data are collected in a (n×m) table T .

The objective is to find a distribution of values x∗ attributed by a virtual
judge to the n individuals of the studied population by minimizing the disagree-
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ments of opinions of the m judges, i.e.

x∗ = argmin
t

m∑
k=1

d(t, t(k)), s.t. x ≥ 0, (4)

d(t, t(k)) being a metric measuring the proximity between t and t(k), chosen a
priori, and t(k) is the kth column of the table T . Depending on the nature of d,
we will see that we will be dealing with a nonlinear optimization program with
an explicit or implicit solution.

One could also stand the dual problem of the previous one, i.e. : is there a
distribution of ratings/values that could have been attributed by the m voters
to a virtual alternative ’a’ summarizing the behaviour of the set of individuals
A [20]? The first problem is linked to the idea of aggregating of points of view,
the second to the idea of summarizing behaviors.

3.1 Explicit resolution

The distance d(t(k), t(k
′)) between the voter k and the voter k′ can be chosen for

instance as the disagreement distance
∑n

i=1 sgn |tik − tik′ | where sgn(a) = a/|a|,
the holder distance (

∑n
i=1 |tik − tik′ |m)1/m,m > 1, the d∞ distance defined as

maxi |tik − tik′ | which is also the limit of the Holder distance when m → ∞, la
distance du χ2, etc.

Surprisingly, the explicit resolution with linear programming optimization
explicitly leads to central tendency statistics, e.g. the mode for the disagree-
ment distance, the median for the absolute deviations, the mean for the Holder
distance (m = 2), etc. [3].

Let’s take an example. Assume the tik represent the scores obtained by a
neurologist i in m services: emergency, surgery, palliative care, rehabilitation, etc.
and suppose that n neurologists are candidates for a position in a neurovascular
unit (NVU). What can be the hiring technique of the chief of the NVU? If he
is careful and wants his staff to be interchangeable throughout the year, he can
take either of these "medium" measures. If he wants to be efficient, and accepts
that the neurologist is not interchangeable, he will take the disagreement metric,
and choose the neurologist whose mode is the strongest. If the chief of the NVU
wants to satisfy neurologists with the breadth of their capabilities, he will use
the d∞ metric.

In this example it is asked in fine to compare different individuals using a
common scale.

On the opposite, ranked variables are (a) easily collated (b) easily categorized
(c) easy to analyze (d) they have an intuitive and plausible interpretation (e) they
provide the best possible description of the process of ranking items as performed
by a human (f) provide very good concordance indicator.

We still have n voters, and m alternatives but in this case, the m voters give
a ranking of the candidates with or without ex-aequo in the form of the table
T or tik = rik (rank given by voter k to individual i). Each ranking V k is a
permutation P of the first n integers identifying the candidates in case of strict
preference.
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3.2 Order disagreement distance

When looking for the optimal consensus r∗ of m voters who attributed the votes
r(1), r(2), . . . , r(m) to the n candidates {a1, a2, . . . , an}, we minimize the absolute
deviation distance

m∑
k=1

n∑
i=1

|r∗i − rik|. (5)

where, for ease of writing, rik = r
(k)
i . A voter can give ex-aequo positions. Note

that r(k) ̸∈ Sn, with Sn the symmetric group of the n! permutations [6] because
of the ex-aequo. Hence r∗ ̸∈ Sn.

To define this distance, we define a new set of tables {Y (1), . . . , Y (m)}, where
Y

(k)
ij = 1i<j denotes the indicator matrix for which y

(k)
ij = 1 if the rank of the

alternative ai is less than the alternative aj and 0 otherwise (see Tab. 1b).
Using the tables Y (k)

m∑
k=1

n∑
i=1

|r∗i − rik| =
1

2

∑
i

∑
j

|y(k)ij − y
(k′)
ij | (6)

or 1
2

∑
i

∑
j(y

(k)
ik − y

(k′)
ik )2. which can be simplified in the case of total order as∑

i

∑
j

y
(k)
ij y

(k′)
ji . (7)

The y
(k)
ij verify (a) the transitivity relationship : if y(k)ij = 1 and y

(k)
jℓ = 1 then

y
(k)
iℓ = 1, equivalent to yij+yji−yik ≤ 1, i ̸= j ̸= k, yij ∈ {0, 1} (b) yij+yji ≤ 1,

with equality only when r(k) is a total order.
As y2ij = yij = y

(k)
ij

2
= y

(k)
ij = 0 or 1, the distance function associated to Eq.

(6) is given by

1

2

 n∑
i=1

n∑
j=1

myij +

n∑
i=1

n∑
j=1

(
m∑

k=1

yij

)
− 2

n∑
i=1

n∑
j=1

yij

m∑
k=1

y
(k)
ij

 . (8)

Let αij =
∑p

k=1 y
(k)
ij the total number of voters preferring alternative ai to

aj and define a matrix A = {αij}, summing the m matrices Y (k) associated to
the rankings r(k) of the voters V (k). Eq. (8) can be rewritten using the αij :

1

2

 n∑
i=1

n∑
j=1

myij +

n∑
i=1

n∑
j=1

αij − 2

n∑
i=1

n∑
j=1

αijyij

 (9)

As
∑n

i=1

∑n
j=1 αij <

n(n− 1)

2
, and let K =

∑n
i=1

∑n
j=1 αij a constant. Then

(9) is:

K −
n∑

i=1

n∑
j=1

(αij −m/2)yij . (10)
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Finally the search of a order given by a matrix Y is the optimal solution of the
following linear program

max
Y

n∑
i=1

n∑
j=1

(αij −m/2)yij s.t. αij =

m∑
k=1

y
(k)
ij ,

yij + yji = 1, i < j, yii = 0

yij + yji − yik ≤ 1, i ̸= j ̸= k, yij ∈ {0, 1}. (11)

From a machine learning perspective, Eq. (11) is remarkably simple and provide
an exact solution using a linear programming solver [7].

4 Rank-Order Principal Components

4.1 Importance ranking

Several strategies have been proposed in the literature to extract important
variables or develop parsimonious models and deal with the dimensionality. The
dimension of observed data being generally higher than their intrinsic dimension,
it is theoretically possible to reduce the dimension without loosing information.

Among the unsupervised tools, principal component analysis (PCA) or factor
analysis (FA) are certainly the most used techniques to optimize the understand-
ing insight into of a data set. They aim to project the data onto a lower dimen-
sional subspace in which axes are constructed either by maximizing the variance
of the projected data or by explaining the overall covariance structure.

PCA and FA are both linear tools. This means that nonlinear dependencies
are not taken into account.

The question is simply: can we extract a set of the most decorrelated rank-
order variables to each other capable of capturing distinct information? The
overall framework for this objective suggests a rank-order decomposition. The
principle remains remarkably simple: it consists into a re-distributive effect of
the rank variables – similar to PCA – on a Hilbert space.

Lemma 1 (Vigneron and Duarte [16]). Consider a collection of rank-orders
(with ex-aequo or not) R = {r1, r2, . . . , rm} (data). It is always possible to
extract a total rank-order component gℓ minimizing its proximity to the data
{r1, r2, . . . , rm} and simultaneously maximizing the distance to the collection of
previously calculated ranks {g1, . . . , gℓ−1}.

The algorithm is as follows:
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Algorithm 1 Rank-order decomposition Algorithm.
Require: Y (1), . . . , Y (m) ← {r1, r2, . . . , rm} {order disagreement matrices Y (k) =

{y(k)
ij }}∨ stack A = ∅ {contain the reranked components}

Ensure: {g1, . . . , gm} {Postcondition}
1: for ℓ = 1 to m do
2: Compute αij =

∑m
k=1 y

(k)
ij , βij =

∑ℓ−1
k=1 z

(k)
ij

3: A = {αij},B = {βij}
4: LP(A,B, Z(ℓ)) under constraints (12) {solve linear program}
5: gℓ ← Z(ℓ)

6: end for
7: return {g1, g2, . . . , gm}

At stage ℓ, the search of the ℓth total order gℓ represented by the matrix Z(ℓ)

in the case of the order disagreement distance (see section 3.2) reduced to

max
Z(ℓ)

n∑
i=1

n∑
j=1

(αij −m/2)z
(ℓ)
ij −max

Z(ℓ)

n∑
i=1

n∑
j=1

βijz
(ℓ)
ij s.t.

αij =

m∑
k=1

y
(k)
ij , βij =

ℓ−1∑
k=1

z
(k)
ij , z

(ℓ)
ij + z

(ℓ)
ji = 1, i < j,

zii = 0 z
(ℓ)
ij + z

(ℓ)
ji − z

(ℓ)
ik ≤ 1, i ̸= j ̸= k, z

(ℓ)
ij ∈ {0, 1}.

(12)

Algorithm 1 stops when ℓ = m and provide {g1, . . . , gm} such that gℓ is the
most decorrelated to the previous ranks {g1, . . . , gℓ−1}. Until now, on the con-
trary to PCA, there is no index capable of indicating the quantity of information
captured by each vector gℓ.

4.2 Experiment: Application of rank-order pooling (RO) principal
components to textured image

Now consider the "neighborhood" of a pixel ’p’ in an image I, i.e. the set of
pixels touching it (a maximum of 8 pixels) as shown in Fig. 1.

The 4× 4 image I in Figure 2a can be transformed using the 8-connectivity
into the 4×8 matrix C (Fig. 2b) where column 0 refers to the 1st pixel (clock-
wise), column 1 refers to the 2nd pixel, etc. The 8 neighboring pixels around ’p’
can be seen as "voters" from which a pseudo-rank is expected. The matrix C is
then transformed into the rank-matrix R = {r1, r2, . . . , r8} (Fig. 2c) by simple
ordering on which algorithm 1 can be applied. Note that usually the peripheral
zone is filled with zero, i.e. added with borders of zeros, to preserve the size of
the image.

As an illustration LBP is applied to original picture 3a of Lena which pro-
vides the texture representation given in Figure 3b. From the figure 3a,algorithm
1 provides a new set of images (Figures 3c-3f). Usually, the 1st plot is more infor-
mative the 2nd one, which itself is more informative than the 3rd, etc. Vigneron
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1 2 3 4
1 4 8 20 18
2 17 12 17 17
3 6 1 17 17
4 4 6 5 14

(a) 4× 4 image I.

neighbors
0 1 2 3 4 5 6 7

ce
nt

er
pi

x. 12 4 8 20 17 17 1 6 17
17 8 20 18 17 17 17 1 6
1 17 12 17 17 5 6 4 6
17 12 17 17 17 14 5 6 1

(b) 8-connectivity matrix C.

ranks
r0 r1 r2 r3 r4 r5 r6 r7

ce
nt

er
pi

x. 12 1 1 3 1 3 1 3 3
17 2 4 2 1 3 4 1 2
1 4 2 1 1 1 3 2 2
17 3 3 1 1 2 2 3 1

(c) Rank matrix R.

Fig. 2: The colored pixels are 8-connected. The 8 neighbor pixels around the central
pixel ’p’ can be seen as "voters" from which we expect a pseudo-rank.

(a) Original (b) Classic LBP (c) RO comp. 1

(d) RO comp. 2 (e) RO comp. 3 (f) RO comp. 8

Fig. 3: Lena’ original (a) is compared to classic LBP representation (b) and with the
1st, 2nd, 3rd and eighth rank-order components obtained from Algorithm 1. The eighth
component is apparently the less informative component.

and Duarte have shown [17] that this decomposition is sensitive to the chosen
metric.
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5 Rank-order pooling operator

5.1 Pooling layer

Pooling perform a derivative operation of the entries in the window (e.g. max,
mean, median, etc.) to "collapse" over values. Max-pooling down-samples the
convolutional output in a discrete way. The method of calculating the 2d- pooling
layer is the same as for the convolutional layer and produces a image of size :(⌊

Ix − P

S

⌋
+ 1,

⌊
Iy − P

S

⌋
+ 1

)
(13)

with two hyperparameters: the stride S and the spatial extent P . For instance,
for a 13×13 image, 2×2 pooling window and a stride of 2, the x-dimension of
the resulting image is floor((13-2)/2)+1 = 6. It is not common to pad the input
using zero-padding for the pooling.

The rules presented in section 1 apply to all types of pooling layers with some
adjustments. Forward propagation for max pooling means creating a mask that
stores the position of the retained maximum values through which the gradients
are transferred.

Instead of taking the maxima in each filter, the rank-order pooling approach
takes the consensus rank in a neighborhood. Interestingly, the most common
tested configurations of RO in practice are: P = 3, S = 2 and P = 3, S = 3.
Pooling sizes with larger receptive fields result in too much loss and are destruc-
tive. It should also be noted that as max-pooling, the RO pooling introduces
zero parameters since it computes a fixed function of the input.

Different pooling operations were performed in a categorization context to
compare the behavior of different pooling operations in a categorization context.

5.2 Experiment: RO pooling for automatic tumor segmentation

For the second experiment we chose a real data set which is renowned for its
difficulty. The brain tumor segmentation (BraTS) [9] challenge is a recurring
challenge attached to the MICCAI Conference. Each year the segmentation re-
sults become better, but the problem is an ongoing research. For this experi-
ment we use the high grade glioma part of the BraTS 2017 data-set1. It contains
multi-modal MRI of 210 patients which were manually segmented my experts,
i.e. a ground truth is available. On these image three different classes have to be
segmented from the background. The enhancing tumor, the necrotic and non-
enhancing tumor and as a third class the peritumoral edema. This makes it an
ideal real data-set for supervised learning of a multi-class segmentation task.

Architectures We compare architectures containing the RO pooling to model
without [18]. The U-Net was chosen because it is the archetype of modern con-
volutional networks used for bio-medical image segmentation tasks and achieved
1 www.med.upenn.edu/sbia/brats2017.html
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good performance in many applications. To prove that the tasks are not too
simple and that the RO layer is responsible for the improved results, a simple
reference network with max-pooling layers is included. For evaluating the results
we not only use the loss but also the Dice coefficient [14] which is the standard
measure for segmentation quality.

copy

maxpool 2x2
up-conv 2x2

conv 1x1

conv 3x3, ReLU

(a) U-Net. Arrows represent operations and cubes represent feature maps
where the height of the cube stands for the number of feature maps and the
width and depth of the cubes for the size of the feature maps. It is clearly
visible that the U-Net uses a pyramidal structure for feature extraction.

conv 1x1
conv 5x5, ELU

(b) Reference-Net.The most basic CNN. It suffers greatly from a small receptive field.
As expected our first experiment showed that it has trouble with objects that are larger
than the convolution kernels. This weakness can be overcome either by adding a single
transfer layer to the architecture (Transfer-Net), or by adding so many convolutional
layers that the chained convolution kernels extend the receptive field to the whole input
image (U-Net).

Fig. 4: DNN architectures.

All of the following network architectures are implemented in Pytorch 2 and
the implementations will be freely accessible. Convolution layers are chosen to
keep the output size the same as the input size by padding the input image with
zeros. Also all architectures are followed by a softmax layer. and cross entropy is

2 pytorch.org
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used as loss function. The loss is minimised using Adam [13]. The best learning
rate for each architecture has been determined experimentally.
U-Net: [18] (figure 4a) consists mainly of a feature extraction pyramid followed
by an expanding path which up-samples the features to the space of the original
image. A special feature of the U-Net are its skip connections which allow it
to preserve fine grained details. The U-Nets work with RO pooling layers with
hyperparameters 3,3 and 3,2 (F, S), see section 5.1.
Reference Net (R-Net):, see Fig. 4b which is used to demonstrate that it is
our pooling layer which is responsible for our results.
Training Data Sampling: We divided the data-set into 100 patients for learn-
ing , 4 for validation and left 106 aside as test set. As we just wanted to demon-
strate a concept we never used the test set in the end. Four different MRI modal-
ities (compare figure 5 a)-d)) are available, which means that the input image
has four channels. The images were normalized to the mean value of healthy
tissue, i.e. the intensity values were divided by the intensity value of the highest
peak in the histogram of brain tissues.

As the whole MRI is too large to process in one step it was broken down
into patches of size 64× 64× 10. Patches are generated until the whole brain is
sampled or a number of 100 patches is reached. This procedure is repeated for
each patient. The batches for the training are generated as follows: Each odd
sample of the batch is the guaranteed tumor patch of a random patient and
the following even sample is a random patch of the same patient. This sampling
scheme guarantees that each batch shows tumor as well as non tumor regions
and effectively combats class imbalance. We use a batch size of four patches
per batch, i.e. after 50 patches, the guaranteed tumor patch of all 100 training
patients have been seen. This may be considered an epoch. All patches are not
guaranteed to be seen during training.

We forego any advanced data augmentation. Only a small random constant
is added to the entire patch.

Table 2: Network configurations for the BraTS experiment and their final dice score
on the training and validation set. m ∈ N is the multiplicity, i.e. the number of input
channels.

Model U-Net Maxpool U-Net 3.3 U-Net 3.2 R-Net 3.2 R-Net maxPool

Kernel Size 3 3 5 5 5
Parameters 31032516 7698116 141929 19359 19359
Learning Rate 0.001 0.002 0.0005 0.002 0.002
m - - 10 10 -
Training Speed τ 10737 15032 13322 28761 48767
Training Dice 0.96 0.82 0.87 0.80 0.64
Validation Dice 0.89 0.51 0.77 0.51 0.49
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6 Results and conclusion

This real data-set is a way more difficult task than texture characterization.
Looking at the dice score (Tab. 2) shows a lower loss value does not necessarily
indicate a better segmentation performance. The networks based on the RO
pooling perform well. Of course we cannot expect to beat the U-Net 3.2 with
a network which has only 0.44% of the parameters. But the R-Net 3.2 comes
remarkably close in terms of performance and clearly beats the U-Net 3.3 which
still has 56 times more parameters. Even the R-Net 3.2 is close to the U-Net 4
on the validation set while having less than 20 thousand parameters compared
to more than 7 million of the U-Net 4.

Segmentations of one patch are given in figure 5. Here the quality of the
segmentation of the U-Net 3.2 and R-Net 3.2 is visible. They are very close to
the ground truth and the U-Net MaxPool segmentation while the U-Net 3.3
segmentation is clearly worse. This proves that theRO pooling works, and that
it delivers performance at a low parameter cost.

We challenged the concept for feature extraction which has been uncontested
for three decades, the feature extraction pyramid. In two experiments we showed
that our RO pooling can master the same tasks as a feature extraction in empha-
sizing low/high frequencies, contours, etc. We shows rank-order pooling leads to
CNN models which can optimally exploit information from their receptive field.
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a) b) c)

d) e) f)

g) h) i)

j)

Fig. 5: One patch out of the BraTs validation-set. The input image a)-d) consists of
the MRI modalities Flair a), T1 b), contrast enhanced T1 c) and T2 d). The ground
truth is seen in e). The following are the predictions of the five networks: U-Net 3.2 f),
U-Net 3.3 g), U-Net max-pooling h), R-net 3.2 i) and the R-Net max-pooling).


