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A possible approach to obtain set-valued predictions is to learn for each query instance a probability set (a.k.a. credal set) representing its associated uncertainty. Theoretically founded decision rules extending classical expectation and inducing a partial order between predictions can the be used to derive set-valued predictions. However, obtaining such a credal set by imprecisiating a given learning algorithm is usually computationally challenging, except for simple models such as decision trees or naive Bayes classifiers. In this paper, we propose a simple, easy to use quantile-based framework for estimating credal sets using output of ensemble methods, that can also cope with complex types of data, such as images and mixed/multimodal data, etc. Experiments are conducted to highlight the usefulness of the proposed framework.

Introduction

Classification algorithms are usually designed to produce, for each instance, a prediction in the form of a unique element of the set of possible outputs. Under the presence of uncertainty, which is often a consequence of model inadequacy and/or data imperfections (in terms of quality and/or quantity), the model can however be uncertain about its predictions and make unreliable precise predictions. In such a case, it might be more desirable to provide imprecise (or indeterminate) set-valued predictions which aims to balance correctness (the true output is an element of the set-valued prediction) and precision (the cardinality of the set-valued prediction) in some appropriate manner [START_REF] Del Coz | Learning nondeterministic classifiers[END_REF][START_REF] Mortier | Efficient set-valued prediction in multi-class classification[END_REF][START_REF] Troffaes | Decision making under uncertainty using imprecise probabilities[END_REF][START_REF] Zaffalon | Evaluating credal classifiers by utilitydiscounted predictive accuracy[END_REF].

Learning with a reject option is the simplest case of learning set-valued predictions, in which the classifier is allowed to either produce a singleton prediction or refuse to make a prediction for a given query instance. Threshold-based classifiers have been proposed for that purpose, in which a (global/local) threshold will be employed to decide whether a query instance should be rejected or predicted and then a conventional classifier is called only if the instance should be classified [START_REF] Bartlett | Classification with a reject option using a hinge loss[END_REF][START_REF] Chow | On optimum recognition error and reject tradeoff[END_REF][START_REF] Cortes | Learning with rejection[END_REF][START_REF] Franc | On discriminative learning of prediction uncertainty[END_REF][START_REF] Grandvalet | Support vector machines with a reject option[END_REF][START_REF] Hellman | The nearest neighbor classification rule with a reject option[END_REF]. Threshold-based classifiers have been developed for multi-class classification (MCC) [START_REF] Del Coz | Learning nondeterministic classifiers[END_REF][START_REF] Mortier | Efficient set-valued prediction in multi-class classification[END_REF], when the classifier is allowed to return top (locally/globally) ranked classes. While such classifiers are intuitive and easy to implement, they often require reliable estimates of the class probabilities to be performant, which is hard to ensure when information is lacking.

By considering more expressive uncertainty representations, imprecise probabilistic classifiers [START_REF] Corani | Learning reliable classifiers from small or incomplete data sets: The naive credal classifier 2[END_REF][START_REF] Cozman | Credal networks[END_REF][START_REF] Mantas | Credal-c4. 5: Decision tree based on imprecise probabilities to classify noisy data[END_REF][START_REF] Zaffalon | The naive credal classifier[END_REF] can provide, at least in theory, more reliable outputs. They are developed based on the assumption that uncertainty is described by a (not necessarily convex) set of probabilities, i.e., a credal set [START_REF] Levi | The enterprise of knowledge: An essay on knowledge, credal probability, and chance[END_REF], a description to which can then be applied theoretically justified decision rules [START_REF] Jansen | Quantifying degrees of e-admissibility in decision making with imprecise probabilities[END_REF][START_REF] Troffaes | Decision making under uncertainty using imprecise probabilities[END_REF] to produce set-valued predictions. Moving from a single distribution to a credal set is a natural way to model the lack of information, an aspect that unique probabilities can hardly capture. Unfortunately, imprecise probabilistic classifiers often suffer from the limited use to certain types of (tabular) data, as well as from the high computational cost that represent a credal extension of a given learning method. A solution might be to consider the credal set as a neighbourhood of the initial estimated distribution [START_REF] Montes | Unifying neighbourhood and distortion models: part i-new results on old models[END_REF][START_REF] Rahimian | Distributionally robust optimization: A review[END_REF], yet ensuring the quality of the initial estimated distribution is a challenge itself.

In this paper, we propose a quantile-based framework for estimating credal sets from the output of ensembles [START_REF] Dietterich | Ensemble methods in machine learning[END_REF]. We specifically seek a correctness-precision trade-off when constructing estimates of credal sets, i.e., the estimates are expected to be informative and at the same time not very large. This shall be done by defining "median" of set of distributions and use the "median" to filter out a proportion of "extreme" distributions before forming credal sets. Moreover, we only require the availability of an ensemble of probabilistic classifiers. Thus, the base learner (ensemble) can be freely chosen according to our needs. This flexibility of the proposed approach is remarkably different from existing imprecise probabilistic classifiers. Therefore, we hope to broaden the use of generalized decision rules [START_REF] Jansen | Quantifying degrees of e-admissibility in decision making with imprecise probabilities[END_REF][START_REF] Troffaes | Decision making under uncertainty using imprecise probabilities[END_REF] to applications with complex types of data, such as mixed data [START_REF] De Leon | Classification with discrete and continuous variables via general mixed-data models[END_REF], image/video [START_REF] Yang | Tensor-train recurrent neural networks for video classification[END_REF][START_REF] Yin | Towards efficient tensor decompositionbased dnn model compression with optimization framework[END_REF] and multimodal data [START_REF] Ngiam | Multimodal deep learning[END_REF][START_REF] Xu | Mufasa: Multimodal fusion architecture search for electronic health records[END_REF].

We provide in Section 2 a minimal description of MCC with sets of probabilities. Our main contribution which is a quantile-based approach for estimating credal sets is presented in Section 3. The inference problem with sets of probabilities is summarized in Section 4. Section 5 presents some preliminary experiments on tabular data sets to motivate the use of the proposed framework. Section 6 concludes this work and sketches out future work.

Preliminary

We shall recall basics of classification with sets of probabilities and notations.

Probabilistic Classification

Let X denote an instance space, and let Y = {y 1 , . . . , y K } be a finite set of classes. We assume that an instance x ∈ X is (probabilistically) associated with members of Y. We denote by p(Y | x) the conditional distribution of Y given X = x. Given training data D = {(x n , y n )|n = 1, . . . , N } drawn independently from p(X, Y ), the goal in MCC is to learn a classifier h, which is a mapping X -→ Y that assigns to each instance x ∈ X a class ŷ . .= h(x) ∈ Y.

To evaluate the performance of a classifier h, a loss function : Y ×Y -→ R + is needed, which compares a prediction ŷ with a ground-truth y. Each classifier h is evaluated using its expected loss

R(h) . .= E (Y, h(X)) = (y, h(x)) d P(x, y) ,
where P is the joint probability measure on X × Y characterizing the underlying data-generating process. Therefore, the Bayes-optimal classifier is given by

h * ∈ argmin h∈H R(h) , (1) 
where H ⊆ Y X is the hypothesis space. When H is probabilistic, we can follow maximum likelihood estimation and define the Bayes-optimal classifier as the classifier which optimizes the conditional log likelihood (CLL) function:

ĥ . .= p ∈ argmax p∈H CLL(p | D) . .= argmax p∈H 1 N N n=1 log p(y n | x n ) . (2) 
To avoid overfitting, the CLL is often augmented by a regularization term [START_REF] Murphy | Machine learning: a probabilistic perspective[END_REF][START_REF] Nguyen | Probabilistic multi-dimensional classification[END_REF].

Once the classifier (2) is learned from D, we can in principle find an optimal prediction of any loss function at the prediction time [START_REF] Elkan | The foundations of cost-sensitive learning[END_REF][START_REF] Mortier | Efficient set-valued prediction in multi-class classification[END_REF]. More precisely, assume the classifier (2) is made available, and predicts for each query instance x a probability distribution p(• | x) on the set of labelings Y. The Bayes-optimal prediction (BOP) of any is then given by the expected loss minimizer

ŷ = ŷ(x) ∈ argmin ȳ∈Y E (y, ȳ) = argmin ȳ∈Y y∈Y (y, ȳ) p(y | x) .
(3)

Classification with Set of Probabilities

Under this setting, we assume that our uncertainty is described by a (not necessarily convex) set of probabilities P(Y | x), i.e., a credal set [START_REF] Levi | The enterprise of knowledge: An essay on knowledge, credal probability, and chance[END_REF]. Clearly, the decision rule ( 3) is no longer directly applicable. Therefore, it is necessary to use some generalized decision rule such as the ones benefiting from strong theoretical justifications [START_REF] Jansen | Quantifying degrees of e-admissibility in decision making with imprecise probabilities[END_REF][START_REF] Troffaes | Decision making under uncertainty using imprecise probabilities[END_REF].

Credal sets can arise in different ways, either as a native result of the learning method [START_REF] Augustin | Introduction to imprecise probabilities[END_REF], as the result of an agnostic (with respect to the missingness process) estimation in presence of imprecise data, or as a neighbourhood taken over an initial estimated distribution p(Y | x) [START_REF] Montes | Unifying neighbourhood and distortion models: part i-new results on old models[END_REF][START_REF] Rahimian | Distributionally robust optimization: A review[END_REF]. These approaches seems to introduce some inconvenience. Native credal classifiers can be hard to learn, and are unavailable for complex inputs such as such as mixed data and images. Approximating P(Y | x) as a neighbourhood taken over an initial estimated distribution p(Y | x) does not face this inconvenience, but requires that the initial estimated distribution is well-estimated, a hard to ensure quality.

In the next section, we propose a simple, flexible and easy to use quantilebased framework for estimating credal sets using output of ensemble methods [START_REF] Dietterich | Ensemble methods in machine learning[END_REF]. This is especially designed to make use of the current and future development of both probabilistic classification and generalized decision rules in a unified framework to broaden the application of imprecise probability (IP) to real-world applications with complex data types.

Credal Sets Approximation

We assume an ensemble

H . .= {h m | m ∈ [M ] . .= {1, . . . , M }} of M probabilistic classifiers h m , m ∈ [M ]
is made available and provides, for each instance x, a set of M probabilistic predictions

H(x) . .= {h m (x) | m ∈ [M ]} = {p m . .= (p m 1 , p m 2 , . . . , p m K ) | m ∈ [M ]} . ( 4 
)
Our goal is to aggregate this set of probabilistic predictions into a credal set P(Y | x) in some meaningful way.

A Quantile-Based Approach

The intention of this approach is to seek a correctness-precision trade-off, i.e., the estimations of P(Y | x) are expected to be informative and at the same time not very large. We define the reference point of H(x) as follows:

p * = argmin p: K k=1 p k =1 M m=1 d(p, p m ) . ( 5 
)
where d is some distance defined for pairs of probability distributions.

Once the reference point p * is made available, it allows us to define a preference order, reflecting how common/weird each distribution in H(x) is:

p p if d(p * , p) < d(p * , p ) . ( 6 
)
Such a preference order in turn allows us to "discard" a given percentage of outliers among elements of H(x).

Let α ∈ [0, 1] be some threshold. We define H α (x) as the set of (1 -α) * 100 % of closest distributions in H(x) with respect to the preference order [START_REF] Corani | Learning reliable classifiers from small or incomplete data sets: The naive credal classifier 2[END_REF]. We approximate the credal set p(Y | x) of x by the convex hull of

H α (x). Let H α (x) . .= {p m | m ∈ [M α ]}. The convex hull is defined as CH α (x) . .= p . .= Mα m=1 γ m p m | γ m ≥ 0, m ∈ [M α ], Mα m=1 γ m = 1 . (7) 
The computational complexity of the problem of determining the reference point (5) can greatly depend on the nature of the distance d. In the next section, we recall commonly used distances. Due to page length limit, we only mention few convex distances and refer to [START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF][START_REF] Gibbs | On choosing and bounding probability metrics[END_REF][START_REF] Lee | Measures of distributional similarity[END_REF][START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF] for more distances.

The Cases of Convex Distances

For completeness, we shall start with few definitions and remarks, which are quite basic and would have appeared in textbooks and papers (see, e.g., [START_REF] Boyd | Convex optimization[END_REF][START_REF] Datta | Numerical linear algebra and applications[END_REF][START_REF] Pugh | Real mathematical analysis[END_REF]).

Definition 1. A function f : R K -→ R is convex if for every p, p ∈ R K and every λ 1 , λ 2 ∈ [0, 1] such that λ 1 + λ 2 = 1, we have the inequality f (λ 1 p + λ 2 p ) ≤ λ 1 f (p) + λ 2 f (p ) . ( 8 
) Remark 1. Let z ∈ R K . Let • be a norm on R K . f (p) . .= p -z is convex.
Proof. The convexity of f (p) follows consequently from the triangle inequality of norms:

f (λ 1 p + λ 2 p ) = λ 1 p + λ 2 p -z = λ 1 (p -z) + λ 2 (p -z) ≤ λ 1 (p -z) + λ 2 (p -z) = λ 1 p -z + λ 2 p -z = λ 1 f (p) + λ 2 f (p ) .
Remark 2. Conical combinations of convex functions are also convex.

Proof. The proof is trivial. It is enough to multiply the inequalities, one per convex function, by non-negative scalars and sum them up.

In the following, we show that if

f m (p) . .= d(p, p m ) is convex, m ∈ [M ]
, then the problem of finding a reference point (5) of H(x) can be straightforwardly formulated as a convex optimization problem. This is indeed computationally advantageous because with recent advances, convex programming is nearly as straightforward as linear programming [START_REF] Boyd | Convex optimization[END_REF][START_REF] Rockafellar | Lagrange multipliers and optimality[END_REF].

Definition 2. A standard convex optimization problem is of the form

minimize p f (p) subject to g i (p) ≤ 0 , i ∈ [I] , h j (p) = 0 , j ∈ [J] (9) 
where: p ∈ R K is the optimization variable; The objective function f : R K -→ R is convex; The inequality constraint functions

g i : R K -→ R, i ∈ [I] are convex;
The equality constraint functions h j : R K -→ R, j ∈ [J], are of the form:

h i (p) = a j p -b j
, where a j is a vector and b j is a scalar.

We can encode the condition that the reference point must be a valid probability distribution by using K inequality constraint functions g i and 1 equality constraint function h 1 :

g k (p) . .= -p k ≤ 0 , k ∈ [K] , h 1 (p) . .= 1 K p -1 = 0 , (10) 
where

1 K = (1, . . . , 1). The constraints p k ≤ 1, k ∈ [K],
are implicitly enforced by the K constraints g k (i.e., p k ≥ 0, k ∈ [K]) and h 1 (i.e.,

K k=1 p k = 1, k ∈ [K]
). Therefore, we can use any existing package to find p * (5).

Using Remark 1-2, we can verify that different distances (See [START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF][START_REF] Gibbs | On choosing and bounding probability metrics[END_REF][START_REF] Lee | Measures of distributional similarity[END_REF][START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF] and elsewhere) are convex. Examples are members of the L p Minkowski family

f p (p) . .= L p (p, z) . .= p K k=1 |p k -z k | p , p ≥ 1 , (11) 
and Chebyshev distance

f cheb (p) . .= L ∞ (p, z) . .= max k∈[K] |p k -z k | . (12) 
Moreover, a closer look at Definition 1 is enough to verify the convexity of some other distances (discussed in [START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF][START_REF] Gibbs | On choosing and bounding probability metrics[END_REF][START_REF] Lee | Measures of distributional similarity[END_REF][START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF] and elsewhere). Examples are the Squared Euclidean distance (whose square function allows triangle inequality)

f sqe (p) . .= d sqe (p, z) . .= K k=1 (p k -z k ) 2 , (13) 
and KL divergence (inequality (8) can be verified using the log sum inequality):

f KL (p) . .= d KL (p, z) . .= K k=1 p k log (p k /z k ) , . (14) 
To solve the problem (9) efficiently, one should carefully look at the nature of the given convex distance. For example, for any given K, closed-form solution for the f Sqe (13) can be derived (See Proposition 1). This is also a special case where the additional constraints (i.e., K k=1 p k = 1 and p k ≥ 0, k ∈ [K]) do not change the minimizer. However, it is not always the case. For example, these additional constraints can change the minimizer of f 1 (11) (See Proposition 2). Also, different distances may seek for the same minimizer. Examples of such distances are Topsør and Jensen-Shannon [START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF]. Moreover, for some distance, such as Inner Product [START_REF] Cha | Comprehensive survey on distance/similarity measures between probability density functions[END_REF], the problem ( 9) is reduced to a linear program. Proposition 1. The reference point p * (5) under Squared Euclidean distance f sqe [START_REF] Elkan | The foundations of cost-sensitive learning[END_REF] is uniquely defined as

p * k = 1 M M m=1 p m k , k ∈ [K] . ( 15 
)
Proof. The proof is trivial and is given for completeness. For any k ∈ [K], the partial derivative of

f (p) = M m=1 f m Sqe (p) = K k=1 M m=1 (p k -p m k ) 2 (16) 
with respect to the variable p k is

∂f ∂p k (p) = 2 M m=1 (p k -p m k ) = 2 M p k - M m=1 p m k . (17) 
Since f sqe (p) (13) is strictly convex, its unique minimizer is attained when the partial derivatives are zeros, i.e., p * is defined in [START_REF] Gibbs | On choosing and bounding probability metrics[END_REF]. p * is a valid distribution because the set of possible distributions is a convex set.

Proposition 2. Except for K = 2, the reference point p * (5) under f 1 [START_REF] Del Coz | Learning nondeterministic classifiers[END_REF] may not be the minimizer of the relaxed optimization problem

p ∈ argmin p M m=1 L 1 (p, p m ) = argmin p K k=1 M m=1 |p k -p m k | . ( 18 
)
Proof. Without enforcing the probability axioms (i.e.,

K k=1 p k = 1 and p k ≥ 0, k ∈ [K]
), a minimizer p of the relaxed optimization problem ( 18) is defined as

pk . .= median(p 1 k , . . . , p M k ) , k ∈ [K] . (19) 
This can be verified by showing that, for any p = p, we have

f 1 (p k ) . .= M m=1 |p k -p m k | ≥ M m=1 |p k -p m k | := f 1 (p k ) , k ∈ [K] , (20) 
which implies the relation f 1 (p) ≥ f 1 (p). Let L k be the number of p m k which is larger than pk . Let S k be the number of p m k which is smaller than pk . By definition of "median", we have L k = S k . p k > pk : We have the following relations

|p k -p m k | = |p k -p m k | + |p k -pk | if p m k ≤ pk , |p k -p m k | ≥ |p k -p m k | -|p k -p k | if p m k ≥ pk .
Therefore, we have

f 1 (p k ) = M m=1 |p k -p m k | ≥ M m=1 |p k -p m k | + |p k -pk |S k -|p k -pk |L k = M m=1 |p k -p m k | + |p k -pk |(S k -L k ) = M m=1 |p k -p m k | = f 1 (p k ) .
p k < pk : We have the following relations

|p k -p m k | = |p k -p m k | + |p k -pk | if p m k ≥ pk , |p k -p m k | ≥ |p k -p m k | -|p k -p k | if p m k ≤ pk .
Therefore, we have

f 1 (p k ) = M m=1 |p k -p m k | ≥ M m=1 |p k -p m k | + |p k -pk |L K -|p k -pk |S k = M m=1 |p k -p m k | + |p k -pk |(L k -S k ) = M m=1 |p k -p m k | = f 1 (p k ) .
For K > 2, p may not satisfy the probability axioms (see next Table ). When K = 2, the probability axioms of p are ensured by the fact that the total rank of each distribution p m , m ∈ [M ], on the first and the second classes is always M +1 (as the masses should sum up to 1). Thus, p is either one element of H(x) or the average of two elements of H(x). Let us illustrate this property using an example where M = 9: p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 1 Value 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Rank 1 2 3 4 5 6 7 8 9

K = 3 K > 3 p 1 0.8 0.1 0.1 p 1 0.4 0.2 0.4/(K-3) . . . 0.4/(K-3) p 2 0.
p 2 Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Rank 9 8 7 6 5 4 3 2 1

In this example, the total rank is 10 and p is p 5 .

In the next section, we recall the inference problem with credal sets [START_REF] Jansen | Quantifying degrees of e-admissibility in decision making with imprecise probabilities[END_REF][START_REF] Troffaes | Decision making under uncertainty using imprecise probabilities[END_REF].

Inference Problem

As said, when our uncertainty is described by a credal set P(Y | x), instead of a single probability p(Y | x), it is necessary to make predictions using some theoretically founded decision rule extending classical expectation [START_REF] Jansen | Quantifying degrees of e-admissibility in decision making with imprecise probabilities[END_REF][START_REF] Troffaes | Decision making under uncertainty using imprecise probabilities[END_REF]. For any p ∈ P(Y | x) and any loss function , we shall denote by

ŷp ∈ argmin ȳ∈Y y∈Y (y, ȳ) p(y | x) . (21) 
Definition 3. An optimal set-valued prediction under the E-admissibility rule is

ŶE ,P = {y ∈ Y | ∃ p ∈ P s.t. y = ŷp } . (22) 
Definition 4. An optimal set-valued prediction ŶM ,P under the Maximality rule is the set of the maximal, non-dominated elements of the partial order π P such that ȳ ,P ȳ if

inf p∈P Ep ( (y, ȳ ) -(y, ȳ)) > 0 . ( 23 
)
In other words, we have

ŶM ,P = {ȳ ∈ Y | ∃ ȳ s.t. ȳ ,P ȳ} . (24) 
It is known that the set-valued prediction given by the E-admissibility rule is a subset of the one given by the Maximality rule [START_REF] Troffaes | Decision making under uncertainty using imprecise probabilities[END_REF].

In the following, we discuss the computational complexity of the inference problem when is the 0/1 loss, i.e., (y, ȳ) = y = ȳ , where A = 1 if the predicate A is true and equals 0 otherwise Let us start with the case of Maximality rule. For any p ∈ CH α (x), we have

Ep ( (y, ȳ ) -(y, ȳ)) = p(ȳ | x) -p(ȳ | x) . (25) 
Thus, the relation ȳ ,P ȳ holds if the maximum of the linear program

maximize p f (p) . .= p(ȳ | x) -p(ȳ | x) (26) 
subject to p - Mα m=1 γ m p m = 0, γ m ≥ 0, Mα m=1 γ m = 1 , (27) 
is negative. Note that if f (p) has a maximum value on the feasible region, then it has this value on (at least) one of the extreme points, i.e., elements of H α (x) [START_REF] Murty | Linear programming[END_REF][Theorem 3.3]. Thus, a naive algorithmic solution is to compute f (p) for the extreme p and compare it with 0. This requires time O(K 2 M α ) because in the worst case, one needs to check all the K(K -1) relation ȳ ,P ȳ , ȳ = ȳ ∈ Y.

We now tackle the case of the E-admissibility rule. Reminding that, ∀ y ∈ ŶE ,P , there must exist at least one p ∈ CH α (x) such that y = ŷp . This is equivalent to having at least one p ∈ CH α (x) such that p(y | x) ≥ p(y | x), y = y. Thus, given any outer approximation Y O ,P of ŶE ,P we can follow the suggestion of [START_REF] Jansen | Quantifying degrees of e-admissibility in decision making with imprecise probabilities[END_REF] 

γ m = 1 , (29) 
p(y | x) -p(y | x) ≥ 0 , y ∈ Y \ {y, y } , (30) 
where y = y, and comparing it with 0. Hence, finding ŶE ,P requires solving |Y O ,P | linear programs, one per y ∈ |Y O ,P |. The naive algorithmic solution, i.e., iterating over all the extreme points, can not be applied here because a class y may be optimal only for probabilities in the interior of CH α (x).

Experiment

To motivate the potential use of the proposed framework, we perform some experiments on 9 tabular datasets from the UCI repository (cf. the left part of Table 1), following a 10-fold cross-validation procedure.

We employ random forests (RFs) [START_REF] Ho | Random decision forests[END_REF] (with default setting of scikit-learn) as the base learner. RFs are compared to an instantiation of our framework, where H α (x) is constructed under the f sqe [START_REF] Elkan | The foundations of cost-sensitive learning[END_REF] and used to produce ŶM ,P . For each train test split, we follow a 10-fold nested cross-validation procedure to choose α optimizing u 65 . The RF is then retrained using the entire training dataset and the chosen α is used to construct H α (x) during the inference phase. The source code has been made public at https://github.com/Haifei-ZHANG/Probability-Sets-Model. Overall results (accuracy, u 65 and u 80 scores [START_REF] Zaffalon | Evaluating credal classifiers by utilitydiscounted predictive accuracy[END_REF] and cardinality | ŶM ,P |) show that our proposal may provide a promising correctness-precision trade-off, compared to RFs itself. Ideally, a reliable classifier should be more cautious on difficult cases, on which the conventional classifier is likely to fail [START_REF] Nguyen | Reliable multi-class classification based on pairwise epistemic and aleatoric uncertainty[END_REF][START_REF] Yang | Nested dichotomies with probability sets for multi-class classification[END_REF]. To verify this ability of our proposal, for each dataset, we report the correctness (i.e., the percentage of times the true class is in ŶM ,P ), given the prediction was imprecise, versus the accuracy of RF on those instances. The results (in the right part of Table 1) strongly support our proposal.

This also suggests the use of the E-admissibility rule (listed as future work) may improve the overall results because, under the f sqe , predictions of RFs should belong to ŶE ,P ⊂ ŶM ,P [START_REF] Troffaes | Decision making under uncertainty using imprecise probabilities[END_REF]. More precisely, under the f sqe , our proposal should always gain in the term of correctness1 and the use of the E-admissibility rule may help to produce smaller (reliable) imprecise predictions.

To gain more insights about the influence of α, we consider u 65 and u 80 scores on the test set as functions of the value of α. The results in Figure 1 are indeed in agreement with our expectations. The P(Y | x) induced by H α (x) with small α may contain extreme/noisy distributions and produce large ŶM ,P (resulting in low u 65 and u 80 scores). Moderate α may provide a nice correctness-precision trade-off (reflected via promising u 65 and u 80 scores). For large α, P(Y | x) is shrunken as (small) neighborhood of the p * (5) and our proposal (under f sqe ) becomes similar to RFs, which use the p * to make predictions. The results also suggest that, in practice, nested cross-validation procedure can help us to find some good value of α (even if the ideal gain provided by the optimal α is small).

Conclusion

We propose a simple, easy to use quantile-based framework for estimating credal sets using output of ensemble methods, that can also cope with complex types of data. Preliminary experiments suggest that our proposal may provide a promising correctness-precision trade-off, compared to ensemble methods. To seek for a complete picture on the usefulness of our proposal, we envision the following works: (1) implement our proposal with other distances and the E-admissibility rule and analyze (dis)advantages provided by different combinations of distance and decision rule, (2) include threshold-based classifiers as competitors, and (3) include complex types of data (such as images) into our empirical studies.

Our theoretical results also inform that voting ensembles, such as RFs, use the p * under f sqe to make predictions. It would be interesting to investigate whether using the p * under other distances to make predictions may bring significant difference, thought our primary goal is not to study the problem of how to aggregate the probabilistic predictions provided by ensemble members into the final singleton predictions. 
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  and formulate the problem of checking whether a given y ∈ Y O ,P satisfies the relation y ∈ ŶE ,P as finding the maximum value of a linear program maximize p f (p) . .= p(y | x) -p(y | x) (28) subject to p -Mα m=1 γ m p m = 0, γ m ≥ 0, Mα m=1

Fig. 1 .

 1 Fig. 1. u65 and u80 scores on the test set as functions of the value of α

Table 1 .

 1 Statistics of data sets (P is the number of features) and experimental results.

		Statistics of data sets	RF	Overall results Ours		Cases of abstention RF Ours
	#	Name	N P K Acc. (%) u65 (%) u80 (%) | ŶM ,P | Acc. (%) Corr. (%)
	1	ecoli	336 7 8	78.35	77.77 79.38 2.05	69.84	93.59
	2 balance scale 625 4 3	80.50	82.17 83.15 2.02	26.75	67.75
	3	vehicle	846 18 4	74.46	78.16 82.63 2.04	47.31	90.24
	4	vowel	990 10 11 65.35	65.89 68.71 2.05	41.05	71.80
	5 wine quality 1599 11 6	57.91	61.67 68.54 2.02	49.69	86.73
	6	optdigits	1797 64 10 96.95	97.03 97.19 2.03	50.74	80.19
	7	segment	2300 19 7	98.05	98.02 98.22 2.09	50.12	78.93
	8 waveform 5000 21 3	85.52	85.81 88.33	2	62.06	99.91
	9	letter	20000 16 26 96.57	96.58 96.64 2.03	34.33	81.71

Its predictions are identical to the ones provided by RFs in the cases of singleton/precise predictions. In the cases of imprecise predictions, its predictions cover the predictions provided by RFs.
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