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Abstract. A possible approach to obtain set-valued predictions is to
learn for each query instance a probability set (a.k.a. credal set) repre-
senting its associated uncertainty. Theoretically founded decision rules
extending classical expectation and inducing a partial order between pre-
dictions can the be used to derive set-valued predictions. However, ob-
taining such a credal set by imprecisiating a given learning algorithm is
usually computationally challenging, except for simple models such as
decision trees or naive Bayes classifiers. In this paper, we propose a sim-
ple, easy to use quantile-based framework for estimating credal sets using
output of ensemble methods, that can also cope with complex types of
data, such as images and mixed/multimodal data, etc. Experiments are
conducted to highlight the usefulness of the proposed framework.

Keywords: Ensemble learning · Credal sets approximation· Set-valued
prediction · Quantile-based approach.

1 Introduction

Classification algorithms are usually designed to produce, for each instance, a
prediction in the form of a unique element of the set of possible outputs. Under
the presence of uncertainty, which is often a consequence of model inadequacy
and/or data imperfections (in terms of quality and/or quantity), the model can
however be uncertain about its predictions and make unreliable precise predic-
tions. In such a case, it might be more desirable to provide imprecise (or in-
determinate) set-valued predictions which aims to balance correctness (the true
output is an element of the set-valued prediction) and precision (the cardinality
of the set-valued prediction) in some appropriate manner [11,24,34,40].

Learning with a reject option is the simplest case of learning set-valued pre-
dictions, in which the classifier is allowed to either produce a singleton prediction
or refuse to make a prediction for a given query instance. Threshold-based clas-
sifiers have been proposed for that purpose, in which a (global/local) threshold
will be employed to decide whether a query instance should be rejected or pre-
dicted and then a conventional classifier is called only if the instance should
be classified [2,5,7,14,16,17]. Threshold-based classifiers have been developed for
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multi-class classification (MCC) [11,24], when the classifier is allowed to return
top (locally/globally) ranked classes. While such classifiers are intuitive and easy
to implement, they often require reliable estimates of the class probabilities to
be performant, which is hard to ensure when information is lacking.

By considering more expressive uncertainty representations, imprecise proba-
bilistic classifiers [6,8,22,39] can provide, at least in theory, more reliable outputs.
They are developed based on the assumption that uncertainty is described by a
(not necessarily convex) set of probabilities, i.e., a credal set [21], a description
to which can then be applied theoretically justified decision rules [19,34] to pro-
duce set-valued predictions. Moving from a single distribution to a credal set is a
natural way to model the lack of information, an aspect that unique probabilities
can hardly capture. Unfortunately, imprecise probabilistic classifiers often suffer
from the limited use to certain types of (tabular) data, as well as from the high
computational cost that represent a credal extension of a given learning method.
A solution might be to consider the credal set as a neighbourhood of the initial
estimated distribution [23,31], yet ensuring the quality of the initial estimated
distribution is a challenge itself.

In this paper, we propose a quantile-based framework for estimating credal
sets from the output of ensembles [12]. We specifically seek a correctness-precision
trade-off when constructing estimates of credal sets, i.e., the estimates are ex-
pected to be informative and at the same time not very large. This shall be done
by defining “median” of set of distributions and use the “median” to filter out a
proportion of “extreme” distributions before forming credal sets. Moreover, we
only require the availability of an ensemble of probabilistic classifiers. Thus, the
base learner (ensemble) can be freely chosen according to our needs. This flex-
ibility of the proposed approach is remarkably different from existing imprecise
probabilistic classifiers. Therefore, we hope to broaden the use of generalized
decision rules [19,34] to applications with complex types of data, such as mixed
data [10], image/video [37,38] and multimodal data [27,35].

We provide in Section 2 a minimal description of MCC with sets of probabil-
ities. Our main contribution which is a quantile-based approach for estimating
credal sets is presented in Section 3. The inference problem with sets of probabili-
ties is summarized in Section 4. Section 5 presents some preliminary experiments
on tabular data sets to motivate the use of the proposed framework. Section 6
concludes this work and sketches out future work.

2 Preliminary

We shall recall basics of classification with sets of probabilities and notations.

2.1 Probabilistic Classification

Let X denote an instance space, and let Y = {y1, . . . , yK} be a finite set of
classes. We assume that an instance x ∈ X is (probabilistically) associated with
members of Y. We denote by p(Y |x) the conditional distribution of Y given
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X = x. Given training data D = {(xn, yn)|n = 1, . . . , N} drawn independently
from p(X, Y ), the goal in MCC is to learn a classifier h, which is a mapping
X −→ Y that assigns to each instance x ∈ X a class ŷ ..= h(x) ∈ Y.

To evaluate the performance of a classifier h, a loss function ` : Y×Y −→ R+

is needed, which compares a prediction ŷ with a ground-truth y. Each classifier
h is evaluated using its expected loss

R(h) ..= E
[
`(Y,h(X))

]
=

∫
`(y,h(x)) dP(x, y) ,

where P is the joint probability measure on X ×Y characterizing the underlying
data-generating process. Therefore, the Bayes-optimal classifier is given by

h∗ ∈ argmin
h∈H

R(h) , (1)

where H ⊆ YX is the hypothesis space. When H is probabilistic, we can follow
maximum likelihood estimation and define the Bayes-optimal classifier as the
classifier which optimizes the conditional log likelihood (CLL) function:

ĥ ..= p̂ ∈ argmax
p∈H

CLL(p | D) ..= argmax
p∈H

1

N

N∑
n=1

log p(yn |xn) . (2)

To avoid overfitting, the CLL is often augmented by a regularization term [25,29].
Once the classifier (2) is learned from D, we can in principle find an optimal

prediction of any loss function ` at the prediction time [13,24]. More precisely,
assume the classifier (2) is made available, and predicts for each query instance
x a probability distribution p(· |x) on the set of labelings Y. The Bayes-optimal
prediction (BOP) of any ` is then given by the expected loss minimizer

ŷ = ŷ(x) ∈ argmin
ȳ∈Y

E
(
`(y, ȳ)

)
= argmin

ȳ∈Y

∑
y∈Y

`(y, ȳ)p(y |x) . (3)

2.2 Classification with Set of Probabilities

Under this setting, we assume that our uncertainty is described by a (not nec-
essarily convex) set of probabilities P(Y |x), i.e., a credal set [21]. Clearly, the
decision rule (3) is no longer directly applicable. Therefore, it is necessary to use
some generalized decision rule such as the ones benefiting from strong theoretical
justifications [19,34].

Credal sets can arise in different ways, either as a native result of the learning
method [1], as the result of an agnostic (with respect to the missingness process)
estimation in presence of imprecise data, or as a neighbourhood taken over an
initial estimated distribution p(Y |x) [23,31]. These approaches seems to intro-
duce some inconvenience. Native credal classifiers can be hard to learn, and are
unavailable for complex inputs such as such as mixed data and images. Approxi-
mating P(Y |x) as a neighbourhood taken over an initial estimated distribution
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p(Y |x) does not face this inconvenience, but requires that the initial estimated
distribution is well-estimated, a hard to ensure quality.

In the next section, we propose a simple, flexible and easy to use quantile-
based framework for estimating credal sets using output of ensemble methods
[12]. This is especially designed to make use of the current and future devel-
opment of both probabilistic classification and generalized decision rules in a
unified framework to broaden the application of imprecise probability (IP) to
real-world applications with complex data types.

3 Credal Sets Approximation

We assume an ensemble H ..= {hm |m ∈ [M ] ..= {1, . . . ,M}} of M probabilistic
classifiers hm, m ∈ [M ] is made available and provides, for each instance x, a
set of M probabilistic predictions

H(x) ..= {hm(x) |m ∈ [M ]} = {pm ..= (pm1 , pm2 , . . . , pmK) |m ∈ [M ]} . (4)

Our goal is to aggregate this set of probabilistic predictions into a credal set
P(Y |x) in some meaningful way.

3.1 A Quantile-Based Approach
The intention of this approach is to seek a correctness-precision trade-off, i.e.,
the estimations of P(Y |x) are expected to be informative and at the same time
not very large. We define the reference point of H(x) as follows:

p∗ = argmin
p:

∑K
k=1 pk=1

M∑
m=1

d(p,pm) . (5)

where d is some distance defined for pairs of probability distributions.
Once the reference point p∗ is made available, it allows us to define a pref-

erence order, reflecting how common/weird each distribution in H(x) is:

p � p′ if d(p∗,p) < d(p∗,p′) . (6)

Such a preference order in turn allows us to “discard” a given percentage of
outliers among elements of H(x).

Let α ∈ [0, 1] be some threshold. We define Hα(x) as the set of (1−α) ∗ 100
% of closest distributions in H(x) with respect to the preference order (6).
We approximate the credal set p(Y |x) of x by the convex hull of Hα(x). Let
Hα(x) ..= {pm |m ∈ [Mα]}. The convex hull is defined as

CHα(x) ..=

{
p ..=

Mα∑
m=1

γm pm | γm ≥ 0,m ∈ [Mα],

Mα∑
m=1

γm = 1

}
. (7)

The computational complexity of the problem of determining the reference
point (5) can greatly depend on the nature of the distance d. In the next section,
we recall commonly used distances. Due to page length limit, we only mention
few convex distances and refer to [4,15,20,33] for more distances.
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3.2 The Cases of Convex Distances

For completeness, we shall start with few definitions and remarks, which are quite
basic and would have appeared in textbooks and papers (see, e.g., [3,9,30]).

Definition 1. A function f : RK 7−→ R is convex if for every p,p′ ∈ RK and
every λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1, we have the inequality

f(λ1p+ λ2p
′) ≤ λ1f(p) + λ2f(p

′) . (8)

Remark 1. Let z ∈ RK . Let ‖·‖ be a norm on RK . f(p) ..= ‖p− z‖ is convex.

Proof. The convexity of f(p) follows consequently from the triangle inequality
of norms:

f(λ1p+ λ2p
′) = ‖λ1p+ λ2p

′ − z‖ = ‖λ1(p− z) + λ2(p
′ − z)‖

≤ ‖λ1(p− z)‖+ ‖λ2(p
′ − z)‖ = λ1‖p− z‖+ λ2‖p′ − z‖

= λ1f(p) + λ2f(p
′) .

ut

Remark 2. Conical combinations of convex functions are also convex.

Proof. The proof is trivial. It is enough to multiply the inequalities, one per
convex function, by non-negative scalars and sum them up. ut

In the following, we show that if fm(p) ..= d(p,pm) is convex, m ∈ [M ], then
the problem of finding a reference point (5) of H(x) can be straightforwardly
formulated as a convex optimization problem. This is indeed computationally
advantageous because with recent advances, convex programming is nearly as
straightforward as linear programming [3,32].

Definition 2. A standard convex optimization problem is of the form

minimize
p

f(p) subject to gi(p) ≤ 0 , i ∈ [I] , hj(p) = 0 , j ∈ [J ] (9)

where: p ∈ RK is the optimization variable; The objective function f : RK 7−→ R
is convex; The inequality constraint functions gi : RK 7−→ R, i ∈ [I] are convex;
The equality constraint functions hj : RK 7−→ R, j ∈ [J ], are of the form:
hi(p) = ajp− bj, where aj is a vector and bj is a scalar.

We can encode the condition that the reference point must be a valid proba-
bility distribution by using K inequality constraint functions gi and 1 equality
constraint function h1:

gk(p) ..= −pk ≤ 0 , k ∈ [K] , h1(p) ..= 1Kp− 1 = 0 , (10)

where 1K = (1, . . . , 1). The constraints pk ≤ 1, k ∈ [K], are implicitly enforced
by the K constraints gk (i.e., pk ≥ 0, k ∈ [K]) and h1 (i.e.,

∑K
k=1 pk = 1,

k ∈ [K]). Therefore, we can use any existing package to find p∗ (5).
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Using Remark 1–2, we can verify that different distances (See [4,15,20,33]
and elsewhere) are convex. Examples are members of the Lp Minkowski family

fp(p) ..= Lp(p, z) ..= p

√√√√ K∑
k=1

|pk − zk|p , p ≥ 1 , (11)

and Chebyshev distance

fcheb(p) ..= L∞(p, z) ..= max
k∈[K]

|pk − zk| . (12)

Moreover, a closer look at Definition 1 is enough to verify the convexity of
some other distances (discussed in [4,15,20,33] and elsewhere). Examples are the
Squared Euclidean distance (whose square function allows triangle inequality)

fsqe(p) ..= dsqe(p, z) ..=
K∑

k=1

(pk − zk)
2 , (13)

and KL divergence (inequality (8) can be verified using the log sum inequality):

fKL(p) ..= dKL(p, z) ..=
K∑

k=1

pk log (pk/zk) , . (14)

To solve the problem (9) efficiently, one should carefully look at the nature
of the given convex distance. For example, for any given K, closed-form solution
for the fSqe (13) can be derived (See Proposition 1). This is also a special case
where the additional constraints (i.e.,

∑K
k=1 pk = 1 and pk ≥ 0, k ∈ [K]) do not

change the minimizer. However, it is not always the case. For example, these
additional constraints can change the minimizer of f1 (11) (See Proposition 2).
Also, different distances may seek for the same minimizer. Examples of such
distances are Topsør and Jensen-Shannon [4]. Moreover, for some distance, such
as Inner Product [4], the problem (9) is reduced to a linear program.

Proposition 1. The reference point p∗ (5) under Squared Euclidean distance
fsqe (13) is uniquely defined as

p∗k =
1

M

M∑
m=1

pmk , k ∈ [K] . (15)

Proof. The proof is trivial and is given for completeness. For any k ∈ [K], the
partial derivative of

f(p) =

M∑
m=1

fm
Sqe(p) =

K∑
k=1

(
M∑

m=1

(pk − pmk )

)2

(16)
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with respect to the variable pk is

∂f

∂pk
(p) = 2

M∑
m=1

(pk − pmk ) = 2

(
Mpk −

M∑
m=1

pmk

)
. (17)

Since fsqe(p) (13) is strictly convex, its unique minimizer is attained when the
partial derivatives are zeros, i.e., p∗ is defined in (15). p∗ is a valid distribution
because the set of possible distributions is a convex set. ut

Proposition 2. Except for K = 2, the reference point p∗ (5) under f1 (11) may
not be the minimizer of the relaxed optimization problem

p̄ ∈ argmin
p

M∑
m=1

L1(p,p
m) = argmin

p

K∑
k=1

(
M∑

m=1

|pk − pmk |

)
. (18)

Proof. Without enforcing the probability axioms (i.e.,
∑K

k=1 pk = 1 and pk ≥ 0,
k ∈ [K]), a minimizer p̄ of the relaxed optimization problem (18) is defined as

p̄k ..= median(p1k, . . . , pMk ) , k ∈ [K] . (19)

This can be verified by showing that, for any p 6= p̄, we have

f1(pk) ..=
M∑

m=1

|pk − pmk | ≥
M∑

m=1

|p̄k − pmk | := f1(p
′
k) , k ∈ [K] , (20)

which implies the relation f1(p) ≥ f1(p̄).
Let Lk be the number of pmk which is larger than p̄k. Let Sk be the number

of pmk which is smaller than p̄k. By definition of “median”, we have Lk = Sk.

– pk > p̄k: We have the following relations

|pk − pmk | = |p̄k − pmk |+ |pk − p̄k| if pmk ≤ p̄k ,

|pk − pmk | ≥ |p̄k − pmk | − |p̄k − pk| if pmk ≥ p̄k .

Therefore, we have

f1(pk) =

M∑
m=1

|pk − pmk |

≥
M∑

m=1

|p̄k − pmk |+ |pk − p̄k|Sk − |pk − p̄k|Lk

=

M∑
m=1

|p̄k − pmk |+ |pk − p̄k|(Sk − Lk)

=

M∑
m=1

|p̄k − pmk | = f1(p
′
k) .
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– pk < p̄k: We have the following relations

|pk − pmk | = |p̄k − pmk |+ |pk − p̄k| if pmk ≥ p̄k ,

|pk − pmk | ≥ |p̄k − pmk | − |p̄k − pk| if pmk ≤ p̄k .

Therefore, we have

f1(pk) =

M∑
m=1

|pk − pmk |

≥
M∑

m=1

|p̄k − pmk |+ |pk − p̄k|LK − |pk − p̄k|Sk

=

M∑
m=1

|p̄k − pmk |+ |pk − p̄k|(Lk − Sk)

=

M∑
m=1

|p̄k − pmk | = f1(p
′
k) .

For K > 2, p̄ may not satisfy the probability axioms (see next Table).

K = 3 K > 3
p1 0.8 0.1 0.1 p1 0.4 0.2 0.4/(K-3) . . . 0.4/(K-3)
p2 0.2 0.5 0.3 p2 0.2 0.7 0.1/(K-3) . . . 0.1/(K-3)
p3 0.1 0.4 0.5 p3 0.1 0.6 0.3/(K-3) . . . 0.3/(K-3)
p̄ 0.2 0.4 0.3 p̄ 0.2 0.6 0.3/(K-3) . . . 0.3/(K-3)

When K = 2, the probability axioms of p̄ are ensured by the fact that the
total rank of each distribution pm, m ∈ [M ], on the first and the second classes
is always M+1 (as the masses should sum up to 1). Thus, p̄ is either one element
of H(x) or the average of two elements of H(x). Let us illustrate this property
using an example where M = 9:

p1 p2 p3 p4 p5 p6 p7 p8 p9

p1
Value 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Rank 1 2 3 4 5 6 7 8 9

p2
Value 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rank 9 8 7 6 5 4 3 2 1

In this example, the total rank is 10 and p̄ is p5. ut

In the next section, we recall the inference problem with credal sets [19,34].

4 Inference Problem

As said, when our uncertainty is described by a credal set P(Y |x), instead
of a single probability p(Y |x), it is necessary to make predictions using some
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theoretically founded decision rule extending classical expectation [19,34]. For
any p ∈ P(Y |x) and any loss function `, we shall denote by

ŷp` ∈ argmin
ȳ∈Y

∑
y∈Y

`(y, ȳ)p(y |x) . (21)

Definition 3. An optimal set-valued prediction under the E-admissibility rule is

ŶE
`,P = {y ∈ Y | ∃p ∈ P s.t. y = ŷp` } . (22)

Definition 4. An optimal set-valued prediction ŶM
`,P under the Maximality rule

is the set of the maximal, non-dominated elements of the partial order πP
` such

that ȳ �`,P ȳ′ if
inf
p∈P

Ep (`(y, ȳ′)− `(y, ȳ)) > 0 . (23)

In other words, we have

ŶM
`,P = {ȳ ∈ Y | 6 ∃ ȳ′ s.t. ȳ′ �`,P ȳ} . (24)

It is known that the set-valued prediction given by the E-admissibility rule is a
subset of the one given by the Maximality rule [34].

In the following, we discuss the computational complexity of the inference
problem when ` is the 0/1 loss, i.e., `(y, ȳ) = Jy 6= ȳK, where JAK = 1 if the
predicate A is true and equals 0 otherwise

Let us start with the case of Maximality rule. For any p ∈ CHα(x), we have

Ep (`(y, ȳ′)− `(y, ȳ)) = p(ȳ |x)− p(ȳ′ |x) . (25)

Thus, the relation ȳ �`,P ȳ′ holds if the maximum of the linear program

maximize
p

f(p) ..= p(ȳ′ |x)− p(ȳ |x) (26)

subject to p−
Mα∑
m=1

γm pm = 0, γm ≥ 0,

Mα∑
m=1

γm = 1 , (27)

is negative. Note that if f(p) has a maximum value on the feasible region, then
it has this value on (at least) one of the extreme points, i.e., elements of Hα(x)
[26][Theorem 3.3]. Thus, a naive algorithmic solution is to compute f(p) for the
extreme p and compare it with 0. This requires time O(K2Mα) because in the
worst case, one needs to check all the K(K − 1) relation ȳ �`,P ȳ′, ȳ 6= ȳ′ ∈ Y.

We now tackle the case of the E-admissibility rule. Reminding that, ∀ y ∈
ŶE

`,P , there must exist at least one p ∈ CHα(x) such that y = ŷp` . This is
equivalent to having at least one p ∈ CHα(x) such that p(y |x) ≥ p(y′ |x), y′ 6=
y. Thus, given any outer approximation YO

`,P of ŶE
`,P we can follow the suggestion

of [19] and formulate the problem of checking whether a given y ∈ YO
`,P satisfies
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the relation y ∈ ŶE
`,P as finding the maximum value of a linear program

maximize
p

f(p) ..= p(y |x)− p(y′ |x) (28)

subject to p−
Mα∑
m=1

γm pm = 0, γm ≥ 0,

Mα∑
m=1

γm = 1 , (29)

p(y |x)− p(y′′ |x) ≥ 0 , y′′ ∈ Y \ {y, y′} , (30)

where y′ 6= y, and comparing it with 0. Hence, finding ŶE
`,P requires solving

|YO
`,P | linear programs, one per y ∈ |YO

`,P |. The naive algorithmic solution, i.e.,
iterating over all the extreme points, can not be applied here because a class y
may be optimal only for probabilities in the interior of CHα(x).

5 Experiment

To motivate the potential use of the proposed framework, we perform some
experiments on 9 tabular datasets from the UCI repository (cf. the left part of
Table 1), following a 10-fold cross-validation procedure.

We employ random forests (RFs) [18] (with default setting of scikit-learn) as
the base learner. RFs are compared to an instantiation of our framework, where
Hα(x) is constructed under the fsqe (13) and used to produce ŶM

`,P . For each
train test split, we follow a 10-fold nested cross-validation procedure to choose α
optimizing u65. The RF is then retrained using the entire training dataset and
the chosen α is used to construct Hα(x) during the inference phase. The source
code has been made public at https://github.com/Haifei-ZHANG/Probability-
Sets-Model.

Table 1. Statistics of data sets (P is the number of features) and experimental results.

Statistics of data sets Overall results Cases of abstention
RF Ours RF Ours

# Name N P K Acc. (%) u65 (%) u80 (%) |ŶM
`,P | Acc. (%) Corr. (%)

1 ecoli 336 7 8 78.35 77.77 79.38 2.05 69.84 93.59
2 balance scale 625 4 3 80.50 82.17 83.15 2.02 26.75 67.75
3 vehicle 846 18 4 74.46 78.16 82.63 2.04 47.31 90.24
4 vowel 990 10 11 65.35 65.89 68.71 2.05 41.05 71.80
5 wine quality 1599 11 6 57.91 61.67 68.54 2.02 49.69 86.73
6 optdigits 1797 64 10 96.95 97.03 97.19 2.03 50.74 80.19
7 segment 2300 19 7 98.05 98.02 98.22 2.09 50.12 78.93
8 waveform 5000 21 3 85.52 85.81 88.33 2 62.06 99.91
9 letter 20000 16 26 96.57 96.58 96.64 2.03 34.33 81.71

https://github.com/Haifei-ZHANG/Probability-Sets-Model
https://github.com/Haifei-ZHANG/Probability-Sets-Model
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Overall results (accuracy, u65 and u80 scores [40] and cardinality |ŶM
`,P |)

show that our proposal may provide a promising correctness-precision trade-off,
compared to RFs itself. Ideally, a reliable classifier should be more cautious on
difficult cases, on which the conventional classifier is likely to fail [28,36]. To
verify this ability of our proposal, for each dataset, we report the correctness
(i.e., the percentage of times the true class is in ŶM

`,P), given the prediction was
imprecise, versus the accuracy of RF on those instances. The results (in the right
part of Table 1) strongly support our proposal.

This also suggests that the use of the E-admissibility rule (listed as future
work) may improve the overall results because, under the fsqe, predictions of RFs
should belong to ŶE

`,P ⊂ ŶM
`,P [34]. More precisely, under the fsqe, our proposal

should always gain in the term of correctness1 and the use of the E-admissibility
rule may help to produce smaller (reliable) imprecise predictions.

To gain more insights about the influence of α, we consider u65 and u80 scores
on the test set as functions of the value of α. The results in Figure 1 are indeed
in agreement with our expectations. The P(Y |x) induced by Hα(x) with small
α may contain extreme/noisy distributions and produce large ŶM

`,P (resulting in
low u65 and u80 scores). Moderate α may provide a nice correctness-precision
trade-off (reflected via promising u65 and u80 scores). For large α, P(Y |x) is
shrunken as (small) neighborhood of the p∗ (5) and our proposal (under fsqe)
becomes similar to RFs, which use the p∗ to make predictions. The results also
suggest that, in practice, nested cross-validation procedure can help us to find
some good value of α (even if the ideal gain provided by the optimal α is small).

6 Conclusion

We propose a simple, easy to use quantile-based framework for estimating credal
sets using output of ensemble methods, that can also cope with complex types of
data. Preliminary experiments suggest that our proposal may provide a promis-
ing correctness-precision trade-off, compared to ensemble methods. To seek for
a complete picture on the usefulness of our proposal, we envision the following
works: (1) implement our proposal with other distances and the E-admissibility
rule and analyze (dis)advantages provided by different combinations of distance
and decision rule, (2) include threshold-based classifiers as competitors, and (3)
include complex types of data (such as images) into our empirical studies.

Our theoretical results also inform that voting ensembles, such as RFs, use the
p∗ under fsqe to make predictions. It would be interesting to investigate whether
using the p∗ under other distances to make predictions may bring significant
difference, thought our primary goal is not to study the problem of how to
aggregate the probabilistic predictions provided by ensemble members into the
final singleton predictions.
1 Its predictions are identical to the ones provided by RFs in the cases of single-

ton/precise predictions. In the cases of imprecise predictions, its predictions cover
the predictions provided by RFs.
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(a) ecoli (b) balance scale (c) vehicle

(d) vowel (e) wine quaity (f) optdigits

(g) segment (h) waveform (i) letter

Fig. 1. u65 and u80 scores on the test set as functions of the value of α
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